Influence of social determinants of health on quality of life in patients with multimorbidity

José María Ruiz-Baena\(^1\), Aida Moreno-Juste\(^{2,3,4}\) *, Beatriz Poblador-Plou\(^2,4\), Marcos Castillo-Jimena\(^5,6,7\), Amaia Calderón-Larrañaga\(^4,8\), Cristina Lozano-Hernández\(^4,9,10\), Antonio Gimeno-Miguel\(^2,4\) &, Luis A Gimeno-Feliú\(^{2,3,4,11}\) &, MULTIPAP GROUP\(^¥\).

\(^1\) Preventive Medicine and Public Health Departament, Virgen de la Victoria University Hospital, Málaga, Spain

\(^2\) EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, Miguel Servet University Hospital, 50009 Zaragoza, Spain.

\(^3\) San Pablo Primary Care Health Centre, Aragon Health Service (SALUD), 50003 Zaragoza, Spain.

\(^4\) Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.

\(^5\) Department of Pharmacology and Paediatrics, School of Medicine, University of Malaga (Universidad de Málaga). Málaga, Spain.

\(^6\) Group C-08 Biomedical Research Institute of Málaga -IBIMA-, Málaga, Spain.

\(^7\) Primary Care Health Centre Campillos, Northern Málaga Integrated Healthcare Area, Andalusian Health Service, Campillos, Málaga, Spain.

\(^8\) Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden

\(^9\) Research Unit, Primary Health Care Management Madrid, Madrid, Spain

\(^10\) Biosanitary Research and Innovation Foundation of Primary Care (FIIBAP), Spain

\(^11\) Department of Medicine, Dermatology and Psychiatry, University of Zaragoza, 50009 Zaragoza, Spain.

*Corresponding author

E-mail: aidamorenoj@gmail.com

\(^¥\) Membership of the MULTIPAP GROUP is provided in the Acknowledgments

\(^*\) These authors contributed equally to this work.

\(^&\) These authors also contributed equally to this work

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

Multimorbidity, especially among older patients, is one of the biggest challenges faced by modern medicine, and is influenced by social determinants of health, giving rise to health inequalities in the population. Here, we sought to determine the influence of social determinants of health on quality of life in patients with multimorbidity.

Methods and Materials

This cross-sectional observational study included 573 patients aged 65–74 with multimorbidity (≥3 diseases) and polypharmacy (≥5 drugs). Corresponding data was taken drawn from the Spanish MULTIPAP study, and included social and demographic variables, and data on health-related quality of life and overall self-perceived health status, assessed using the 5-level version of the EuroQol 5-dimensional questionnaire (EQ-5D-5L). Descriptive, bivariate and multivariate analyses with logistic regression models were performed.

Results

Mean patient age was 69.7 years, 55.8% of patients were female, 59.7% belonged to low social classes (V, VI), a monthly income of 1051–€1850 predominated, and the median number of diseases in the same patient was 6. Factors associated with higher quality of life were male gender (OR=1.599, p=0.013), a higher educational level (OR=1.991, p=0.036), an absence of urban vulnerability (OR=1.605, p=0.017), and the presence of medium social support (OR=1.689, p=0.017). Having a higher number of diseases was associated with poorer quality of life (OR=0.912, p=0.017).

Conclusions

Our findings describe associations between social determinants of health and quality of life in patients aged 65–74 years with multimorbidity and polypharmacy. More illnesses, female gender, a lower education level, urban vulnerability, and less social support are associated with poorer quality of life, underscoring the need for a biopsychosocial approach in patient care.

Keywords

Social determinants of health, multimorbidity, quality of life, social support, primary healthcare

Introduction

The last century has seen an unprecedented increase in human life expectancy. Inherent to this phenomenon is a parallel increase in the prevalence of chronic diseases for which old age is a key risk factor, including hypertension, arthrosis, and diabetes [1].

