Urinary Astrocyte-derived Extracellular Vesicles: A Non-invasive Tool for Capturing Human In Vivo Molecular “Movies” of Brain

Xin-hui Xie1†*; Mian-mian Chen1†; Shu-xian Xu1; Jun-hua Mei1,3; Qing Yang3; Chao Wang1; Zhongchun Liu1,2*

Affiliations:

1. Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
2. Taikang center for life and medical sciences, Wuhan University, Wuhan, PR China.
3. Department of Neurology, Wuhan First Hospital, Wuhan, Hubei, PR China.

†These authors have contributed equally to this work.

*Corresponding author:

Xin-hui Xie.

Address: 1) Department of Psychiatry, Renmin Hospital of Wuhan University, No. 99 Jiefang Road, Wuchang District, Wuhan, Hubei, PR China. ZIP: 430060. Telephone: 86-8804191181399.

E-mail: xxh.med@gmail.com; xin-hui.xie@live.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Zhongchun Liu.

Address: 1) Department of Psychiatry, Renmin Hospital of Wuhan University, No. 99 Jiefang Road, Wuchang District, Wuhan, Hubei, PR China. ZIP: 430060. Telephone: 86-8804191181399. 2) Taikang center for life and medical sciences, Wuhan University, Wuhan, PR China. ZIP: 430071.

E-mail: zcliu6@whu.edu.cn

Author Contributions.

Conflict of Interest Statement

The authors declare they have no conflict of interest.

Acknowledgement
This work was supported by grant from the National Natural Science Foundation of China (grant number: U21A20364). This work has not received funding/assistance from any commercial organizations. The funding source had no roles in the design of this study and will not have any roles during the execution, analyses, interpretation of the data, or decision to submit results.

Number of words in abstract: 245

Number of words in main text: 4109
Abstract

The identification of particularly individual-level biomarkers, for certain central nervous system (CNS) diseases remains challenging. A recent approach involving the enrichment of brain-derived extracellular vesicles (BDEVs) from peripheral blood has emerged as a promising method to obtain direct in vivo CNS data, bypassing the blood-brain barrier. However, for rapidly evolving CNS diseases (e.g., weeks or even days), the Nyquist-Shannon sampling theorem dictates the need for a high-frequency sampling rate. Obviously, daily collection of blood or cerebrospinal fluid from human subjects is impractical. Thus, we innovated a novel method to isolate astrocyte-derived EVs from urine (uADEVs). It involves three main steps: 1) concentrating urine samples, 2) isolating total EVs from urine (uTEVs) using ultracentrifugation, and 3) using an anti-glutamate/aspartate transporter (GLAST) antibody to isolate GLAST\(^\dagger\)EVs from uTEVs. Subsequently, we confirmed the identity of these GLAST\(^\dagger\)EVs as uADEVs using transmission electron microscopy, nanoparticle tracking analysis, western blotting, and the measurement of astrocyte-related neurotrophins. Furthermore, we applied the uADEVs protocol to depict the detailed trajectory of the N-methyl-d-aspartic acid receptor (NMDAR) subunit zeta-1 (GluN1) in an anti-NMDAR encephalitis patient, demonstrated the potential of this method for capturing intricate trajectories of CNS-specific molecular in vivo signals at the individual level. This non-invasive approach enables frequent sampling, up to daily or even half-daily, analogous to capturing molecular “movies” of the brain, coupled with appropriate signal processing algorithms, holds promise for identifying novel biomarkers or illuminating the etiology of rapidly evolving CNS diseases by tracking the precise trajectories of target molecules.
Keywords: urinary astrocyte-derived extracellular vesicles; human in vivo; non-invasive; central nervous system; high-frequent sampling; anti-N-methyl-d-aspartic acid receptor encephalitis; biomarker; wavelet analysis
Introduction

Research on central nervous system (CNS) diseases, especially mental disorders like schizophrenia, depression, and bipolar disorder, has been gradual, and reliable biological markers remain unidentified. Several key factors may contribute to this dilemma.

To begin, the CNS boasts distinctive attributes, notably the presence of the blood-brain barrier (BBB), which poses a direct hurdle to identifying CNS abnormalities. This challenge is compounded by the BBB’s high selectivity, leading to marked inconsistencies in the expression levels of molecules within the CNS compared to the periphery. Such incongruities substantially complicate research endeavors. Additionally, the dearth of expedient and non-invasive sampling techniques is notable. The most direct sampling method for the CNS is brain biopsy, but this is clearly very difficult to perform. Another option, cerebrospinal fluid (CSF) collection via lumbar puncture, is neither unsuitable for routine application. While peripheral blood is the most commonly employed biological sample, its representation of the CNS is limited.

