Use of electronic health record data to identify hospital-associated *Clostridioides difficile* infections: a validation study

Michael J. Ray¹,², MPH; Kathleen L. Lacanilao¹; Maela Robyne Lazaro¹, BS, PharmD Candidate; Luke C. Strnad²,³, MD; Jon P. Furuno, PhD¹, FSHEA; Kelly Royster¹, PharmD; Jessina C. McGregor, PhD, FSHEA¹,²

1. Oregon State University College of Pharmacy, Department of Pharmacy Practice, Portland, Oregon
2. Oregon Health & Science University-Portland State University School of Public Health, Portland, Oregon
3. Oregon Health & Science University School of Medicine, Division of Infectious Diseases, Portland, Oregon

Corresponding author:
Michael J. Ray, MPH
2730 S Moody Ave.
CL5CP
Portland, OR 97201
Email: raymi@ohsu.edu
Phone: 503-494-6021

Keywords
C. difficile, diagnostic performance, electronic health record

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

Clinical research focused on the burden and impact of Clostridioides difficile infection (CDI) often relies upon accurate identification of cases using existing health record data. Use of diagnosis codes alone can lead to misclassification of cases. Our goal was to develop and validate a multi-component algorithm to identify hospital-associated CDI (HA-CDI) cases using electronic health record (EHR) data.

Methods

We performed a validation study using a random sample of adult inpatients at a large academic hospital setting in Portland, Oregon from January 2018 to March 2020. We excluded patients with CDI on admission and those with short lengths of stay (< 4 days). We tested a multi-component algorithm to identify HA-CDI; case patients were required to have received an inpatient course of metronidazole, oral vancomycin, or fidaxomicin and have at least one of the following: a positive C. difficile laboratory test or the International Classification of Diseases, Tenth Revision (ICD-10) code for non-recurrent CDI. For a random sample of 80 algorithm-identified HA-CDI cases and 80 non-cases, we performed manual EHR review to identify gold standard of HA-CDI diagnosis. We then calculated overall percent accuracy, sensitivity, specificity, and positive and negative predictive value for the algorithm overall and for the individual components.

Results

Our case definition algorithm identified HA-CDI cases with 94% accuracy (95% Confidence Interval (CI): 88% to 97%). We achieved 100% sensitivity (94% to 100%), 89% specificity (81% to 95%), 88% positive predictive value (78% to 94%), and 100% negative predictive value (95% to 100%). Requiring a positive C. difficile test as our gold standard further improved diagnostic performance (97% accuracy [93% to 99%], 93% PPV [85% to 98%]).

Conclusions

Our algorithm accurately detected true HA-CDI cases from EHR data in our patient population. A multi-component algorithm performs better than any isolated component. Requiring a positive laboratory test for C. difficile strengthens diagnostic performance even further. Accurate detection could have important implications for CDI tracking and research.
Background

Clostridioides difficile is responsible for nearly a third of all antibiotic-associated cases of infectious diarrhea worldwide, and healthcare-associated *C. difficile* infection (HA-CDI) represents about two-thirds of all CDI cases in the United States (1, 2). The early 2010s saw a greater than 50 percent increase in CDI incidence, which can be attributed, at least in part, to more sensitive but less specific molecular testing methods compared to previously used toxin-based assays (3-5). Over diagnosis of CDI (i.e., treating *C. difficile* colonized patients without active infection) leads to unnecessary antibiotic prescribing, often resulting in extra costs, adverse side effects, possible emergence of antibiotic resistance, and increased risk of recurrent CDI (6-8). Nevertheless, single-component case finding methods (e.g. laboratory test or diagnosis code only) are often employed for their utility. For example, since 2009, the National Healthcare Safety Network (NHSN) has utilized the LabID event, which allows for reporting of positive *C. difficile* lab events “without clinical evaluation” (9). While this is used as a proxy for CDI burden and as an inter-facility comparison tool, it likely overestimates the number of CDI cases, and has been shown to have a low negative predictive value (NPV) of around 55 percent (10). Using laboratory testing as the sole diagnostic criterion has also been shown to have low specificity (11, 12).

Our study objective was to develop and validate a CDI case definition algorithm that accurately detects CDI cases (i.e., maximizes diagnostic performance) using electronic health record (EHR) data including antibiotic treatment, laboratory test, and International Classification of Diseases, Clinical Modification (ICD-10-CM) information. We hypothesized that our case definition algorithm would detect patients with CDI more accurately than any single case definition component.