Multimorbidity is defined as the coexistence of several chronic diseases in the same patient [2], and affects an estimated 81.5% of individuals aged ≥85 years, 62% of those aged 65–74 years, and 50% of those aged >65 years [3]. Coexistence of several chronic diseases is a very common phenomenon, and has turned multimorbidity into one of the greatest challenges facing modern healthcare systems.

Some studies have demonstrated exponential increases in disability when the number of chronic diseases increases, and have characterized the effects of multimorbidity on health outcomes such as physical functioning, mental health, and quality of life [4]. Health-related quality of life
HRQoL) is a multi-dimensional concept used to examine the impact of health status on quality of life, and can be measured in several ways, both objective and subjective. It also includes the self-perception of the individual’s living situation, and their attitudes towards modifying and improving their conditions in relation to their goals, expectations, values and interests [5].

The mechanisms underlying multimorbidity are diverse and complex. On the one hand are biological factors inherently related to the aging process itself, including gender, cellular senescence, stem cell aging, and DNA methylation. On the other hand are factors such as lifestyle (e.g., diet, sedentarism, sleep quality, use of harmful substances like alcohol or other drugs), social and community-related variables (e.g., social support, loneliness, adverse childhood experiences), and work conditions, all of which are conditioned by cultural, environmental and socio-economic factors (urbanism, educational level) [6]. Although multimorbidity relates to the presence of diseases, it should not be viewed solely from a biomedical perspective, and requires a biopsychosocial, patient-focused approach. Primary care can play a central role in orchestrating a multifactorial approach to the management of pluri-pathology, with the goal of maximizing patient quality of life and minimizing potential morbidity and disability [7]. Considering how social factors influence these variables is essential to help achieve this goal.

Social determinants of health (SDH) are defined as the conditions in which people are born, grow, work, live, and age, including a combination of socio-economic, environmental, community and work-related factors, apart from those related to healthcare systems. Historically, SDH have been one of the main sources of societal inequities [8].

A better understanding of the relationship between SDH and health outcomes in older patients with multimorbidity is essential to help improve quality of care of these patients. The aim of this study was to examine how SDH influence quality of life in primary care patients aged 65–74 with multimorbidity.

Materials and Methods

Design and setting of the study

We conducted a descriptive cross-sectional study using baseline information recorded for participants enrolled in the MULTIPAP cluster-randomized controlled trial (RCT), which sought to improve drug prescription in young-old adults with multimorbidity and polypharmacy through a complex intervention in primary care. A detailed description of the design, methods, and intervention of the MULTIPAP trial has been published elsewhere [9].

Briefly, the MULTIPAP RCT involved the voluntary participation of 117 family physicians who recruited a total of 573 patients from 38 Spanish primary care health centres in 3 different regions (Andalucía, Madrid, and Aragón) between November 8, 2016, and January 31, 2017 [10]. Patients were randomly included in the study if they were aged 65–74 years, had multimorbidity (defined as the presence of 3 or more chronic diseases) and polypharmacy (defined as taking 5 or more different drugs during the preceding 3 months), had visited their family doctor at least once in the preceding year, and were able to follow the study requirements. Institutionalized patients and those with a life expectancy of less than 12 months and/or with a disease that in their physician’s opinion would not allow them to follow the study requirements were excluded. The recruiting physicians provided the patient with detail information about the study, they confirmed the patient’s eligibility and obtained the patient’s written informed consent.

This study was approved by the Clinical Research Ethics Committees of Aragón (CEICA, PI15/0217) and was favourably evaluated by the Research Ethics Committee of the Province of Malaga and by the Central Committee of Primary Care Research of the Community of Madrid.

Study variables
All data were obtained through face-to-face surveys during baseline patient consultations and recorded using an electronic case report form. The information recorded for each patient is indicated below.

