Trajectories in county-level Low Birthweight Rates and Associated Contextual Factors

in the United States, 2016-2021

AUTHORS: Pallavi Dwivedi, MS, MPH a, Thu T. Nguyen, ScD MSPH a, Xin He, PhD a, Quynh C. Nguyen, PhD a

AFFILIATIONS: a Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, Maryland, United States

CORRESPONDENCE TO: Pallavi Dwivedi, Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, Maryland

Email: pdwived1@umd.edu

Manuscript word count: 3082 Abstract word count: 237

Tables: 4 Figures: 1

eTables: 1 eFigures: 1

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Conflict of Interest statement: The authors have no conflict of interest to disclose.
ABSTRACT

Introduction

Infants with low birthweight (less than 2500 grams) have greater risk of mortality, long-term neurologic disability and chronic diseases such as diabetes and cardiovascular disease as compared to infants with normal birthweight. This study examined the trajectories of low birthweight rate in the U.S. across the metropolitan and non-metropolitan counties over the time period of 2016-2021 and the associated contextual factors.

Methods

This longitudinal study utilized data on 21,759,834 singleton births across 3,108 counties. Data on birthweight and maternal sociodemographic and behavioral characteristics was obtained from the National Center for Health Statistics. A generalized estimating equations model was used to examine the association of county-level contextual variables with low birthweight rates.

Results

A significant increase in low birthweight rates was observed across the counties over the duration of the study. Large metro and small metro counties had significantly higher low birthweight rates as compared to non-metro counties. High percentage of Black women, underweight women, age more than 35 years, lack of prenatal care, uninsured population, and
high violent crime rate was associated with an increase in low-birth-weight rates. Other contextual characteristics (percentage of married women, American Indian/Alaskan Native women, and unemployed population) differed in their associations with low birthweight rates depending on county metropolitan status.

Conclusions

Our study findings emphasize the importance of developing interventions to address geographical heterogeneity in low birthweight burden, particularly for metropolitan areas and communities with vulnerable racial/ethnic and socioeconomic groups.

Keywords

Low Birthweight, contextual factors, heterogeneity, maternal factors
INTRODUCTION

In comparison with normal birthweight infants, neonates with low birthweight (< 2500 grams at birth) have higher risk of mortality, and chronic diseases such as cardiovascular disease and diabetes.\(^1,2,3,4\) The determinants of low birthweight include multiple gestation or carrying more than one fetus, obstetric complications, infections, smoking, drinking alcohol, drug abuse, stress, undernutrition and chronic maternal conditions such as hypertension.\(^2,4,5,6\) Prenatal exposure to air pollution has also been shown to be associated with low birthweight.\(^2\) Previous studies have also suggested that racial discrimination is associated with increased risk of preterm and low birthweight.\(^7,8\) The low birthweight rate for Black people has been more than twice that for White people from 2006-2016.\(^9\)

The prevalence of low birthweight in the U.S. was estimated to be 8.3% in 2018 by National Center for Health Statistics.\(^10\) The Healthy People 2020 goal was to reduce the rate of low birthweight to 7.8%.\(^11\) While several previous studies have examined the maternal factors, which are associated with low birthweight of infants, none of these studies examined the patterns of low birthweight rates based on the metropolitan status of counties across the U.S.

In this study, we examined whether there is any variation in the rates of low birthweight rates based on the metropolitan status of U.S. counties. In addition, we examined whether the effect of certain county-level contextual factors such as socioeconomic disadvantage, and maternal factors such as marital status and race or ethnicity on low birthweight rates vary based on the metropolitan status of counties. We also examined the distribution of low birthweight risk across the counties. Examination of geographical variation in low birthweight rates and
associated contextual factors can help to inform interventions and policies and reduce cases of low birthweight.

Study aims and hypotheses.