Furthermore, a paucity in sampling frequency is evident. Although reliable biomarkers have been identified for specific neurological and psychiatric disorders like Alzheimer’s disease (AD) and Parkinson’s disease (PD)—

 Furthermore, a paucity in sampling frequency is evident. Although reliable biomarkers have been identified for specific neurological and psychiatric disorders like Alzheimer’s disease (AD) and Parkinson’s disease (PD)—$A\beta$ and α-synuclein. These biomarkers greatly expedited research in these domains, but a tacit assumption should not be ignored: these disorders exhibit protracted disease courses. Adopting a wave-based perspective, these biomarkers’ trajectories resemble long waves, with wavelengths spanning years or decades. Therefore, according to the Nyquist-Shannon sampling theorem, detecting these extended biomarker waves necessitates lower frequencies, rendering half-yearly or...
yearly sampling adequate. However, for disorders characterized by rapid fluctuations—such as depression, bipolar disorder, encephalitis, and others—exhibiting weekly, daily, or even hourly changes, routine follow-up intervals (monthly, half-yearly, or yearly) fall short of capturing the molecular trajectories which aligned with symptom progression. And since daily sampling of peripheral blood or CSF is impractical, there is a need for a new methodological approach that can quickly and non-invasively explore the CNS and facilitate research on these rapidly changing neurological and psychiatric diseases. We focused on extracellular vesicles (EVs) as a potential tool for this purpose.

EVs are found in various bodily fluids, including blood, urine, tears, and saliva16, and have emerged as promising tools for identifying disease biomarkers, serving as liquid biopsies17. Notably, EVs can cross the BBB bidirectionally18, making brain-derived EVs (BDEVs) a potential “window to the brain”19. In a large-sample trial, the concentrations of T-tau, P-T181-Tau, and α-synuclein, a biomarker of PD, were found to be elevated in NDEVs in PD patients22–26, and the area under the receiver operating characteristic curve (ROC) exceeded 0.927. Additionally, animal studies also shown a high level of consistency between plasma astrocyte-derived EVs (ADEVs) and brain homogenous (BH)28. In short, the plasma/serum BDEVs could be good proxies of CNS29,30. However, the collection of peripheral blood is also an invasive procedure that is impractical for daily sampling, limiting the sampling rate for obtaining \textit{in vivo} signals from the CNS using plasma/serum BDEVs. Additionally, the presence of heteroproteins in
Peripheral blood makes it challenging and inconvenient to isolate EVs from specific cell sources.

To bypass the disadvantages of isolating BDEVs from peripheral blood, we focused on another type of body fluid—urine, which also contains a large amount of EVs. Urine is an optimal body fluid for identifying diagnostic biomarkers due to its capacity for large-scale and high-frequency collection, as well as its non-invasive nature. Urinary EVs (uEVs) have been implicated in the pathophysiological mechanisms of urogenital diseases and hold potential as molecular biomarkers for these conditions. Initially, uEVs were thought to originate primarily from cells in the urogenital tract, including the kidneys, bladder, and sex glands. However, given that primary urine results from plasma filtration in the glomeruli, EVs in blood might enter and be detected in urine. For example, the labeled EVs were injected intravenously into rats, and later found in their urine. Wang et al. identify neuronal marker protein in urinary total EVs (uTEVs), and Fraser et al. reported elevated levels of ser(P)-1292 LRRK2, a PD-associated protein, in uTEVs of PD patients, correlating with cognitive and daily function impairments. It suggests a possibility that non-urogenital EVs, including BDEVs, can enter urine and be isolated. As EVs are considered to reflect the state of their origin cells, and urine is a readily accessible and non-invasive biofluid, the successful isolation of specific EVs from urine could therefore serve as a valuable tool for diagnostic and physiological research.

Thus, here we developed a protocol that enables the enrichment of the glutamate/aspartate transporter (GLAST)’EVs which is believed to be ADEVs from urine, namely urinary ADEVs (uADEVs). We believe that uADEVs could serve as a
valuable tool for non-invasive, high-frequency daily sampling of human in vivo CNS signals, enabling the collection of large-scale longitudinal data on the dynamic behavior of these cells.
2. Materials and Methods

This study was conducted at Renmin Hospital of Wuhan University (Mental Health Center of Hubei Province, Wuhan, Hubei, China) and Wuhan First Hospital in compliance with the Declaration of Helsinki (revised edition, 2013)48. The study protocol was approved by both the Human Ethics Committee of Renmin Hospital of Wuhan University and Wuhan First Hospital. All participants provided informed consent and were free to withdraw from the trial at any time for any reason.

2.1 Isolation protocol of uADEVs

Generally, in this protocol, we first concentrated the urine samples and isolated the uTEVs using ultracentrifugation (UC), followed by the isolation of uADEVs using biotin-anti-GLAST-antibody, similar to the isolation of ADEVs from plasma or serum40–47,49. The flow chart of this protocol is depicted in Figure 1(a).