Independent variables included for each patient were as follows: date of birth; gender; nationality; marital status; family composition; housing indicators; self-perceived disturbances in the neighbourhood; social class, divided into 6 categories from I (highest) to VI (lowest) according to the Spanish 2017 National Health Survey and then dichotomized into high (I through IV) and low (V and VI); educational level according to the Spanish 2011 Statistical Office’s Population and Housing Census questionnaire [11]; occupation according to the Spanish Classification of Occupations CNO–11 [12]; socioeconomic status assessed based on monthly net income per household, expressed as multiples of the minimum wage; self-perceived social support measured using the Spanish version of the Duke Unc-11 Functional Social Support (DUFSS) questionnaire [13]; and the number of chronic conditions registered in the patient’s electronic health records.

Health-related quality of life and overall self-perceived health status, measured using the 5-level version of the EuroQol 5-dimensional questionnaire (EQ-5D-5L), was assessed as a dependent variable. The EQ-5D-5L considers 5 dimensions (mobility, self-care, daily activities, pain/discomfort, and anxiety/depression), and requires patients to rate their level of impairment for each item (5 levels, from 1 [no problems] to 5 [being unable to do/having extreme problems]). According to the responses to each item, an overall index score (ranging from 0–1) was calculated for each patient using the EQ-5D-5L Crosswalk Index Value Calculator. This calculator is available on the EuroQol website and provides validated results for the Spanish population obtained from a matrix of transition probabilities between health states [14].

Statistical analysis

We described the characteristics of the study population as frequencies and/or the mean and standard deviation (sd). Subsequently, we analysed the distribution of patient quality of life according to the study variables. The Kolmogorov-Smirnov test indicated that quality of life followed a non-normal distribution. Therefore, the Mann Whitney U-test and the Kruskal-Wallis test were used for comparisons between 2 and >2 groups, respectively. In the case of the Kruskal-Wallis test, the Dwass-Steel-Critchlow-Fligner post-hoc test was performed for all variables for which statistical significance was found, to determine the specific pairs of variables for which the differences were significant. Results were expressed as the median and corresponding interquartile range (IQR).

Finally, we conducted a multivariate analysis to test the association between independent study variables and patient quality of life, using a logistic regression model for the EQ-5D-5L scale. To this end, the EQ-5D-5L variable was transformed into a dichotomised variable with 2 possible outcomes (low/high), depending on whether the patient’s score was below or above the median, respectively. This categorization was performed to obtain homogeneous groups.

All statistical analyses were conducted in STATA software (Version 17.0, StataCorp LLC, College Station, TX, USA) and Jamovi (Version 2.3.5) [17].

Results

The main sociodemographic characteristics of the study population are shown in Table 1. Mean age was 69.7 years, and 55.8% of patients were women. A large portion of the sample (59.7%) corresponded to low social classes (V, VI). Monthly income was classified as medium (defined as a monthly salary of €1051–€1850) in the largest proportion of patients (42.6%). Finally, the median number of diseases in the same patient was 6 (IQR 4–7).