The aim of this study was to examine the trajectories of low birthweight rate at the county scale based on the metropolitan status of counties and the association of county-level contextual factors with low birthweight rates over the time period of 2016-2021. We hypothesized that there is variation in low birthweight rates based on the metropolitan status of counties and certain county-level contextual factors such as socioeconomic disadvantage, violent crime rate, and maternal factors such as marital status and race or ethnicity might influence the disparities in low birthweight rate across the counties.

METHODS

County-level health data

This longitudinal study utilized data on 21,759,834 singleton births across 3,108 counties for the time period of 2016-2021. Data on birthweight and maternal characteristics (e.g., live birth order, race or ethnicity, age, marital status, prenatal care, body mass index, cigarette smoking status during first, second or third trimester of pregnancy, maternal education) were obtained from the restricted natality files with geographical identifiers from the National Center for Health Statistics. Data on county-level time-varying contextual variables, such as percentage of unemployed population, percentage of uninsured population, violent crime rate per 100,000 population, and primary care provider rate per 100,000 population were obtained from the County Health Rankings data.
Measures

Counts of low birthweight cases were aggregated by county in two-year study periods (2016-2017, 2018-2019 and 2020-2021) to enable stabilization of low birthweight rates. Similarly, data on county-level time-varying contextual variables, such as percentage of unemployed population, percentage of uninsured population, violent crime rate per 100,000 population, primary care provider rate per 100,000 population were aggregated for the two-year study periods. Data on maternal characteristics (live birth order, race or ethnicity, age, marital status, prenatal care, body mass index, cigarette smoking status during first, second or third trimester of pregnancy, maternal education) was also aggregated for the two-year study periods. The National Center for Health Statistics (NCHS) Urban–Rural Classification Scheme for counties was used to classify counties. The NCHS scheme is a 6-category classification scheme based on county population. The six categories were combined into 3 categories, and the counties were classified as large metropolitan counties (metro areas of 250,000 population or more), small metropolitan counties (metro areas of fewer than 250,000 population) and non-metropolitan counties.

Statistical Analysis

The geographic distribution of low birthweight rates for each two-year study period was examined by calculating the Standardized Incidence Ratios (SIRs). The SIRs can be calculated as the ratio of observed to expected count of low birthweight cases for each county. The state-
level low birthweight rates were used to calculate county-level expected count of low
birthweight cases by multiplying state-level low birthweight rates with total number of births
per county. The county level observed, or raw rates of low birthweight can be misleading,
particularly if the data are sparse due to small population size. Therefore, a Bayesian
hierarchical model was used to compute smoothed SIRs and exceedance probability of SIR
being greater than 1 for each county during each study period.15,16 The Bayesian model
comprised of a spatial random effect term, which incorporates the influence of neighboring
counties, and a non-spatial or unstructured variability term. The spatial random effect term can
be defined as a conditional autoregressive Gaussian process with mean equal to the mean of
the spatial effects of the neighboring geographic units and precision (τ_v). The non-spatial
random effect term was normally distributed with mean equal to zero and precision (τ_u).
Gamma (0.5, 0.0005) priors were assigned to the precision terms in the model. The R-INLA
package in R was utilized to conduct Bayesian inference by using the integrated nested Laplace
approximation (INLA) method.17,18

A generalized estimating equations (GEE) model with a log link function was used to examine
the association of county-level contextual variables with low birthweight rates from 2016-2021.
The variances of low birthweight cases within each type of county classification (non-
metro/small-metro/large-metro) was higher than the mean low birthweight cases, which
suggested the presence of overdispersion in the data (eTable 1). Therefore, negative binomial
regression was utilized, and the log of the total number of births per county was used as an
offset variable to allow for the interpretation as low birthweight rates. A random effect term
was included to adjust for the within-county correlations among repeated measures during
three measurement periods (2016-2017, 2018-2019 and 2020-2021). We hypothesized that metropolitan status of counties moderates or modifies the effect of socioeconomic status of women on low birthweight rates. Therefore, interaction between metropolitan status and county-level percentage of uninsured population and percentage of unemployed population were examined. We also examined the interaction between metropolitan status and measurement period, maternal race and ethnicity, and marital status of women. The variables such as the county-level percentage of women with live birth order more than one, women within age range of 35-54 years, women who did not receive any prenatal care, underweight women based on their Body Mass Index (BMI), women who smoked cigarette during pregnancy, women with education more than high school, county-level primary care provider rate (per 100,000 population) and violent crime rate per 100,000 population were included as control variables in the model. This study was determined exempt by the University of Maryland College Park Institutional Review Board (1797788-1).