Methods

Study Design and Data Source
We obtained complete laboratory, pharmacy, and diagnostic code information on all Oregon Health & Science University (OHSU) inpatient hospital encounters between January 2018 and March 2020 from our institution’s research data repository, which includes longitudinal administrative, demographic, diagnosis, laboratory, and pharmacy data at the patient level that has been validated and used in previous epidemiologic studies (16-18). OHSU is a 576-bed academic, quaternary-care facility in Portland, Oregon. We established our study cohort by excluding patients under the age of 18, those with known recurrent or community-acquired CDI, and those with hospital stays of less than four calendar days, as these individuals are not eligible to be diagnosed with HA-CDI.

Hospital-associated CDI

Our goal was to accurately identify incident, non-recurrent HA-CDI, which we identified using a combination of medication (metronidazole, oral vancomycin, fidaxomicin), diagnosis code (ICD-10-CM A04.72: Enterocolitis due to Clostridioides difficile, not specified as recurrent), and laboratory testing data (Figure 1). We considered incident CDI cases to be HA-CDI if the onset date, defined as the date of first anti-C. difficile antibiotic administration or C. difficile positive stool specimen, whichever occurred first, fell on hospital day 4 or later. This is consistent with US Centers for Disease Control and Prevention HA-CDI definition for HA-CDI (9). We considered cases non-recurrent if no prior CDI events were identified at our institution in the 8 weeks before the index CDI diagnosis applying the same diagnostic criteria.

Diagnostic Performance of Case Definition Algorithm

To evaluate the diagnostic performance of our case definition algorithm, we took a random sample of 80 HA-CDI cases and 80 non-CDI cases as classified by our algorithm. We determined through an a priori power calculation using methods outlined by Pepe and Longton (19, 20), assuming a true positive rate and false positive rate of 90 percent and 5 percent respectively and alternative true and false positive
rates of 75 percent and 25 percent respectively, that this sample size would be sufficient to achieve 94% power. We (MJR, KLL, MRL, KR) then manually reviewed each encounter medical record (Epic EHR system) as our gold standard to determine if the patient was a “true” HA-CDI case. Each reviewer examined clinical notes for documentation of *C. difficile*-related diarrhea (loose, liquid, or unformed stools) and related symptoms (fever, nausea, vomiting, abdominal pain). We examined patient output assessment to determine the number of liquid stools prior to *C. difficile* testing, if applicable. We also captured information on diarrhea-inducing medications (e.g., laxatives, colchicine, antineoplastic agents) both prior to and during admission. We determined if there was a documented reason for diarrhea symptoms other than *C. difficile* (e.g. tube feeding, NPO (nothing by mouth), gastrointestinal surgery) or underlying conditions that cause diarrhea (diabetic gastroparesis, ulcerative colitis, irritable bowel syndrome, Crohn’s disease). Finally, we searched the EHR for any documentation of history of CDI or CDI prophylaxis. To be considered a true HA-CDI patient and establish our gold standard, there must have been documentation of, on hospital day 4 or later, at least three loose/liquid/unformed stools with no alternative explanation documented for diarrhea symptoms, initiation of CDI-specific antibiotic treatment, and a positive laboratory test for *C. difficile* (if present). According to our review process, patients could be ruled as one of the following: HA-CDI (new CDI diagnosis on hospital day 4 or later, no known CDI in previous 8 weeks), CA-CDI (CDI diagnosis on hospital day 3 or earlier, no known CDI in previous 8 weeks), recurrent CDI (Known CDI in previous 8 weeks or documentation of recurrent CDI in chart), colonized (Positive test for *C. difficile* with the clinical decision not to treat with antibiotics), or no evidence of CDI. If any uncertainty arose as to the patient’s CDI status, we flagged the record for second review by an infectious disease specialist (LCS, KR). We utilized REDCap tools to collect and manage study data (21, 22).

Data Analysis
Once we determined each study patient’s chart-confirmed CDI status, we calculated our case definition algorithm’s sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and overall percent accuracy (i.e. percent of cases and non-cases correctly identified). We constructed 95% confidence intervals (CI) using methods described by Pepe (19). We also examined the diagnostic performance of individual components of the case definition algorithm for comparison (e.g., laboratory test only, diagnosis code only, oral vancomycin only). We performed all analysis using SAS (version 9.4, SAS Corporation, Cary, NC) except for the a priori power calculation, for which we used Stata (version 16, StataCorp., College Station, TX).