2.1.1 Isolation of uTEV

Nine healthy volunteers, comprising six males and three females, participated in the study. The median age of the participants was 25.0 years with an interquartile range (IQR) of 4.0 years. A total of 300–600 ml of fresh morning urine of each participant was collected and promptly delivered to the laboratory. The samples were processed within two hours of collection. The urine sample was centrifuged at room temperature (RT) for 30 minutes at 2,000 g, and the supernatant was collected. Subsequently, sodium chloride (NaCl) was added to a concentration of 0.58 M and incubated at RT for 2 hours to eliminate urinary
mucoproteins, including Tamm-Horsfall protein. The mixture was then centrifuged again at RT for 30 minutes at 8,000 g, and the supernatant was collected. The sample was filtered using a 0.45 μm filter membrane (Millipore, MA, USA, Catalog# HVLP07625), and then loaded into a concentration device (Amicon® stirred cell, Millipore, MA, USA, Catalog# UFSC40001) and ultrafiltered to a volume of 3–4 ml using a 10 kDa NMW ultrafiltration (UF) disc membrane (Millipore, MA, USA, Catalog# PLGC07610). Next, 200 ml of PBS was added, and the sample was ultrafiltered to a volume of approximately 3–4 ml again, resulting in a concentrated component. The concentrated component was transferred to an ultracentrifuge tube and centrifuged at 150,000 g at 4°C for 150 minutes (SW60Ti, OptimaXE-100, Beckman Coulter, Fullerton, CA). The supernatant was discarded, and the precipitation was resuspended in 350 μl of Dulbecco’s phosphate-buffered saline (DPBS, Beyotime, Catalog# C0221D) containing protease and phosphatase inhibitors (PPICs, Beyotime, Catalog# P1046). This resulted in a uTEV sample.

2.1.2 Isolation of uADEVs

Each uTEV sample was mixed with 50 μl of 3% bovine serum albumin (BSA, Beyotime, Catalog# ST023-50g) and incubated for 1 hour at RT with 4 μl of anti-GLAST (ACSA-1)-biotin antibody (Miltenyi Biotec, Catalog# 130-118-984). Subsequently, 10 μl of streptavidin-agarose resin (Thermo Fisher Scientific, Catalog# 53116) and 40 μl of 3% BSA were added, followed by incubation for 60 minutes at RT. After centrifugation at 800 g for 10 minutes at 4°C and removal of the supernatant, each sample was resuspended in 100 μl of cold 0.1M glycine-HCl (pH = 3.0) by gently mixing for 30 seconds. The suspension was then
centrifuged at 4,000 g for 10 minutes at 4°C, and the supernatant was collected. Several drops of 1M Tris-HCl (pH = 8.0, Beyotime, Catalog# ST780-500ml) was added to adjust the pH to 7.0. This resulted in a uGLAST+EV sample. For western blotting and protein measurements, mammalian protein extraction reagent (M-PER, Thermo Fisher Scientific, Catalog# 78503) with PPICs was added to each uADEV sample or uTEV sample.

2.1.3 Validation of uADEVs

2.1.3.1 Transmission electron microscopy (TEM)

Similar to our previous ADEV studies,[47,52] the TEM was used to get the image of EVs. Twenty μl of the EV sample was added dropwise to 200-mesh grids and incubated at RT for 10 minutes, then the grids were negatively stained with 2% phosphotungstic acid for 3 minutes, and the remaining liquid was removed by filter paper. Then observed with a HT7800 transmission electron microscope (Hitachi High-Tech Corporation, Tokyo, Japan).

2.1.3.2 Nanoparticle tracking analysis (NTA)

The diameter (nm) and concentration (particles/ml) of EV samples were determined using the ZetaView PMX 110 (Particle Metrix, Meerbusch, Germany) with ZetaView 8.04.02 nanoparticle tracking software (Particle Metrix, Meerbusch, Germany).

2.1.3.3 Western blotting

Western blot was conducted to detect three EV markers with primary rabbit anti-CD63 antibody (Abcam, Catalog# ab134045), rabbit anti-CD9 antibody
(Abcam, Catalog# ab125011), and mouse anti-Alix antibody (Proteintech, Catalog#
67715-1-Ig), an astrocyte marker with rabbit anti-glial fibrillary acidic protein (GFAP)
antibody (Abcam, Catalog# ab68428), and two kidney markers Na\(^+\)-K\(^+\)-Cl\(^-\) cotransporter
(NKCC) 2 (Abcam, Catalog# ab171747), sodium-chloride cotransporter (NCC) (Abcam,
Catalog# ab95302).

2.1.3.4 Protein measurements

Astrocyte related neurotrophins (brain-derived neurotrophic factor (BDNF), epidermal
growth factor (EGF), fibroblast growth factor (FGF)-2, glial cell-derived neurotrophic factor
(GDNF), GFAP, nerve growth factor beta (NGF-\(\beta\)), S100 calcium binding protein B (S100B))
were measured using the Human ProcartaPlex™ Simplex kit (Thermo Fisher Scientific,
Catalog# PPX-07).