RESULTS

There were a total of 1,444,384 low birthweight cases, out of 21,759,834 singleton births, over the duration of 2016-2021. The percentage of low birthweight cases was similar over the three study periods (486,893 [6.49%] in 2016-2017; 481,152 [6.63%] in 2018-2019; 476,339 [6.8%] in 2020-2021). The median low birthweight rate was similar over the three study periods (~ 4 per 100 births). Large metropolitan counties accounted for the greatest number of low birthweight cases (1,201,200 [83.16%]), followed by small metropolitan counties (142,938 [9.90%]) and non-metropolitan counties (100,246 [6.94%]).
Geographic distribution of low-birth-weight rates

Figure 1 presents the smoothed Standardized Incidence Ratio (SIRs) of low birthweight and Bayesian exceedance probability for SIR greater than 1 for the three study periods. The county-level SIRs ranged from 0.23 to 13.68, 0.24 to 9.89 and 0.18 to 12.45 in 2016-2017, 2018-2019 and 2020-2021, respectively. The median (interquartile range) for SIR for the study periods of 2016-2017, 2018-2019 and 2020-2021 were 0.76 [0.57-0.98], 0.74 [0.56-0.98] and 0.68 [0.50-1.01] respectively. SIRs greater than 1 indicate higher than expected risk of low birthweight, and SIRs less than 1 represent lower than expected risk of low birthweight. We observed an elevated risk of low birthweight in several counties in California, Arizona, Oregon, Washington, Idaho, Montana, Wyoming, Colorado, New Mexico, Texas and in southern, midwestern and northeastern states over the three study periods (Figure 1).

Contextual variables associated with low birthweight rates.

GEE model was used to examine the association of county-level contextual variables with low birthweight rates (Table 1). We examined whether metropolitan status of counties moderates the effect of socioeconomic status, marital status and racial group of women on low birthweight rates. Therefore, we examined interactions between contextual variables such as percentage of uninsured population, unemployed population, maternal racial group, marital status and county type (large metropolitan, small metropolitan and non-metropolitan). We also examined interaction between county type and study period. The interactions between county type and county-level percentage of American Indian/Alaskan native women, percentage of married women and unemployed population were significant. Stratified models based on the
county type or metropolitan status were used to examine the effect of county-level percentage
of married women, American Indian/Alaskan Native women and unemployed population on
low-birth-weight rates after adjusting for all the covariates (Tables 2-4). County-level
percentage of women with live birth order of more than one, women within age range of 35-54
years, underweight women based on BMI, women with education more than high school,
women who smoked cigarette during pregnancy, women who did not receive any prenatal care
and county-level violent crime rate per 100,000 population and primary care provider rate (per
100,000 population) were included as control variables in the model.

