Single versus Combination Treatment in Tinnitus: A Randomized, Multicenter Trial

Stefan Schoisswohl, Ph.D. 1,2, Laura Basso, Ph.D. 1, Jorge Simoes, Ph.D. 3, Milena Engelke, M.Sc. 1, Berthold Langguth, M.D. 1, Birgit Mazurek, M.D., Ph.D. 4, Jose Antonio Lopez-Escamez, M.D., Ph.D. 5,6,7,8, Dimitrios Kikidis, M.D., Ph.D. 9, Rilana Cima, Ph.D. 10, Alberto Bernal-Robledano, M.Sc. 5,6,7, Benjamin Boecking, Ph.D. 4, Jan Bulla, Ph.D. 1,11, Christopher R. Cederroth, Ph.D. 12,13, Sam Denys, Ph.D. 14,15, Alba Escalera-Balsera, M.Sc. 5,6,7, Alvaro Gallego-Martinez, Ph.D. 5,6,7, Silvano Gallus, Ph.D. 16, Leire Hidalgo-Lopez, M.D. 17, Carlotta M. Jarach, M.Sc. 16, Hafez Kader, M.Sc. 18, Michael Koller, Ph.D. 19, Alessandra Lugo, Ph.D. 16, Steven C. Marcrum, Ph.D. 20, Nikos Markatos, B.Sc. (Honors) 21, Juan Martin-Lagos, M.D. 5,6,22, Marta Martinez-Martinez, M.D., Ph.D. 5,6,22, Nicolas Muller-Locatelli, M.D. 22, Patrick Neff, Ph.D. 1,2,3,24,25, Uli Niemann, Dr. Ing. 18, Patricia Perez-Carpena, M.D., Ph.D. 5,6,7,26, Rüdiger Pryss, Ph.D. 27, Clara Puga, M.Sc. 18, Paula Robles-Bolivar, M.Sc. 5,6,7, Matthias Rose, Ph.D. 28, Martin Schecklmann, Ph.D. 1, Tabea Schiele, M.Sc. 4, Miro Schleicher, M.Sc. 18, Johannes Schobel, Ph.D. 29, Myra Spiliopoulou, Dr. habil. 18, Sabine Stark, Dipl.-Psych. 4, Susanne Staudinger, M.A. 1, Alexandra Stege, Ph.D. 30, Beat Toedtli, Ph.D. 31, Ilias Trochidis, M.Sc. 32, Vishnu Unnikrishnan, M.Sc. 18, Evgenia Vassou, M.Sc. 21, Nicolas Verhaert, M.D. Ph.D. 14,15, Carsten Vogel, M.Sc. 27, Zoi Zachou, M.D. 21 and Winfried Schlee, Ph.D. 1,31

1 Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
2 Department of Human Sciences, Institute of Psychology, Universitaet der Bundeswehr München, Neubiberg, Germany
3 Department of Psychology, Health and Technology, University of Twente, Enschede, The Netherlands
4 Tinnitus Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
5 Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, Granada, Spain
6 Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
7 Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
8 Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
9 First Department of Otorhinolaryngology, Head and Neck Surgery, National and Kapodistrian University of Athens, Hippocratie General Hospital, Athens, Greece.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
10 Department of Health Psychology, Katholieke Universiteit Leuven, Leuven, Belgium.
11 Department of Mathematics, University of Bergen, 5020 Bergen, Norway
12 Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
13 Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
14 Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
15 Department of Neurosciences, Research Group Experimental Otorhinolaryngology (ExpORL), Katholieke Universiteit Leuven, Leuven, Belgium
16 Department of Medical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
17 Department of Mental Health, Hospital Universitario Virgen de las Nieves, Granada, ES, Spain.
18 Faculty of Computer Science, Otto-von-Guericke Universitaet Magdeburg, Germany
19 Center for Clinical Studies, University of Regensburg, Regensburg, Germany
20 Ear, Nose, Throat Department, University Hospital Regensburg, Regensburg, Germany
21 First Department of Otorhinolaryngology, Head and Neck Surgery, National and Kapodistrian University of Athens, Hippocration General Hospital, Athens, Greece.
22 Department of Otolaryngology, Hospital Clinico Universitario San Cecilio, Granada, Spain
23 Department of Otorhinolaryngology, Head&Neck Surgery, University Hospital Zurich, University of Zurich, Switzerland
24 Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
25 Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
26 Department of Otolaryngology, Hospital Universitario Virgen de las Nieves, Granada, Spain
27 Institute of Clinical Epidemiology and Biometry University of Würzburg, Germany
28 Department of Internal Medicine and Psychosomatics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
29 Institute DigiHealth, Neu-Ulm University of Applied Sciences, Ulm, Germany
30 Centrale Biobank Charité (ZeBanC), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
31 Institute for Information and Process Management, Eastern Switzerland University of Applied Sciences, St. Gallen, Switzerland
32 ViLabs, Limassol 3030, Cyprus
Abstract