2.1.4 Statistical methods

For comparisons between uTEVs and uADEVs, the concentrations of neurotrophins
(pg/ml) were normalized to a reference of 10E+10 particles/ml, yielding values in pg/per
10E+10 particles, adhering to MISEV2018\(^{16}\). The fold change of the uADEVs/uTEVs ratios
were calculated for both particle and neurotrophin concentrations. Welch’s two sample \(t\)-tests
were employed to test the differences of each parameter between the uADEVs and uTEVs
samples. A two-sided \(p\)-value <0.05 was considered statistically significant. All statistical
analyses were performed using R version 4.2.0 (R Project for Statistical Computing) within
Rstudio version 1.4.1106 (Rstudio).
2.2 Case: the potential ability of uADEVs on depicting the trajectories of target molecules in CNS.

To assess the potential of uADEVs in tracking the trajectories of \textit{in vivo} target molecules in the CNS, we analyzed CSF, uADEV, and blood samples from a middle-aged female patient (Patient A) with anti-N-methyl-d-aspartic acid receptor (NMDAR) encephalitis probably caused by teratoma. N-methyl-d-aspartic acid receptor (NMDAR) subunit zeta-1 (GluN1), the pathogenic molecule in anti-NMDAR encephalitis, was measured in CSF and uADEV samples using the enzyme-linked immunosorbent assay (ELISA) (CUSABIO, Catalog# CSB-EL009911HU). Given the patient’s comatose state upon admission, informed consent was obtained from their legal guardian first, and Patient A also provided her own informed consent upon recovery. The wavelet analysis was performed using the \textit{WaveletComp} package53 in R version 4.2.0 (R Project for Statistical Computing) within Rstudio version 1.4.1106 (Rstudio).
3. Results

3.1 Validation of uTEV and uADEVs

Figure 1 (a–h) shows the isolation schematic diagram of uADEVs and their validation using NTA, TEM, and western blotting. NTA confirmed that the EV diameters were within the expected size range for small EVs. TEM images revealed characteristic EV-like structures in both uTEV and uADEV samples. Western blotting showed positive expression of three EV markers (CD63, CD9, and Alix) in both uTEV and uADEV samples. Additionally, uADEVs exhibited positive expression of an astrocyte marker (GFAP). Notably, two kidney markers, NCC2 and NKCC, were detected in the uTEV sample but not in the uADEVs samples. See Supplementary Material 1 (sFigure 1) for the original western blotting images.

3.2 Comparisons between uTEVs and uADEVs

Particle concentrations in uADEVs (5.3 ± 1.6E10/ml) were significantly lower compared to uTEVs (1.9 ± 0.78E12/ml). Given the sample volumes of uADEVs (216 µl) and uTEVs (900 µl), this indicates that uADEVs constitute about 0.81% of uTEVs. In contrast, neurotrophin levels in uADEVs were notably higher compared to uTEVs. To quantify the enhancement in astrocytic signal clarity within the CNS, we assessed the signal-to-noise ratio (SNR) by calculating the fold increase in neurotrophin concentrations. This analysis revealed a range of fold changes between 23.1 and 88.1 across seven neurotrophins, as detailed in Figure 1(i) and Table 1.
Table 1. Fold changes of uADEVs to uTEVs.

<table>
<thead>
<tr>
<th>Variable</th>
<th>In uADEV (pg) Mean ± SD</th>
<th>In uTEV (pg) Mean ± SD</th>
<th>Increased Fold Change Median [IQR]</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDNF</td>
<td>0.625 ± 0.246</td>
<td>0.010 ± 0.005</td>
<td>88.1 ± 69.3 61.0 [33.8; 112.1]</td>
<td><0.001</td>
</tr>
<tr>
<td>EGF</td>
<td>38.153 ± 9.364</td>
<td>2.761 ± 2.126</td>
<td>23.1 ± 18.1 17.6 [8.3; 32.6]</td>
<td><0.001</td>
</tr>
<tr>
<td>FGF-2</td>
<td>3.747 ± 1.991</td>
<td>0.162 ± 0.124</td>
<td>28.8 ± 16.5 29.9 [19.9; 30.6]</td>
<td>0.001</td>
</tr>
<tr>
<td>GDNF</td>
<td>23.355 ± 4.966</td>
<td>0.897 ± 0.685</td>
<td>32.8 ± 11.4 31.0 [28.8; 44.0]</td>
<td><0.001</td>
</tr>
<tr>
<td>GFAP</td>
<td>7.826 ± 6.890</td>
<td>0.285 ± 0.203</td>
<td>29.9 ± 17.3 29.0 [15.0; 33.6]</td>
<td>0.011</td>
</tr>
<tr>
<td>NGF-β</td>
<td>0.985 ± 0.879</td>
<td>0.041 ± 0.028</td>
<td>40.4 ± 47.5 13.0 [9.6; 80.7]</td>
<td>0.012</td>
</tr>
<tr>
<td>S100β</td>
<td>0.765 ± 0.219</td>
<td>0.029 ± 0.021</td>
<td>43.7 ± 34.6 35.4 [17.8; 59.9]</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Note: a: Normalized to every 10^{10} particles.