Table 1 presents the incidence rate ratios (IRR) for low birthweight for each predictor variable
after adjusting for all the other covariates. All predictor variables were standardized to have a
mean of 0 and standard deviation of 1. After adjusting for all the covariates, one standard
deviation increase in the county-level percentage of Black women (incidence rate ratio, IRR =
1.22, 95% CI = 1.20, 1.24) was associated with higher low birthweight rates. One standard
deviation increase in the percentage of women who did not obtain any prenatal care, women
who were underweight based on their BMI and women who smoked cigarette during
pregnancy was associated with increased low birthweight rates (IRR for no prenatal care =1.27,
95% CI = 1.23, 1.32; IRR for underweight based on BMI = 1.08, 95% CI = 1.03, 1.13; IRR for
smoking during pregnancy= 1.24, 95% CI = 1.21, 1.28 respectively). An increase in the
percentage of women of age 35-54 years was associated with an increase in low birthweight
rates (IRR = 1.06, 95% CI = 1.01, 1.11). One standard deviation increase in the percentage of
women with live birth order more than one was associated with reduced low birthweight rates
(IRR = 0.89, 95% CI = 0.85, 0.93). One standard deviation increase in the county-level
percentage of uninsured women was associated with a significant increase in low birthweight rates (IRR = 1.10, 95% CI = 1.09, 1.12). An increase in the county-scale violent crime rate was associated with higher low birthweight rate (IRR =1.07, 95% CI = 1.06, 1.09). One standard deviation increase in the county-level primary care provider rate was associated with a significant increase in low birthweight rates (IRR = 1.09, 95% CI = 1.07, 1.11).

We did not observe any significant interaction between metropolitan status or county type and study periods. Compared to the baseline study period of 2016-2017, there was a significant increase in low birthweight rates in the study periods of 2018-2019 and 2020-2021 in all the counties after adjusting for all the covariates (2018-2019: IRR = 1.11, 95% CI = 1.09, 1.13; 2020-2021: IRR = 1.15, 95% CI = 1.13, 1.18). Large metropolitan counties and small metropolitan counties had higher low birthweight rates as compared to non-metropolitan counties over the study duration after adjusting for all the covariates (Large metro: IRR = 1.24, 95% CI = 1.20, 1.29; Small metro: IRR = 1.21, 95% CI =1.16, 1.27). eFigure 1 presents the trajectory of low birthweight rate for large metropolitan, small metropolitan and non-metro counties over the duration of the study.

An increase in the county-level percentage of married women was associated with reduced low birthweight rates in non-metropolitan and large metropolitan counties after adjusting for all the covariates (Table 2: Non-metro: IRR = 0.90, 95% CI =0.86, 0.94; Large metro: IRR = 0.98, 95% CI =0.96, 0.99). One standard deviation increase in the county scale percentage of unemployed population was associated with higher low birthweight rate in non-metropolitan counties (Table 3: IRR = 1.04, 95% CI = 1.02, 1.06). Table 4 presents the incidence rate ratio of low birthweight for one standard deviation increase in county scale percentage of American
Indian/Alaskan Native women based on the metropolitan status of counties. An increase in the percentage of American Indian/Alaskan native women was associated with higher low birthweight rates in small metropolitan counties (IRR = 1.08, 95% CI = 1.02, 1.15) and reduced low birthweight rates in non-metropolitan counties (IRR = 0.97, 95% CI = 0.95, 0.98).

DISCUSSION

This study examined county-level low birthweight rate trajectories in the U.S. during the 6-year period from 2016 to 2021 across the metropolitan and non-metropolitan counties. There was a significant increase in low birthweight rates in all the counties over the duration of the study. Large metropolitan and small metropolitan counties had significantly higher low birthweight rates as compared to non-metropolitan counties over the duration of the study. These differences in low birthweight rates based on the metropolitan status of counties might be attributed to demographic or racial and socioeconomic disparities across these counties.\(^{19,20,21}\) Black race was associated with high low birthweight rates. We also observed a significant increase in low birthweight rates with an increase in county level violent crime rate (per 100,000 population). A study conducted by Messer et al.\(^{22}\) reported that Black women are more likely to live in disadvantaged neighborhoods, or neighborhoods with high poverty, unemployment, and violent crime rate as compared to White women. Additionally, the authors suggested that Black women living in racially heterogenous areas with high crime rates might be exposed to stress resulting from racial discrimination. Several other studies have suggested a positive association between stress and adverse birth outcomes.\(^{23,24}\)
An increase in the county-level percentage of married women was significantly associated with reduced low birthweight rates in non-metro and large metropolitan counties. Several studies have suggested that unmarried women are more likely to have poor socioeconomic conditions.25,26 A study conducted by Taffel27 found that unmarried Black women are more likely to give birth to a low birthweight infant as compared to unmarried White women. Studies conducted by Rubin28 and Alhusen et al.29 found that maternal sociodemographic characteristics, health behavior and prenatal care do not adequately account for disparities in birth outcomes among Black and White women. An increase in the county-level percentage of the unemployed population was significantly associated with higher low birthweight rates in non-metropolitan counties. As study conducted by Hargraves30 suggested that women living in rural or non-metropolitan counties are affected by inequalities and biases based on gender, reduced transportation and employment with lower salaries and inadequate health insurance. The women of racial and ethnic minority groups are more likely to experience these limitations in rural counties as compared to White women.