Background:
Tinnitus is associated with a variety of etiologies, phenotypes, and underlying pathophysiological mechanisms, and available treatments have limited efficacy. A combination of treatments, addressing various aspects of tinnitus, might provide a viable and superior treatment strategy.

Methods:
In this multicenter, parallel-arm, randomized controlled clinical trial, patients with chronic subjective tinnitus were randomly assigned to single or combination treatment of 12 weeks each. Cognitive-behavioral therapy, hearing aids, structured counseling and sound therapy were administered either alone or as a combination of two treatments resulting in 10 treatment arms. The primary endpoint was the difference in the change from baseline to week 12 in the total score of the Tinnitus Handicap Inventory between single and combination treatments.

Results:
Out of 461 enrolled patients 230 were assigned to single and 231 to combination treatment. Least-squares mean changes from baseline to week 12 were -11.7 for single (95% confidence interval [CI], -14.4 to -9.0) and -14.9 for combination treatments (95% CI, -17.7 to -12.1), with a significant between-group difference (p=0.034). Sound therapy alone had the lowest effect size. In contrast, cognitive-behavioral therapy and hearing aids alone had large effect sizes, which could not be further increased by combination treatment.

Conclusions:
In this trial involving patients with chronic tinnitus, all treatment arms showed improvement in THI scores from baseline to week 12. No clear synergistic effect was observed when combining treatments, but rather a compensatory effect, where a more effective treatment offsets the clinical effects of a less effective treatment.

(Funded by the EU, number: 848261, ClinicalTrials.gov number: NCT04663828)
Introduction

Tinnitus is defined as “the conscious awareness of a tonal or composite noise for which there is no identifiable external acoustic source”,\(^1\) with an estimated prevalence of 14.4% (95% confidence interval [CI], 12.6 to 16.5) in the global population, with 2.3% (95% CI, 1.7 to 3.1) being severely affected.\(^2\) Severe tinnitus is associated with emotional stress, cognitive dysfunction and/or autonomic arousal, leading to maladaptive behavioral changes and functional disability.\(^1\)

Numerous causes and risk factors for tinnitus have been identified,\(^3,4\) whereby peripheral and central mechanisms are involved in its emergence and maintenance, exemplified by pathological alterations in the ear, along the auditory pathway\(^5–7\) as well as in non-auditory brain regions.\(^8,9\) There is a broad spectrum of etiologies, phenotypes, and underlying pathophysiological mechanisms of tinnitus. Many adults with chronic tinnitus report having tried multiple tinnitus treatments before finding a treatment that reduces their tinnitus distress.\(^10\) Despite the availability of treatment guidelines,\(^11–13\) clear guidance on which treatment strategy is best for the individual patient is not yet available. A viable option for clinical management could be the combination of different treatment options to target various facets of this symptom simultaneously. However, studies on the efficacy of combining clinical interventions are scarce.\(^14,15\)