3.2 Case: the longitudinal trajectory of proteins in uADEVs in an encephalitis patient

Figure 2 demonstrated the comprehensive dynamic picture of Patient A during hospitalization.

3.3 Data availability

All data were presented in the Supplementary Material 2: Individual Participant Data.
4. Discussion

In this study, we established a method to extract ADEVs from urine, facilitating the tracing of *in vivo* specific molecular signal in the CNS. Then, as a demonstration, we tracked the trajectory of NMDAR subunit GluN1 in uADEVs from a patient with anti-NMDAR encephalitis and employed wavelet analysis to identify significant components in the trajectory. This uADEVs protocol may offer a novel, non-invasive method for daily CNS monitoring, providing a valuable tool for biomarker discovery and etiological studies of rapidly evolving CNS diseases.

In order to verify the isolation efficiency of uADEVs, we compared the neurotrophin concentrations normalized to particle numbers in uTEV and uADEV samples. Mean fold changes ranged from 23.1 (EGF) to 88.1 (BDNF) (Figure 1(i)). This enrichment can be interpreted from the signal-theoretic perspective as an improvement in the SNR of astrocyte-derived signals in uTEVs.

To illustrate the concept of signal amplification, we consider a scenario where “a” represents the total number of EVs extracted from a urine sample, and “b” represents the number of EVs are derived from astrocytes (uADEVs). The original SNR of the signal from astrocytes in uTEVs is \(\frac{b}{a} \), and the SNR of the same signal in uADEVs is \(\frac{b}{b} = 1 \). Therefore, the amplification factor is \(\frac{1}{\frac{a}{b}} = \frac{a}{b} \), which is approximately 123 based on particle number ratio in this present study. This indicates that the SNR of a signal from astrocytes in uGLAST’EVs is 123 times higher than in uTEVs, representing an upper bound for the increase in SNR. The increase in SNR was also assessed using astrocyte-related molecules, such as neurotrophins.

The fold increase in the ratio of their concentration to particle number in uADEV samples
compared to uTEV samples provides an estimate of the lower bound of SNR enhancement. The results revealed a maximum 88-fold increase (BDNF), which is slightly lower than the estimate based on particle count. Our approach, therefore, leads to an approximately 88–123-fold increase in SNR for signals from astrocytes via uADEVs. Nevertheless, these are preliminary estimates, and further studies are warranted to refine these calculations.

Another key issue of this protocol is to estimate potential contamination mainly from urogenital tract. Hence, we selected two widely used markers of uTEVs (NKCC2 and NCC) in urinary EV studies. Western blotting results showed that these two markers were highly expressed in uTEV samples as expected, but were barely detected in uADEV samples (Figure 1(h)). These results indicate minimal kidney-derived contamination in uADEVs. Along with evidence of neurotrophins, we established that the majority of these uGLAST’EVs were ADEVs.

Theoretically, uTEVs may also contain EVs derived from other CNS cells, such as neurons and various types of glial cells, including microglia and oligodendrocytes, which could be isolated using similar methods. For other types of BDEVs, such as NDEVs, L1 cell adhesion molecule (LICAM) is commonly used as a marker. However, LICAM expression is also detected in the kidney, potentially compromising the purity of urinary LICAM’EVs that are truly derived from CNS. Given that GLAST is believed to be predominantly expressed in astrocytes, we selected urinary GLAST’EV/ADEV as an initial proof-of-concept for isolating BDEVs from urine. We are developing appropriate methodologies to exclude the interference of EVs from the urological system, enabling the enrichment of other types of BDEVs from urine.
UC has been extensively used for uTEV enrichment for decades, with a common protocol involving UC at 100,000 g for 70 minutes, repeated twice, to isolate uTEVs \(^{59-65}\).

Investigations indicated that extended centrifugation, potentially up to four hours, may enhance EV yields \(^{66}\). In our study, given the low proportion of uADEVs in uTEVs, our primary objective was to increase the yield of uTEVs rather than focusing on purity at the first stage. Therefore, we conducted a pilot study to refine UC parameters for optimal uTEVs yield, detailed in Supplementary Material 3 (The Determination of the Duration of Ultracentrifugation), and the TEM images (Figure 1(c and d)) suggested that the applied UC parameters (150,000 g for 150 minutes) did not significantly introduce impurities.