An increase in the county-level percentage of women who did not receive any prenatal care and the uninsured population was significantly associated with high low birthweight rates. A previous study, conducted by Taylor et al.,31 suggested that women with Medicaid or no insurance are less likely to seek preventive care and have adverse birth outcomes such as preterm birth, preeclampsia and low birthweight as compared to women with commercial insurance. High percentage of underweight women based on their BMI and women who smoked cigarette during first, second or third trimester of pregnancy was associated with high low birthweight rates. These findings are consistent with the findings from the study conducted
by Gunther et al.,32 which reported that exposure to nicotine or cigarette smoking during pregnancy are associated with adverse birth outcomes. While maternal age within the range of 35-54 years was associated with higher low birthweight rate, an increase in the percentage of women with previous live births (live birth order \textgreater{}1) was associated with reduced low birthweight rate. Few previous studies have reported similar effect of maternal age and live birth order on birth weight of infants.33,34

An increase in the county-level percentage of American Indian/Alaskan Native women was significantly associated with an increase in low birthweight rate in small metropolitan counties and a decrease in low birthweight rate in non-metropolitan counties. American Indian/Alaskan Native racial group has been reported to be at increasing rates of socioeconomic disadvantage as compared to White women. Several other studies have also reported disparities in birth outcomes between the American Indian/Alaskan Native women and White women and other racial groups.35,36 A study conducted by Call et al.37 reported that American Indian/Alaskan Native racial group experiences barriers to healthcare due to racial discrimination and biases based on their religious beliefs by health care providers. Though access to healthcare has improved among this subpopulation due to Indian Health Service (IHS), disparities in birth outcomes exist in this racial group due to reduced availability of IHS in urban areas.38,39

CONCLUSIONS

Low birthweight infants have a higher risk of mortality and chronic disorders as compared to infants with normal birthweight. This study identified potential risk factors associated with low
birthweight and the variation in the low birthweight rates based on the metropolitan status of counties. Based on our study findings, maternal factors such as racial or ethnic group, BMI, age, cigarette smoking during pregnancy, socioeconomic status, marital status, prenatal care, health insurance and county-scale violent crime rate are significant predictors of low birthweight rate at the county level. We also observed a significant increase in low birthweight rates over the duration of the study. Large metropolitan and small metropolitan counties had high rates of low birthweight as compared to non-metropolitan counties over the duration of the study. Our study findings emphasize the importance of developing interventions tailored specifically for high risk or vulnerable racial or ethnic and socioeconomic groups to reduce low birthweight rates. In addition, we examined geographical distribution of low birthweight risk across the counties and find heterogeneity which suggests additional resources might be warranted to further support areas at higher risk of adverse birth outcomes.
Funding

Research reported in this publication was supported by the National Institute on Minority Health and Health Disparities [R00MD012615 (TTN), R01MD015716 (TTN), R01MD016037 (QCN)], the National Library of Medicine [R01LM012849 (QCN)]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
REFERENCES

 https://www.countyhealthrankings.org/explore-health-rankings/rankings-data-documentation

 https://www.cdc.gov/nchs/data_access/urban_rural.htm

Table 1: Association of county-level contextual variables with low birthweight rates during the study period (2016-2021).