The primary objective of the current trial was to compare the effect of single against combination treatments for patients with chronic tinnitus. Four established treatment strategies were selected: cognitive-behavioral therapy (CBT), hearing aids (HA), structured counseling (SC), and sound therapy (ST).\(^16\) Participants were randomized either to a single treatment out of this set of treatments or to a combination of two treatments. Further, we attempt to overcome methodological weaknesses\(^17,18\) of previous trials by investigating a large multinational sample of tinnitus patients, using harmonized patient selection and screening procedures as well as standardized interventions and assessments.
Methods

Trial oversight

This was an investigator-initiated, international, multicenter, parallel-arm, superiority, randomized controlled clinical trial conducted in five centers across Europe as part of the UNITI project (Unification of Treatments and Interventions for Tinnitus Patients)\(^\text{19}\). Included patients received treatment between April 2021 and December 2022. Detailed information about the trial rationale, design, methodological approaches, and statistical analysis strategies are published in the study protocol and statistical analysis plan (SAP)\(^\text{20,21}\). The study was approved by local ethics committees at every clinical site independently. Further, all authors vouch for the completeness and correctness of the data, adherence of the trial to the study protocol,\(^\text{20}\) as well as adherence of data analysis strategies to the SAP\(^\text{21}\). A detailed list of author contributions can be found in the Supplementary Appendix. Written informed consent was obtained from all eligible patients prior to trial participation.

Participants

Adults of both sexes aged between 18 and 80 years with chronic subjective tinnitus (lasting for six months or more) were recruited and screened at each clinical site. Inclusion criteria for trial participation were at least mild tinnitus distress according to the Tinnitus Handicap Inventory\(^\text{22}\) (THI; score ≥ 18) and tinnitus as primary complaint. Exclusion criteria were: presence of a mild cognitive impairment according to the Montreal Cognitive Assessment\(^\text{23}\) (MoCa; score ≤ 22); any relevant ear disorders or acute infections of the ear; one deaf ear; severe hearing loss (inability to communicate properly) as well as serious internal, neurological or psychiatric conditions. Existing drug therapies with psychoactive substances had to be stable, and no start of any other tinnitus-related treatment in the last three months before trial participation was allowed. A detailed list of all eligibility criteria can be found in the trial protocol\(^\text{20}\).
Trial design and procedures

The trial was conducted at five different clinical sites across four European countries (see Table S1 in the Supplementary Appendix). After successful on-site screening, eligible participants were stratified in four equally sized strata based on their THI total score (low (< 48) and high (≥ 48) tinnitus distress) and hearing aid indication (yes and no, criteria for hearing aid indication: Table S2). Participants were randomized to one of ten treatment arms comprised of single (CBT, HA, SC, ST) and combination interventions (CBT+HA, CBT+SC, CBT+ST, HA+SC, HA+ST, SC+ST). Patients from the two strata without hearing aid indication were not randomized in treatment groups that comprised HA treatment; see study protocol for more detailed information. Single and combination treatments were applied over a 12-week treatment phase.

CBT was based on the concept of fear-avoidance using exposure therapy and delivered by trained psychologists or psychotherapists in weekly face-to-face group sessions (1.5-2 hours; group size: six to eight participants).

For HA treatment, behind-the-ear hearing instruments (Type Signia Pure 312 7X; Sivantos Pte. Ltd., Singapore, Republic of Singapore/ WSAudiology, Lynge, Denmark) were fitted bilaterally with all noise-related signal processing deactivated by audiologists or HA acousticians according to the National Acoustic Laboratories-Non-Linear 2 generic amplification proceeding.

SC and ST were self-administered on a daily basis via dedicated mobile applications. SC consisted of 12 chapters featuring structured patient education and tips on how to handle tinnitus distress. ST included a set of various artificial and naturalistic sounds. All treatment procedures were designed by dedicated experts in their respective fields (see Table S3) and described in detail in the study protocol.

Demographic and clinical characteristics were assessed at baseline (before treatment) using the European School of Interdisciplinary Tinnitus Research Screening Questionnaire (ESIT-SQ).
Outcome measures were assessed at baseline, interim (after 6 weeks of treatment), treatment end (after 12-week treatment period), and follow-up (36 weeks after baseline) visits.