We also presented longitudinal data from a patient with anti-NMDAR encephalitis to showcase the potential of uADEVs in revealing \textit{in vivo} molecular trajectories and demonstrate the application of signal processing algorithms for enhanced analysis (Figure 2). Anti-NMDAR encephalitis is a well-defined autoimmune disease characterized by autoantibodies targeting the NMDA receptor (primarily the GluN1 subunit) in the CNS \(^{67,68}\). The first-line immunosuppressive therapy typically comprising steroids, intravenous immunoglobulin, and plasma exchange, followed by second-line therapies including rituximab or methotrexate/cyclophosphamide, alone or in combination \(^{69,70}\). In this longitudinal data, we observed dynamic changes in GluN1 within uADEVs. To analyze these dynamic changes, we applied wavelet analysis, a widely used algorithm that decomposes complex signals into simpler components \(^{71}\). This approach enables us to identify and characterize the underlying patterns in GluN1 fluctuations. We discovered that it consists of two main significant components, with the shorter periodic component (approximately 6–8
days) shown in Figure 2(h) and the longer one (approximately 32 days) in Figure 2(i). Based on prior knowledge, here we made some guesses. Since some EVs are formed through cell membrane invagination, and inevitably carry extracellular molecules72–74. Additionally, the shape and time course of this component resemble the trajectory of GluN1 in CSF (Figure 2(e)), we speculate that the longer-period component may reflect the changes in extracellular GluN1 levels. The shape and timing of the shorter period component appeared to correlate with the treatment. Following the combination of methotrexate and rituximab, the trajectory of the short-period component increased. Considering the plasma membrane origin of EV membranes and previous reports of NMDAR density reduction in anti-NMDAR encephalitis patients and its restoration upon effective treatment75, we hypothesize that this short-period signal may reflected the dynamic response of NMDAR density on astrocyte plasma membranes to treatment. However, it is important to note that definitive conclusions cannot be drawn from a single case in this study, the aforementioned conjectures are more suitable as new hypotheses for further investigation. Our study suggests that by increasing the number and density of sampling points, sophisticated powerful signal processing algorithms like wavelet analysis could be applied to extract meaningful information from these dynamic CNS \textit{in vivo} signals, enabling the formulation of more specific hypotheses for targeted experimental validation.

\textbf{Significance}

The temporal depth provided by uADEVs may hold significant promise for the discovery of novel biomarkers for CNS diseases, particularly those that progress rapidly. One
prerequisite for a molecule (or a combination of molecules) to become a reliable diagnostic
marker, is that it must be “individual-level” identifiable. Nevertheless, for rapidly evolving
CNS diseases, conventional follow-up frequencies (monthly, semiannually, or annually) may
not be sufficient to capture the dynamic molecular changes associated with disease
progression, according to the Nyquist-Shannon sampling theorem15 (Figure 3(a)). However,
our uADEVs protocol could offer a non-invasive solution with the potential for sampling up
to daily. With advancements in detection technology and reduced urine volume requirements,
hourly sampling may become feasible, enabling the capture of CNS dynamics at an
unprecedented level. In short, uADEVs allow us to capture \textit{in vivo} molecular “movies” of the
CNS at the individual level, rather than capturing static “snapshots”. This further implies that,
diagnosing a disease with distinct episodes may require multiple longitudinal tests, even
including artificial perturbations (analogous to an oral glucose tolerance test). This is because
a single-time biomarker test may not be sufficient to capture the dynamic nature of such
diseases.

Even if no new biomarkers are discovered, uADEVs will facilitate the falsification of
potential hypotheses. As illustrated in Figure 3(b), if the trajectory of a candidate molecule
aligns with, but lags behind, the symptom trajectory, it can be inferred that it is not the cause
but rather a consequence or a confounding factor. Conversely, only candidate molecules with
trajectories preceding the symptom trajectory are likely to be causal. Naturally, things become
somewhat simpler when we can precisely trace the molecular trajectories at the
individual-level.

Identifying reliable biomarkers for rapidly changing CNS disorders, such as depression,
is challenging, potentially due to their high heterogeneity, and the fluctuating molecular
signals themselves might also contribute to this heterogeneity. As illustrated in Figure 3(c),
even assuming all patients with a specific disease share identical molecular trajectories (this
assumption is inaccurate but serves to demonstrate the concept), heterogeneity can also arise
from different sampling points along the trajectory. This time-induced heterogeneity could be
a significant factor. However, with adequate sampling frequency, we can capture individual
molecular trajectories (Figure 3(d)). Various post-hoc algorithms, such as realigning
trajectories based on their peaks, can then be employed to reduce time-induced heterogeneity
(Figure 3(e)). While this is a simplified model, and heterogeneity manifests in various forms
with greater complexity in real-world data, we believe that high-frequency sampling provides
more opportunities for data processing using multiple algorithms, enabling deeper
exploration.