Table 1. Main sociodemographic characteristics of the study population
The results of a univariate analysis of the relationship between independent variables (analysed separately) and quality of life are shown in Table 2. Median quality of life was lower in women versus men; in patients from a low versus high social class; in patients in a situation of urban vulnerability; in patients with a low versus high monthly income; in patients with a lower educational level; and in patients with a lower level of social support.
Table 2. Quality of life (EQ-5D-5L) distribution according to social determinants of health: results of a univariate analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Median [IQR]</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Female</td>
<td>0.790 [0.659–0.887]</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.857 [0.744–0.911]</td>
<td></td>
</tr>
<tr>
<td>Social class</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Low (I–IV)</td>
<td>0.799 [0.662–0.910]</td>
<td></td>
</tr>
<tr>
<td>High (V–VI)</td>
<td>0.838 [0.737–0.924]</td>
<td></td>
</tr>
<tr>
<td>Lives alone</td>
<td>0.244</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.800 [0.653–0.910]</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0.818 [0.694–0.910]</td>
<td></td>
</tr>
<tr>
<td>Urban vulnerability¹</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.769 [0.642–0.887]</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0.838 [0.711–0.910]</td>
<td></td>
</tr>
<tr>
<td>Monthly income</td>
<td>0.004²</td>
<td></td>
</tr>
<tr>
<td>Low ≤€1050</td>
<td>0.799 [0.641–0.893]</td>
<td></td>
</tr>
<tr>
<td>Medium €1051–1850</td>
<td>0.818 [0.694–0.910]</td>
<td></td>
</tr>
<tr>
<td>High ≥€1851</td>
<td>0.846 [0.743–0.932]</td>
<td></td>
</tr>
<tr>
<td>Educational level</td>
<td>0.005³</td>
<td></td>
</tr>
<tr>
<td>Did not complete primary studies</td>
<td>0.818 [0.692–0.910]</td>
<td></td>
</tr>
<tr>
<td>Completed primary studies</td>
<td>0.800 [0.662–0.910]</td>
<td></td>
</tr>
<tr>
<td>Degree or higher</td>
<td>0.877 [0.781–0.932]</td>
<td></td>
</tr>
<tr>
<td>Occupation</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>Elementary occupations</td>
<td>0.817 [0.662–0.910]</td>
<td></td>
</tr>
<tr>
<td>Essential sectors</td>
<td>0.818 [0.694–0.910]</td>
<td></td>
</tr>
<tr>
<td>Technicians, office employments</td>
<td>0.841 [0.723–0.932]</td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td>0.083</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>0.818 [0.699–0.910]</td>
<td></td>
</tr>
<tr>
<td>Separated</td>
<td>0.756 [0.649–0.910]</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>0.781 [0.682–0.921]</td>
<td></td>
</tr>
<tr>
<td>Widower</td>
<td>0.809 [0.600–0.857]</td>
<td></td>
</tr>
<tr>
<td>Social support</td>
<td><0.001⁴</td>
<td></td>
</tr>
<tr>
<td>Lower tertile</td>
<td>0.784 [0.649–0.874]</td>
<td></td>
</tr>
<tr>
<td>Medium tertile</td>
<td>0.857 [0.740–0.919]</td>
<td></td>
</tr>
<tr>
<td>Higher tertile</td>
<td>0.818 [0.694–0.910]</td>
<td></td>
</tr>
</tbody>
</table>

1. Patients reported having problems with at least 4 of the 9 items assessed
2. After applying the corresponding post-hoc pairwise comparison, significant differences were observed between the Low and High groups (p = 0.003)
3. After applying the corresponding post-hoc pairwise comparison, significant differences were observed between the groups Did not complete primary studies and Degree or higher (p = 0.003), as well as Completed primary studies and Degree or higher (p = 0.01)
4. After applying the corresponding post-hoc pairwise comparison, significant differences were observed between the Lower tertile and Medium tertile groups (p <0.001)
Table 3 shows the results of a multivariate analysis that examined the association between quality of life and several social variables. The analysis identified the following statistically significant risk factors for worse quality of life (odds ratio [OR], p-value): female sex (OR=1.599, p=0.013); lower versus higher educational level (OR=1.991, p=0.036); a situation of urban vulnerability (OR=1.605, p<0.017); and low versus medium level of social support (OR=1.689, p=0.017). Furthermore, a higher number of diseases was associated with worse quality of life (OR=0.912, p=0.017).

Table 3. Association between quality of life (EQ-5D-5L) and variables related to social determinants of health (multivariate analysis)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>OR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of diseases</td>
<td>0.912</td>
<td>0.846</td>
<td>0.984</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (ref)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.599</td>
<td>1.104</td>
<td>2.317</td>
</tr>
<tr>
<td>Social class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (I–IV) (ref)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High (V–VI)</td>
<td>1.101</td>
<td>0.737</td>
<td>1.646</td>
</tr>
<tr>
<td>Urban vulnerability¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes (ref)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1.605</td>
<td>1.103</td>
<td>2.335</td>
</tr>
<tr>
<td>Monthly income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low ≤€1050 (ref)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium €1051–1850</td>
<td>0.989</td>
<td>0.645</td>
<td>1.516</td>
</tr>
<tr>
<td>High ≥€1851</td>
<td>1.240</td>
<td>0.729</td>
<td>2.107</td>
</tr>
<tr>
<td>Educational level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did not complete primary studies (ref)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completed primary studies</td>
<td>0.856</td>
<td>0.577</td>
<td>1.271</td>
</tr>
<tr>
<td>Degree or higher</td>
<td>1.991</td>
<td>1.048</td>
<td>3.783</td>
</tr>
<tr>
<td>Social support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower tertile (ref)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium tertile</td>
<td>1.689</td>
<td>1.096</td>
<td>2.601</td>
</tr>
<tr>
<td>Higher tertile</td>
<td>0.948</td>
<td>0.598</td>
<td>1.504</td>
</tr>
</tbody>
</table>