Outcomes

The primary outcome was the difference in change from baseline to treatment end in the Tinnitus Handicap Inventory (THI), which consists of 25 items to quantify the impact of tinnitus on daily life (total scores range: 0-100), between single and combination treatment. Changes from baseline to interim visit, and follow-up were examined in secondary analyses as well. Secondary outcome measures included the Tinnitus Functional Index (TFI), the Mini Tinnitus Questionnaire (Mini-TQ), the Patient Health Questionnaire for Depression (PHQ-D/PHQ-9), the abbreviated version of the World Health Organization - Quality of Life questionnaire (WHO-QoL) as well as numeric rating scales (NRS) for tinnitus impairment, tinnitus loudness, tinnitus-related discomfort, annoyance, unpleasantness and ability to ignore the tinnitus. Clinical improvement was measured with the Clinical Global Impression Scale – Improvement (CGI-I).

Safety

Adverse (AE) and serious adverse events (SAE) were defined according to the guidelines for Good Clinical Practice §3 (6,8). AEs were assessed and recorded during each visit with respect to start and end date, intensity, relation to intervention, impact on treatment, and actions taken. Any SAE during the 12-week treatment phase led to a stop of the patient’s respective treatment and was immediately reported to the local ethics committee.

Statistical Analysis

The statistical analysis was performed in the intention-to-treat (ITT) population of N = 461, including all randomized participants, regardless of compliance with the study protocol. For the
ITT analysis, missing values (THI: 18%, education: 3.5%, PHQ-9 baseline: 2.6%) were imputed using multilevel imputation under a missing-at-random assumption (R package mitml)\(^{35,36}\); see **Figure S2** for the distribution of imputed THI values. Sensitivity analyses for the primary outcome were performed without imputation of the primary outcome. In addition, a per-protocol analysis was conducted on all patients who met the requirements for treatment compliance as defined in the SAP (N = 185).\(^{37}\)

The analysis of the primary objective was performed in the ITT population to test the clinical efficacy of combination treatments against single treatments. Further comparisons between single versus combination treatments for all 4 single treatments separately (CBT single vs. combined, HA single vs. combined, SC single vs. combined, ST single vs. combined) as well as comparisons between all 10 treatment arms were performed.\(^{20,37}\) To address all objectives, mixed effect models were applied (with REML using the lme4 R package)\(^38\) by considering the outcome as the response variable and including the corresponding objective, time point (baseline, interim visit, final visit, and follow-up), and objective-by-time interaction as fixed effects, including center and subject ID as random intercepts. The models were adjusted for the following covariates: age, sex, educational attainment, hearing aid indication, and PHQ-9 baseline scores.\(^{37}\) The results of the remaining objectives as described in the SAP are reported in the Supplementary Appendix.

Results are reported as least-squares mean changes (obtained via the emmeans R package)\(^39\) with 95% confidence intervals.
Figure 1. Enrollment, Randomization, and Follow-up of Participants.

A total of 674 patients were screened, of whom 461 met the trial inclusion criteria and were randomly assigned to one of ten treatment arms comprised of a single treatment or a combination of two treatments out of four different therapy approaches - cognitive-behavioral therapy (CBT), hearing aids (HA), structured counseling (SC), and sound therapy (ST). 230 (49.9%) were assigned to single treatments (CBT, HA, SC, or ST) and 231 (50.1%) were assigned to combination treatments (CBT+HA, CBT+SC, CBT+ST, HA+SC, HA+ST, SC+ST). Patients without hearing aid indication were only randomized to treatments without HA. An extended version of the patient’s flowchart can be found in Figure S1. Quantity and reasons for trial exclusion during eligibility assessments and trial discontinuation can be seen from Tables S5 – S9.
Results

Participants

A total of 674 persons with tinnitus were screened, 461 persons were included, underwent randomization, and received either a single treatment or a combination of two treatments for 12 weeks (Figure 1).