This methodology may introduce a novel experimental paradigm, which we termed the
“Time Machine of Sampling” (Figure 3(f)). Studying the recurrence of CNS diseases is often
hampered by the limited availability of samples from the period preceding recurrence. These
samples are crucial as they may contain the molecular trigger signals for recurrence.
Fortunately, uADEVs can be non-invasively collected and directly reflect CNS signals. For
CNS diseases with a high recurrence probability, we propose collecting and storing urine
samples at a high frequency. When monitoring a patient for recurrence, we can unseal
samples collected before the recurrence time point to extract uADEVs for analysis. This may
enable the collection of samples with a sufficient sampling rate from the period preceding
CNS disease recurrence. Hence, we term this paradigm the “Time Machine of Sampling” as it
allows us to go back in time and collect samples before recurrence. This paradigm may facilitate the identification of molecular triggers preceding disease recurrence. Our study may also enhance therapeutic monitoring. Timely assessment of treatment efficacy is essential for precision medicine. As demonstrated in Patient A, the GluN1 concentrations in uADEVs appear to be responsive to treatment. This suggests that the uADEVs approach could provide more rapid and timely feedback for diseases that demand close therapeutic monitoring. Further research in this area is warranted. It is noteworthy that, based on the protocol’s principle, it is theoretically possible to isolate not only ADEVs from the CNS but also EVs from other CNS cell types, organs, or tissues from uTEVs, if these cells express specific surface markers. We anticipate that urine samples may hold significant value for disease studies beyond CNS and urological disorders.

Limitations

First, alternative isolation protocols, such as size-exclusion chromatography (SEC), may be suitable for laboratories lacking ultracentrifuges. Additionally, UF may lead to a significant loss of uTEVs. Employing high-capacity ultrafiltration tubes to directly collect uTEVs without UF may potentially enhance the yield of uADEVs. However, due to laboratory constraints, we were unable to attempt this, and further investigation is required by external laboratories. Second, while the yield of uTEVs is substantial, the absolute number of uADEVs remains low, limiting multi-omics-based high-throughput assays. To address this challenge, we are endeavoring to develop methodologies for high-throughput studies utilizing minimal amounts of uADEVs. Third, the impact of subjects’ disease status, particularly...
urological diseases, on uADEVs remains unclear. Further research is needed to address this
question. Fourth, the mechanism by which ADEVs traverse the glomerular basement
membrane into urine remains unknown. Elucidating this mechanism may significantly
enhance the utility of uADEVs. Fifth, this study utilized fresh urine samples. The applicability
of frozen or concentrated urine samples after thawing remains undetermined. Future studies
should investigate the effect of sample storage conditions on uADEVs. After all, compared
with unconcentrated urine samples, storing concentrated urine samples could alleviate
inventory pressure on biobanks.

Conclusions

In this study, we proposed a simple method for isolating urinary ADEVs, enabling
non-invasive monitoring of CNS \textit{in vivo} activity with high sampling rates, up to daily or even
half-daily. This approach, analogous to capturing molecular “movies” of the brain, coupled
with appropriate signal processing algorithms, holds promise for identifying novel biomarkers
or illuminating the etiology of rapidly evolving CNS diseases by tracking the precise
trajectories of target molecules.
References

7. Eidson LN, Kannarkat GT, Barnum CJ, et al. Candidate inflammatory biomarkers display

598 46. Winston CN, Goetzl EJ, Schwartz JB, Elahi FM, Rissman RA. Complement protein
599 levels in plasma astrocyte-derived exosomes are abnormal in conversion from mild
600 cognitive impairment to Alzheimer’s disease dementia. Alzheimers Dement (Amst).

602 47. Xie XH, Lai WT, Xu SX, et al. Hyper-inflammation of Astrocytes in Patients of Major
603 Depressive Disorder: Evidence from Serum Astrocyte-derived Extracellular Vesicles.
604 Brain Behav Immun. Published online December 29, 2022:S0889-1591(22)00472-X.
605 doi:10.1016/j.bbi.2022.12.014

607 principles for medical research involving human subjects. JAMA.

609 49. Xu SX, Xie XH, Yao L, et al. Human in vivo evidence of reduced astrocyte activation and
610 neuroinflammation in patients with treatment-resistant depression following
612 doi:10.1111/pcn.13596

613 50. Tamm I, Horsfall FL. A mucoprotein derived from human urine which reacts with
615 doi:10.1084/jem.95.1.71

616 51. Kosanović M, Janković M. Isolation of urinary extracellular vesicles from Tamm-

57. Goetzl EJ, Srihari VH, Mustapic M, Kapogiannis D, Heninger GR. Abnormal levels of mitochondrial Ca2+ channel proteins in plasma neuron-derived extracellular vesicles of

Figure legends

Figure 1. Isolation and Validations of uADEVs. (a) Schematic diagram of the uADEVs isolation protocol. (b and e) NTA results of uTEVs and uADEVs. (c, d, f, and g) TEM images of uTEVs and uADEVs (scale bars: 0.5 μm and 100 nm). (h) Results of western blotting: Three EV markers (CD63, CD9 and Alix) and an astrocyte marker (GFAP) were present in the ADEVs sample, while two kidney markers (NKCC2 and NCC) were absent. (i) Significantly increased astrocyte-related neurotrophic factors in uADEVs.