Results

Of the 103,275 inpatient encounters during our study period, 50,394 (49%) met our inclusion criteria (Figure 2). Included patients had a mean age of 56.7 year (standard deviation, ± 19.0 years), 53% were female, and where 87% white race. The median length of stay was 6 days (interquartile range, 5 to 9 days). Ten percent of our included patients received a CDI treatment antibiotic (metronidazole, oral vancomycin, or fidaxomicin), 710 (1.4%) received oral vancomycin or fidaxomicin, 396 (0.8%) tested positive for *C. difficile*, and 487 (1%) had an ICD-10 code for non-recurrent CDI. Of the 190 HA-CDI cases identified in our dataset, 157 (83%) had all three components of our case definition algorithm. Of the 80 algorithm-identified HA-CDI cases that we sampled for review, 66 (83%) had all three criteria, while 9 (11%) had a test and no code, and 5 (6%) had a code and no test.

Our case definition algorithm identified HA-CDI cases with 94% accuracy (95% CI: 88% to 97%). We achieved 100% sensitivity (94% to 100%), 89% specificity (81% to 95%), 88% PPV (78% to 94%), and 100% NPV (95% to 100%). The performance of the individual components of our CDI algorithm is summarized in Table 1. Requiring a positive test to be considered gold-standard CDI positive (as
opposed to an optional positive test if an ICD-10 code for CDI was included) improved diagnostic performance across all measures by avoiding 5 false positives, compared to the original algorithm. This improved specificity to 94% (87% to 98%), PPV to 93% (84% to 98%), and overall accuracy to 97% (93% to 99%). Requiring an ICD-10 code for CDI avoided 5 false negatives, but also resulted in 5 false positives. This reduces sensitivity and NPV, improves specificity and PPV, with the overall accuracy remaining the same. CDI specific treatment plus an ICD-10 code yielded an overall accuracy of 93% (88% to 97%), though with reduced sensitivity and NPV. Using only C. difficile testing yielded 15 false positives and an overall accuracy of 91% (85% to 95%), and using oral vancomycin prescribing only yielded 19 false positives, and an overall accuracy of 88% (82% to 93%).

Discussion

Our study demonstrates that we can accurately identify inpatient HA-CDI cases using a combination of drug administration, laboratory testing, and ICD-10 code data from the EHR. Our algorithm was especially adept at capturing true positives (100% sensitivity). Additionally, 100% of those classified as CDI negative by our algorithm were truly negative (NPV). Requiring a positive C. difficile laboratory test improved the diagnostic accuracy even further by avoiding 5 false positives, and the combination of the three algorithm components performed better than any individual component or pair of components.

Our study contributes to the limited body of literature around construction of multi-component CDI case definitions, as much of the existing literature examines the utility of using a single component to detect cases. For example, a study by Litvin et al. reports on a “pseudo-outbreak” of CDI due to a faulty assay lot leading to a 32% perceived increase in CDI incidence at a facility (23). This illustrates the importance of multi-component algorithms. Planche and Wilcox highlight the varying sensitivity and specificity of different C. difficile laboratory tests alone (24). A multi-center study by Dubberke et al. reports that ICD-
CM codes are an acceptable proxy for overall CDI burden, but fail to accurately capture HA-CDI burden (25). The authors note that the transition to ICD-10-CM codes was designed to more accurately delineate recurrent from non-recurrent, which is in agreement with an article by Deshpande et al. (26). A 2020 study in Canada by Pfister et al. reports that the ICD-10-CM code for non-recurrent CDI has a sensitivity of 85% and a positive predictive value of 80% while applied to a province-wide discharge database (27). Differences in coding practices could explain the heterogeneity in diagnostic performance across settings. Each of these studies identifies an important pitfall of single component case detection, thus motivating our validation study.

CDI-specific antibiotic treatment is another candidate for retrospective CDI case identification. While historically, metronidazole was the preferred treatment for non-severe CDI, oral vancomycin (and/or the more expensive fidaxomicin) is now the recommended treatment in many situations (13, 14). Though oral vancomycin is used exclusively for CDI, prophylaxis is becoming more common, so using oral vancomycin administration as a proxy for CDI can also overestimate the number of cases (15). We saw a lower specificity, positive predictive value, and overall percent accuracy when examining oral vancomycin in our data.

Our study is not without limitations. Because of CDI’s rarity in our patient population, it is highly unlikely that we would randomly find a “missing” CDI case among the sampled non-CDI group. While we calculated our power and sample size a priori, it is still possible that we are underestimating our denominator for our specificity calculations. However, this would not affect the sensitivity or positive predictive value of our algorithm. Additionally, our hospital has a low burden of HA-CDI compared to the national average (4.4 vs 8.3 case per 10,000 patient days according to a 2020 meta-analysis by Marra et al. (28)), so we might not be able to generalize our findings to settings with higher CDI burdens. Finally, while we leveraged our group’s expertise to establish our gold standard, the possibility of human error due to the clinical complexity of CDI remains. A major strength of our study is data availability. Our
pharmacy research repository has comprehensive, longitudinal data that is easily linked to each patient, and has been validated in prior epidemiological studies (16).