Mean baseline THI total scores were 48.5±19.5 in the single treatment group and 47.4±19.9 in the combined treatment group. Demographic and clinical characteristics of the participants did not statistically differ across treatment arms at baseline except for age and hearing aid indication (see Table 1 and Table S10). Both age and hearing aid indication were considered as covariates during statistical analyses. The difference in hearing aid indication results from randomizing only individuals with relevant hearing loss to HA treatment arms. Results of audiometric measurements are shown in Figure S3 and S4.

Participants’ baseline characteristics were similar to the group of persons with tinnitus seeking medical help in the general population (Table S4).

For the primary analysis (combination against single treatments), we estimated that with a two-tailed alpha level of less than 0.05, the sample size of N = 461 provides the trial with 90% power to detect an effect size of 0.30 (lower end of 95% CI for effect size of behavioral therapy interventions according to the latest Cochrane Review on tinnitus).40
Table 1. Demographic and clinical characteristics of the participants at baseline (stratified by treatment arm).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>CBT (N = 56)</th>
<th>HA (N = 59)</th>
<th>SC (N = 56)</th>
<th>ST (N = 59)</th>
<th>CBT+HA (N = 17)</th>
<th>CBT+SC (N = 51)</th>
<th>CBT+ST (N = 54)</th>
<th>HA+SC (N = 19)</th>
<th>HA+ST (N = 27)</th>
<th>SC+ST (N = 63)</th>
<th>Overall (N = 461)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic characteristics</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Male (%)</td>
<td>Female (%)</td>
<td>Age — yr</td>
<td>PHQ-9 total score</td>
<td>Tinnitus duration</td>
<td>Hearing aid indication</td>
<td>THI total score</td>
<td>TFI total score</td>
<td>Mini-TQ total score</td>
<td>Tinnitus loudness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34 (60.7)</td>
<td>22 (39.3)</td>
<td>48.8 ±12.3</td>
<td>7.3 ±4.9</td>
<td>119 ±127</td>
<td>19 (33.9)</td>
<td>47.8 ±20.3</td>
<td>47.8 ±21.4</td>
<td>11.4 ±5.2</td>
<td>6.2 ±2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39 (69.6)</td>
<td>17 (30.4)</td>
<td>53.4 ±11.7</td>
<td>7.3 ±4.8</td>
<td>126 ±100</td>
<td>59 (100)</td>
<td>48.8 ±19.2</td>
<td>50.6 ±21.4</td>
<td>12.2 ±4.6</td>
<td>6.7 ±1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 (54.2)</td>
<td>27 (45.8)</td>
<td>49.8 ±13.1</td>
<td>7.2 ±4.5</td>
<td>85 ±77</td>
<td>19 (33.9)</td>
<td>48.6 ±20.6</td>
<td>48.5 ±20.7</td>
<td>11.8 ±5.4</td>
<td>6.4 ±2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 (70.6)</td>
<td>5 (29.4)</td>
<td>50.3 ±14.0</td>
<td>8.5 ±5.2</td>
<td>115 ±114</td>
<td>20 (33.9)</td>
<td>48.7 ±18.1</td>
<td>50.9 ±20.7</td>
<td>12.5 ±5.0</td>
<td>6.3 ±2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 (52.9)</td>
<td>24 (47.1)</td>
<td>56.0 ±10.4</td>
<td>5.8 ±4.6</td>
<td>101 ±111</td>
<td>17 (100)</td>
<td>42.2 ±18.9</td>
<td>46.1 ±18.1</td>
<td>10.7 ±4.0</td>
<td>6.3 ±2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33 (61.1)</td>
<td>21 (38.9)</td>
<td>54.0 ±12.0</td>
<td>6.8 ±4.3</td>
<td>154 ±140</td>
<td>18 (35.3)</td>
<td>45.5 ±18.9</td>
<td>42.9 ±18.9</td>
<td>11.2 ±5.0</td>
<td>6.0 ±2.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 (63.2)</td>
<td>7 (36.8)</td>
<td>46.4 ±12.9</td>
<td>7.9 ±5.0</td>
<td>159 ±99</td>
<td>17 (31.5)</td>
<td>48.0 ±19.3</td>
<td>47.4 ±22.7</td>
<td>12.3 ±5.2</td>
<td>6.2 ±2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 (66.7)</td>
<td>9 (33.3)</td>
<td>51.6 ±14.0</td>
<td>6.8 ±3.2</td>
<td>159 ±144</td>
<td>19 (100)</td>
<td>52.2 ±21.9</td>
<td>51.7 ±21.3</td>
<td>11.9 ±5.2</td>
<td>7.2 ±2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 (44.4)</td>
<td>35 (55.6)</td>
<td>55.0 ±14.0</td>
<td>7.0 ±5.6</td>
<td>124 ±108</td>
<td>27 (100)</td>
<td>50.1 ±20.1</td>
<td>54.5 ±21.4</td>
<td>12.0 ±5.2</td>
<td>6.4 ±2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>271 (58.8)</td>
<td>190 (41.2)</td>
<td>51.2 ±12.4</td>
<td>7.3 ±5.5</td>
<td>119 ±116</td>
<td>19 (30.2)</td>
<td>47.2 ±20.9</td>
<td>48.1 ±20.3</td>
<td>11.9 ±5.0</td>
<td>6.4 ±2.2</td>
<td></td>
</tr>
</tbody>
</table>