Note: Estimates represent the log odds of "QoL EQ-5D-5L = High" vs. "QoL EQ-5D-5L = Low" ¹ Referred as having problems with at least 4 of the 9 items assessed

Discussion

Main findings
We observed significant associations between several of the SDH studied and quality of life in patients aged 65–74 with multimorbidity and polypharmacy. Specifically, the following independent variables were correlated with poorer quality of life: female gender; lower educational level; living in a neighbourhood in a situation of urban vulnerability; a lower level of social support; and a higher number of concomitant diseases.

Comparison with other studies

While the literature highlights the importance of studying the influence of SDH on quality of life, data on this association in patients with multimorbidity are scarce. Lawson et al. [18] investigated the relationship between multimorbidity and quality of life using a score that combined both physical and mental health function, based on data collected in the Scottish Health Survey. In line with the present findings, those authors observed an association between poorer quality of life and (i) increasing number of comorbid diseases and (ii) greater economic deprivation. In contrast to our findings, they detected no significant influence of sex on quality of life.

Von dem Knesebeck et al. [19] also analysed the association between socioeconomic status and patient-reported outcomes, including HRQoL, in a cohort of patients aged 65–85 with multimorbidity. Among the socioeconomic variables studied, a correlation was found between a lower monthly income and poorer health status, in agreement with the present findings. However, the authors reported no significant correlations between health status and either occupation or educational level.

Park et al. [20] used the EQ-5D-5L scale to measure QoL in older patients, and observed that female sex and lower socioeconomic level were significantly associated with a lower EQ-5D-5L score. Another study of the relationship between educational level and quality of life [21] reported significant associations between worse quality of life and both low educational level and lower monthly income.

Greater feelings of loneliness have been related to poorer quality of life in elderly patients with multimorbidity [22]. Specifically, feeling of loneliness were found to influence the psychophysical health of elderly individuals. While the present study did not include any variables related to social loneliness, we observed a correlation between a lower level of social support and poorer quality of life.

As stated above, few studies have analysed the relationship between multimorbidity, SDH, and quality of life, highlighting the need for greater research in this area to better understanding the underlying contributing factors and the types of interventions required to address multimorbidity. Older patients with low socioeconomic status experience a ‘double burden of disease’. They are at higher risk of multimorbidity and, compared with matched patients with a higher socioeconomic status, are worse off in terms of key outcomes such as functional status, health related quality of life, and self-rated health [19]. In addition, the relationship between socioeconomic factors and quality of life is influenced by psychosocial factors including self-efficacy, coping behaviours, social contacts, social support, and psychosocial stress; behavioural factors such as activity level, smoking, and alcohol consumption; and material factors including living conditions [19]. Although supporting scientific evidence is limited, interventions targeting psychosocial and lifestyle-related factors, applied at the patient level, could help minimize multimorbidity [6]. A clinical trial is currently underway in Ireland to evaluate the effectiveness of social interventions at the primary care level on patients’ health in disadvantaged areas of the country [23].