Our study has important implications. Our CDI case definition algorithm can be applied as a gold standard to readily available EHR information to accurately detect CDI cases. This improves on commonly used methods like CDI LabID events. Accurate identification of CDI cases is crucial in the patient care setting (i.e., only prescribing treatment for true CDI patients), in research settings (i.e., quick and accurate CDI classification for retrospective studies), and for CDI tracking (reporting accurate facility-wide CDI incidence). Our algorithm was able to detect CDI cases with 100 percent sensitivity and high overall accuracy. Requiring a positivity laboratory test improved our algorithm’s diagnostic accuracy even further. Therefore, we recommend consideration of both a CDI-specific medication and a positive laboratory test (hospital day 4 or later) as the new gold standard when classifying HA-CDI cases from EHR data.

Funding

This project received support from NIH grant UL1TR002369 and RL5GM118963
References

Figure 1. Definition for incident hospital-onset CDI cases

<table>
<thead>
<tr>
<th>HO-CDI Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-CDI antibiotic therapy initiated on hospital day four or later</td>
<td>Oral/rectal Vancomycin</td>
</tr>
<tr>
<td></td>
<td>Metronidazole</td>
</tr>
<tr>
<td></td>
<td>Fidaxomicin</td>
</tr>
<tr>
<td>AND</td>
<td></td>
</tr>
<tr>
<td>ICD-10-CM code present</td>
<td>ICD-10-CM (A04.72: Enterocolitis due to Clostridioides difficile, not specified as recurrent)</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Positive laboratory test; sample collected on hospital day four or later</td>
<td>PCR, Stool toxin A, Toxin B</td>
</tr>
</tbody>
</table>

Incident Case Definition

Non-recurrent – no known CDI in the previous 8 weeks
Figure 2. Inclusion/exclusion criteria and sampling scheme for our validation study

- 103,275 total encounters
 - 84,742 adult inpatients
 - 18,533 pediatric inpatients

- 80 randomly-selected non-cases
 - 50,394 4+ days in hospital
 - 34,348 0-3 days in hospital

- 692 identified CDI cases
 - 502 CA-CDI or recurrent CDI

- 80 randomly-selected CDI cases
 - 190 HA-CDI cases
<table>
<thead>
<tr>
<th>Diagnostic criteria</th>
<th>Diagnostic performance measure, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study algorithm:</td>
<td></td>
</tr>
<tr>
<td>ICD-10-CM code A04.72 OR positive C. difficile lab test AND CDI-specific antibiotic (metronidazole, oral vancomycin, fidaxomicin)</td>
<td>Sensitivity 100 (94 to 100) Specificity 89 (81 to 95) PPV 88 (78 to 94) NPV 100 (95 to 100) Accuracy 94 (88 to 97)</td>
</tr>
<tr>
<td>Code required:</td>
<td></td>
</tr>
<tr>
<td>ICD-10-CM code A04.72 AND CDI-specific antibiotic</td>
<td>Sensitivity 93 (84 to 98) Specificity 94 (87 to 98) PPV 93 (84 to 98) NPV 94 (87 to 98) Accuracy 94 (88 to 97)</td>
</tr>
<tr>
<td>Positive test required:</td>
<td></td>
</tr>
<tr>
<td>Positive C. difficile lab test AND CDI-specific antibiotic</td>
<td>Sensitivity 100 (94 to 100) Specificity 94 (87 to 98) PPV 93 (85 to 98) NPV 100 (96 to 100) Accuracy 97 (93 to 99)</td>
</tr>
<tr>
<td>Any CDI drug only:</td>
<td></td>
</tr>
<tr>
<td>CDI-specific antibiotic (metronidazole, oral vancomycin, fidaxomicin), other criteria optional</td>
<td>Sensitivity 74 (64 to 83) Specificity 73 (63 to 82) PPV 74 (64 to 83) NPV 100 (95 to 100) Accuracy 85 (78 to 90)</td>
</tr>
<tr>
<td>Oral vancomycin only:</td>
<td></td>
</tr>
<tr>
<td>other criteria optional</td>
<td>Sensitivity 100 (94 to 100) Specificity 79 (69 to 87) PPV 79 (68 to 87) NPV 100 (94 to 100) Accuracy 88 (82 to 93)</td>
</tr>
<tr>
<td>Positive C. difficile test only:</td>
<td></td>
</tr>
<tr>
<td>other criteria optional</td>
<td>Sensitivity 100 (94 to 100) Specificity 83 (74 to 90) PPV 82 (72 to 90) NPV 100 (95 to 100) Accuracy 91 (85 to 95)</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value