Sex: Male (%) 34 (60.7), Female (%) 22 (39.3)
Age: 48.8 ±12.3 yr, 53.4 ±11.7 yr
PHQ-9 total score: 7.3 ±4.9, 7.3 ±4.8
Tinnitus duration: 119 ±127, 126 ±100
Hearing aid indication: 19 (33.9), 59 (100)
THI total score: 47.8 ±20.3, 48.8 ±19.2
TFI total score: 47.8 ±21.4, 50.6 ±21.8
Mini-TQ total score: 11.4 ±5.2, 12.2 ±4.6
Tinnitus loudness (rating): 6.2 ±2.1, 6.7 ±1.7
Table 1. Demographic and Clinical Characteristics of the Participants at Baseline.
Plus–minus values are means ± SD.
PHQ-9 scores range from 0 to 27, with higher scores indicating greater severity of depression. The definition for hearing aid indication is given in Table S2.
THI scores range from 0 to 100, with higher scores indicating greater severity of tinnitus.
TFI scores range from 0 to 100, with higher scores indicating greater severity of tinnitus.
Mini-TQ scores range from 0 to 24, with higher scores indicating greater severity of tinnitus.
Tinnitus loudness (rating) scores range from 0 to 10, with higher scores indicating greater loudness of tinnitus.

Primary outcome
Regarding the primary objective, the least-squares mean change from baseline to week 12 in the THI total score was -11.7 (95% confidence interval [CI], -14.4 to -9.0) for the single treatment groups and -14.9 (95% CI, -17.7 to -12.1) for the combination treatment arms (see Figure 2 & Table 2) (interaction effect [single vs. combination treatments at final visit vs. baseline] $\beta = 3.2$, 95% CI, 0.2 to 6.1, $p = 0.034$). Model parameters and model assumptions for the primary objective can be found in Table S12 and Figure S5.
The least-squares mean change from baseline to week 12 in the THI total score for the single vs. combination treatment comparison for each treatment strategy is reported in Table 2, and separately for every treatment arm in Table 3 and Figure S6; and further separated by hearing aid indication in Table S13 and tinnitus severity in Table S14.
Pairwise post-hoc contrasts for the THI least-squares mean change revealed significant (Bonferroni adjusted) differences between ST and CBT, ST and CBT+SC, ST and CBT+ST, ST and HA, and ST and HA+SC. For all other treatment contrasts, no significant differences were found (all p-values > 0.050). Statistical parameters for all post-hoc contrasts are listed in Table S15.
The results of the remaining objectives (as outlined in the SAP) and time points (interim visit and follow up) are reported in Tables S16 – S18.