Figure 2. Comprehensive dynamic picture of Patient A with anti-NMDAR encephalitis during her hospitalization. The x-axis in all panels marks the days since admission (Day 0 = admission day). Main treatment included an initial phase of four intravenous infusions of human γ-globulin (dose 25 g, indicated by 4 vertical dot-dash red lines). Simultaneously, glucocorticoid therapy was administered (represented by the green horizontal line above each subfigure, with the line’s width indicating the equivalent dose of methylprednisolone). Additionally, intrathecal methotrexate administration (dose 10 mg, represented by vertical solid yellow lines) and rituximab therapy (dose 100 mg, indicated by vertical long-dash blue lines) were administered. Clinical symptoms were assessed using two scales: (a) the Glasgow Coma Scale (GCS) and (b) the modified Rankin Scale (mRS), showing gradual improvement following treatment. Given the use of the immunotherapy, we measured the (c) percentage of CD19+ cells in the blood, assessed via flow cytometry, dropped to nearly non-existent levels by Day 10. We also monitored NMDAR-antigen (Ag) titres in the CSF. (d) A decrease in NMDAR-Ag titers in the CSF was observed as the treatment progressed. Given that
anti-NMDA encephalitis is characterized by the presence of autoantibodies mainly against the NMDAR GluN1 subunit, leading to NMDARs damage through internalization, shedding, and extracellular release, we also measured (e) The concentrations of GluN1 in CSF. As NMDARs are also present on the surface of astrocytes, we simultaneously measured the (f) concentrations of GluN1 in uADEVs (pg/per 1E+10 particles). As the trajectory of GluN1 in uADEVs was also a dynamic signal, composed of various wave components. Therefore, we conducted wavelet analysis using the Morlet wavelet as mother wavelet to identify and separate the significant components of this dynamic signal. (g) Wavelet analysis results of the log(10) GluN1 trajectory in uADEVs are presented, with colors representing power, black lines indicating the highest peak (ridge) in the respective region, and white areas representing significant components. Two significant components were identified, one with a short period (approximately 6-8 days) located below and another with a period of over 20 (the strongest ridge is at approximately 32 days). These two significant components were then reconstructed as follows: (h) The trajectory of the reconstructed significant short-period component (red line), and (i) the long-period component (approximately 32 days, the blue line). The gray dashed line in (h) and (i) represent the original log(10) trajectory (grey dashed lines).

Figure 3. The Significance of the uADEV approach. (a) The advantage of high-frequent sampling. (b) The detailed trajectories of target molecules may benefit for the exploration (Molecule A and B) and falsification (Molecule C) of pathological hypotheses. (c–e) Even under the assumption that all patients have the same molecular trajectories, yet, time-induced heterogeneity exist merely due to different sampling points along the trajectory. However,
individual-level detailed trajectories may allow some post-hoc algorithms, such as peak-based realignment, to reduce the time-induced heterogeneity. (f) The schematic diagram of the “Time Machine of Sampling”: for CNS diseases with a high probability of recurrence, we could collect urine samples at a high frequency and store them. When a patient is monitored for a recurrence, we could then unseal the samples before the recurrence time point (red arrows) to extract uADEVs to explore the reason of recurrence, like the “Time Machine”.
Supplementary Materials

Supplementary Material 1: sFigure 1. The original whole piece pictures of western blotting. GFAP: Anti-GFAP antibody (Abcam, Cat No: ab68428) at 1/5000 dilution, protein loading amount: 13.7 µg Per lane. NKCC2: Anti-NKCC2 antibody (Abcam, Cat No: ab171747) at 1/2000 dilution, protein loading amount: 4 µg per lane. NCC: Anti-NCC antibody (Abcam, Cat No: ab95302) at 1/1000 dilution, protein loading amount: 1.5 µg per lane. CD63: Anti-CD63 antibody (Abcam, Cat No: ab134045) at 1/700 dilution, protein loading amount: 4.0 µg per lane. CD9: Anti-CD9 antibody (Abcam, Cat No: ab263019) at 1/700 dilution, protein loading amount: 5.7 µg per lane. Alix: Anti-Alix antibody (proteintech, Cat No: 67715-1-Ig) at 1/2000 dilution, protein loading amount: 5.7 µg per lane.

Supplementary Material 2: Individual Participant Data.

Supplementary Material 3: The Determination of the Duration of Ultracentrifugation.