SDH are undoubtedly key contributors to social inequity, which in turn arise as a consequence of sociopolitical and socioeconomic factors. They also generate vulnerabilities that affect all aspects of the individual’s life, including health [24]. Moreover, synergies between different factors can exponentially increase the risk of multimorbidity, beyond their expected additive effects [25].
One such example is the association between lower quality of life and both socioeconomic level and deprivation index: this relationship is influenced by multiple factors, one of which is the “inverse care law” [26,27]. This law reflects the fact that health service availability does not correspond to the greater needs of disadvantaged populations, resulting in insufficient health resources to manage patients' conditions. Furthermore, this effect can be exacerbated by the fact that disadvantaged social groups often have reduced personal capacity, community support [18], and access to healthy food [20], factors that could potentially mitigate the impact of multimorbidity.

Knowledge of the influence of social variables on health behaviours, and consideration by healthcare providers of patients’ socioeconomic context, health-related quality of life, and preferences, can help ensure a more effective approach to the management of multimorbidity. Understanding of factors that influence quality of life can enable implementation of strategic measures based on SDH. Consideration of quality of life as perceived by the patient is also important to improve the care of elderly patients with multimorbidity, and to facilitate individualized therapy and increased involvement in self-care.

Strengths and weaknesses

A key strength of this study is the use of data derived from a multicentre study in which primary care professionals participated. The availability of these data enabled a broader assessment of participating patients, including data relating to a range of psychosocial variables that are frequently omitted from such studies (e.g. quality of life, social support, and urban vulnerability). Limitations of this study are those intrinsically related to the measurement of social variables. Subjectivity in responses can lead to a higher degree of interpatient variability. Furthermore, it is difficult to separately analyse closely interrelated variables that are ultimately part of larger, multidimensional concepts. To maximise internal validity, we used the version of the DUFSS questionnaire validated for use in non-institutionalized elderly individuals [13], a population that closely corresponds to that of the present study.

Measurement of variables that may affect quality of life is important, as poorer self-perceived quality of life can be associated with poorer adherence to treatment, which in turn is related to greater urban vulnerability and lower functional support [28]. Other independent variables that may be related to quality of life but that were not considered in our analysis include psychosocial factors such as self-efficacy, coping behaviour, social contacts, social support, and psychosocial stress, and behavioural factors such as physical activity, smoking, and alcohol consumption [19]. Lastly, limiting the study to patients aged 65–74 with multimorbidity can result in a loss of external validity if the results are extrapolated to the rest of the population. However, the population aged 65–74 corresponds to an increasingly larger stratum of the population, not only in Spain but in developed countries in general [29]. Furthermore, the large sample size and the fact that this study was conducted via coordinated efforts in 3 different regions in Spain lend greater validity to our findings in terms of potential for extrapolation to the broader population in this age range.

Conclusion

Our findings showed the association between SDH and quality of life in patients aged 65–74 with multimorbidity and polypharmacy. A greater number of illnesses, female gender, lower educational level, urban vulnerability, and reduced social support were all identified as variables associated with poorer quality of life in this population, underscoring the need for a biopsychosocial approach to the care of these patients. Consideration by healthcare professional of the socioeconomic context, quality of life, and living conditions of these patients can help ensure a more effective approach to the management of multimorbidity.
Acknowledgments

The authors thank all healthcare professionals and patients from the Primary Healthcare Centres that participated in this study.

MULTIPAP GROUP:

Lead authors for the MULTIPAP Study group: Alexandra Prados Torres (Aragonese Institute of Health Sciences (IACS), IIS Aragón, Miguel Servet University Hospital, Spain) sprados.iacs@aragon.es, Juan Daniel Prados Torres (Multiprofessional Teaching Unit for Family and Community Care Primary Care District Málaga-Guadalhorce. Málaga) juan.d.prados.sspa@juntadeandalucia.es, Isabel del Cura (Research unit. Primary Health Care Management Madrid. Spain) isabel.cura@salud.madrid.org.