<table>
<thead>
<tr>
<th>County-level contextual variables</th>
<th>Incidence rate ratio of low birthweight (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>County type (Reference = Non-metro; N = 1836)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small metro (N = 347)</td>
<td>1.21 (1.16, 1.27)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Large metro (N = 804)</td>
<td>1.24 (1.20, 1.29)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Time period (Reference = 2016-2017)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018-2019</td>
<td>1.11 (1.09, 1.13)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>2020-2021</td>
<td>1.15 (1.13, 1.18)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>% Black</td>
<td>1.22 (1.20, 1.24)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>% Asian</td>
<td>1.01 (0.99, 1.03)</td>
<td>0.22</td>
</tr>
<tr>
<td>% Native Hawaiian/Pacific Islander</td>
<td>0.99 (0.97, 1.01)</td>
<td>0.27</td>
</tr>
<tr>
<td>% BMI underweight</td>
<td>1.08 (1.03, 1.13)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>% Cigarette smoking during pregnancy</td>
<td>1.24 (1.21, 1.28)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>% Live Birth order > 1</td>
<td>0.89 (0.85, 0.93)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>% Mother's age 35-54 years</td>
<td>1.06 (1.01, 1.11)</td>
<td>0.02</td>
</tr>
<tr>
<td>% No prenatal visits</td>
<td>1.27 (1.23, 1.32)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>% Maternal education more than high school</td>
<td>1.02 (0.98, 1.05)</td>
<td>0.34</td>
</tr>
<tr>
<td>% Uninsured population</td>
<td>1.10 (1.09, 1.12)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Violent crime rate (per 100,000)</td>
<td>1.07 (1.06, 1.09)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Primary care provider rate (per 100,000)</td>
<td>1.09 (1.07, 1.11)</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

N= 3,108 counties

All predictor variables were standardized to have a mean of 0 and standard deviation of 1.
Table 2: Incidence rate ratios (IRR*) of low birthweight for 1-SD increase in the county-level percentage of married women.

<table>
<thead>
<tr>
<th>County type</th>
<th>Incidence rate ratio of low birthweight (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non metro</td>
<td>0.90 (0.86, 0.94)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Small metro</td>
<td>0.97 (0.94, 1.01)</td>
<td>0.16</td>
</tr>
<tr>
<td>Large metro</td>
<td>0.98 (0.96, 0.99)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

N= 3,108 counties

*IRR estimates were generated after adjusting for all the county-level contextual variables
Table 3: Incidence rate ratios (IRR*) of low birthweight for 1-SD increase in the county-level percentage of unemployed population.

<table>
<thead>
<tr>
<th>County type</th>
<th>Incidence rate ratio of low birthweight (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non metro</td>
<td>1.04 (1.02, 1.06)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Small metro</td>
<td>0.99 (0.97, 1.01)</td>
<td>0.16</td>
</tr>
<tr>
<td>Large metro</td>
<td>1.00 (0.98, 1.02)</td>
<td>0.99</td>
</tr>
</tbody>
</table>

N= 3,108 counties

*IRR estimates were generated after adjusting for all the county-level contextual variables
Table 4: Incidence rate ratios (IRR*) of low birthweight for 1-SD increase in the county-level percentage of American Indian/Alaskan Native women.

<table>
<thead>
<tr>
<th>County type</th>
<th>Incidence rate ratio of low birthweight (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non metro</td>
<td>0.97 (0.95, 0.98)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Small metro</td>
<td>1.08 (1.02, 1.15)</td>
<td>0.01</td>
</tr>
<tr>
<td>Large metro</td>
<td>1.03 (0.94, 1.13)</td>
<td>0.56</td>
</tr>
</tbody>
</table>

N = 3,108 counties

*IRR estimates were generated after adjusting for all the county-level contextual variables.
Figure 1: Smoothed Standardized Incidence Ratios (SIRs) of low birthweight and exceedance probability of low birthweight SIR > 1 for counties across the U.S. for 3 study periods (2016-2017, 2018-2019 and 2020-2021)