Coordinating Committee

Mercedes Aza-Pascual-Salcedo (EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, RICAPPS ISCIII, Aragon Health Service (SALUD), Zaragoza, Spain), Antonio Gimeno-Miguel (EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, RICAPPS ISCIII, Miguel Servet University Hospital, Zaragoza, Spain), Francisca González Rubio (EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, RICAPPS ISCIII, Zaragoza, Spain), Cristina M Lozano Hernández (Research unit. Primary Health Care Management Madrid. Spain), Juan A. López-Rodríguez (Research unit. Primary Health Care Management Madrid. Spain, RICAPPS ISCIII), Beatriz Poblador-Plou (EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, RICAPPS ISCIII, Miguel Servet University Hospital, Zaragoza, Spain), Francisca Leiva Fernández (Multiprofessional Teaching Unit for Family and Community Care Primary Care District Málaga-Guadalhorce. Málaga, RICAPPS ISCIII), Fernando López-Verde (Las Delicias Health Center (Centro de Salud las Delicias), Málaga-Guadalhorce Health District, Málaga, Spain), Victoria Pico-Soler (EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, RICAPPS ISCIII, Aragon Health Service (SALUD), Zaragoza, Spain), Ma Josefa Bujalance-Zafría (La Victoria Health Center (Centro de Salud la Victoria), Málaga-Guadalhorce Health District, Málaga, Spain), Luis A. Gimeno-Feliú (EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, RICAPPS ISCIII, Zaragoza, Spain), Marisa Rogerio-Blanco (Instituto de Investigación Sanitaria Gregorio Marañón IISGM, RICAPPS ISCIII, Ricardo General Health Center, Madrid, Spain), Francisca García-de-Blas (Dr Mendiguchia Carriche Health Center, RICAPPS ISCIII Madrid, Spain), Marcos Castillo Jimena (Coin Health Center, Málaga-Guadalhorce Health District, Málaga, Spain), Marcos Alonso-García (Preventive Medicine Unit, University Hospital Alcorcón Foundation, Madrid, Spain), Alessandra Marengoni (Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy), Jesús Martín Fernández (Multiprofessional Teaching Unit for Family and Community Care, Primary Healthcare Centre (PHC) Oeste, Madrid, Spain), Elena Polentinos Castro (Research unit. Primary Health Care Management Madrid. Spain), José María Valderas Martinez (National University of Singapur, RICAPPS ISCIII), María del Pilar Barnestein-Fonseca (CUDECA Foundation, Biomedical Research Institute of Málaga –IBIMA, Malaga University, Spain), Miguel Domínguez-Santaella (PHC Victoria, Malaga-Guadalhorce Health District, Andalusian Health Service, Malaga, Spain), Nuria García-Aguia-Soler (Department of Pharmacology, Faculty of Medicine, Malaga University, Spain), Maria Isabel Márquez-Chamizo (PHC Carranque, Malaga-Guadalhorce Health District, Andalusian Health Service, Malaga, Spain), José María Ruiz-San-Basilio (PHC Coin, Malaga-Guadalhorce Health District, Andalusian Health Service, Coin, Málaga, Spain), José María Abad-Díez (Lozano Blesa Hospital, Zaragoza, Spain), Marta Alcaraz Borrajo (Subdirección General of Pharmacy and Health...
Clinical Investigators in Primary Healthcare Centres (PHC) MULTIPAP GROUP:

References

8. Marmot M, Friel S, Bell R, Houweling TA, Taylor S. Closing the gap in a
generation: health equity through action on the social determinants of health.

intervention for improving drug prescription in primary care patients with
multimorbidity and polypharmacy: Study protocol of a cluster randomized
clinical trial (Multi-PAP project). Implement Sci. 2017 Apr 27;12(1).

10. Damiani G, Del Cura-González I, López-Rodríguez JA, Leiva-Fernández F,
Patients with Multimorbidity and Polypharmacy in Primary Care: A Pragmatic
Cluster-Randomized Clinical Trial of the MULTIPAP Intervention. J Pers Med

11. INEbase / Demografía y población /Cifras de población y Censos demográficos
/Censos de población y viviendas / Últimos datos [Internet]. Available from:
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=125
4736176992&menu=ultiDatos&idp=1254735572981

12. INEbase / Clasificaciones estadísticas /Clasificaciones nacionales /Clasificación
Nacional de Ocupaciones. CNO / Últimos datos [Internet]. Available from:
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=125
4736177033&menu=ultiDatos&idp=1254735976614

Apoyo Social Funcional y de la Escala de Soledad en adultos mayores no

14. Herdman M, Badia X, Berra S. El EuroQol-5D: una alternativa sencilla para la
medición de la calidad de vida relacionada con la salud en atención primaria.

15. Ministerio de Fomento. Gobierno de España. Instituto Juan de Herrera DUYOT.
Análisis urbanístico de Barrios Vulnerables en España Sobre la Vulnerabilidad
Urbana. 2010. Available from:
https://www.fomento.gob.es/nr/rdonlyres/c88db66d-8669-497c-bee4-
442ae027e2f1/111287/sobre_vulnerabilidad.pdf

16. Broadhead WE, Gehlbach SH, de Gruy F V., Kaplan BH. The Duke-UNC
Functional Social Support Questionnaire. Measurement of social support in

17. The jamovi project (2022). jamovi (Version 2.3) [Computer Software].
Retrieved from https://www.jamovi.org

trouble: The impact of multimorbidity and deprivation on preference-weighted
health related quality of life a cross sectional analysis of the Scottish Health

19. Von Dem Knesebeck O, Bickel H, Fuchs A, Gensichen J, Höfels S, Riedel-
Heller SG, et al. Social inequalities in patient-reported outcomes among older
multimorbid patients - results of the MultiCare cohort study. Int J Equity Health.

20. Park B, Ock M, Lee HA, Lee S, Han H, Jo MW, et al. Multimorbidity and
health-related quality of life in Koreans aged 50 or older using KNHANES

of Multimorbidity Medical Conditions and Health-Related Quality of Life Among

Funding
This study was funded by the Carlos III Institute of Health, Ministry of Science and Innovation (Spain) (Grant Numbers PI15/00276, PI15/00572, PI15/00996); the European Regional Development Fund (“A way to build Europe”); the Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS) awarded as part of the call for the creation of Health Outcomes-Oriented Cooperative Research Networks (grant number RD21/0016/0019, RD21/0016/0015 and RD21/0016/0027); the Gobierno de Aragón (grant number B01_23R); and co-funded with European Union’s NextGenerationEU funds.

Competing interests
The authors declare no competing interests.

Data availability
The Aragon Ethics Committee approved this research without considering the option of data sharing. The data include sensitive clinical information about patients, and there are therefore
ethical and legal restrictions to sharing the data set. The data are part of the MULTIPAP study and can be requested by contacting the Aragon Ethics Committee at the email address ceica@aragon.es. Data can also be requested by contacting the Primary Care Management of Madrid at the email address gap@salud.madrid.org, and the Technical Direction of Teaching and Research at the email address dtdei@salud.madrid.org. The MULTIPAP Group may establish future collaborations with other groups based on the same data. Data will be available from the authors upon reasonable request and with permission of the project’s principal investigators (Alexandra Prados-Torres: sprados.iacs@aragon.es; Daniel Prados-Torres: juand.prados.sspa@juntadeandalucia.es; Isabel del Cura: isabel.cura@salud.madrid.org). However, each new project based on these data must be first submitted to CEICA for approval.

Ethics statement

The trial was designed in accordance with the basic ethical principles of beneficence, autonomy, non-maleficence and justice, and it was conducted in accordance with the rules of Good Clinical Practice outlined in the Oviedo Convention (1997) and the most recent Declaration of Helsinki. Written informed consent of patients was required. Data confidentiality and anonymity was ensured, according to the provisions of Spanish Law 15/1999, both during the implementation phase of the project and in any resulting presentations or publications.

This study, as well as the written model form, was approved by the Clinical Research Ethics Committees of Aragón (CEICA, PI15/0217) and was favourably evaluated by the Research Ethics Committee of the Province of Malaga and by the Central Committee of Primary Care Research of the Community of Madrid.