Figure 2 shows least-squares mean changes from baseline to interim visit at week 6, final visit at week 12, and follow-up at week 36 for both the overall and individual single-combination
treatment comparison. The intention-to-treat and the sensitivity analysis yielded similar results (Table S34). Per-protocol findings were different for the overall single vs. combination contrast (no statistical superiority of combination treatment; $\beta = 2.8$, 95% CI, -1.6 to 7.2, $p = 0.206$) (Figure S11, Tables S32 – S33).

Secondary and exploratory outcomes

Least-squares mean change from baseline to week 12 for the secondary outcomes TFI, Mini-TQ, PHQ-9, WHO-QoL, and NRS (all objectives) are shown in Tables 2 and 3 as well as Tables S19 – S31. Results of CGI-I are reported descriptively for single and combination treatment groups at final visit, see Figure S7 & S8, and separated by hearing aid indication (Figure S9) and tinnitus severity (Figure S10). Exploratory analysis included the effect size estimates Cohen’s d for all treatment arms which are shown in Table 3 and Figure 2.

Safety and treatment adherence

No serious adverse event was evident in any participant. Adverse events appeared in 49 participants in single treatment groups, and in 49 participants in combination treatment groups. A full listing of all adverse events is provided in Table S11. Information on treatment adherence is given in Figure S1.
Figure 2. Least-Squares Mean Changes from Baseline to interim visit (6w), final visit (12w) and follow-up (36w) in THI total score. A) single and combination treatments; C) CBT+HA; D) CBT+SC; E) CBT+ST; F) HA+SC; G) HA+ST; H) SC+ST; and B) Cohen’s d values for all treatment arms (change in THI total score from baseline to final visit). Total THI scores range from 0 to 100, with higher scores indicating greater severity of tinnitus. Error bars represent 95% confidence intervals.
Table 2. Primary and Secondary Clinical Outcomes at Final Visit: Single vs. Combination (Intention-to-Treat Population).

<table>
<thead>
<tr>
<th>Outcome</th>
<th>All treatments</th>
<th>Cognitive Behavioral Therapy</th>
<th>Hearing Aid</th>
<th>Structured Counseling</th>
<th>Sound Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>Combination</td>
<td>Single</td>
<td>Combination</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single</td>
<td>Combination</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single</td>
<td>Combination</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single</td>
<td>Combination</td>
<td></td>
</tr>
<tr>
<td>Primary outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td>-11.7</td>
<td>-14.9</td>
<td>-16.9</td>
<td>-15.6</td>
<td>-14.4</td>
</tr>
<tr>
<td>Change from baseline</td>
<td>(-14.4 to -9.0)</td>
<td>(-17.7 to -12.1)</td>
<td>(-22.8 to -10.9)</td>
<td>(-19.5 to -11.7)</td>
<td>(-19.5 to -9.4)</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
<td>(-20.7 to -10.7)</td>
<td>(-17.5 to -6.5)</td>
<td>(-19.3 to -11.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-9.3 to -16.7)</td>
<td>(-9.3 to -16.7)</td>
<td>(-16.7 to -9.8)</td>
</tr>
<tr>
<td>Secondary outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFI</td>
<td>-11.0</td>
<td>-11.6</td>
<td>-16.1</td>
<td>-12.1</td>
<td>-14.5</td>
</tr>
<tr>
<td>Change from baseline</td>
<td>(-13.9 to -8.0)</td>
<td>(-14.7 to -8.5)</td>
<td>(-22.1 to -10.1)</td>
<td>(-16.3 to -7.9)</td>
<td>(-20.2 to -8.9)</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
<td>(-19.4 to -8.4)</td>
<td>(-15.5 to -3.9)</td>
<td>(-14.0 to -6.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-9.6 to -15.5)</td>
<td>(-9.6 to 2.1)</td>
<td>(-15.5 to -7.9)</td>
</tr>
<tr>
<td>Mini-TQ</td>
<td>-2.9</td>
<td>-3.4</td>
<td>-4.1</td>
<td>-3.8</td>
<td>-3.5</td>
</tr>
<tr>
<td>Change from baseline</td>
<td>(-3.6 to -2.2)</td>
<td>(-4.1 to -2.7)</td>
<td>(-5.5 to -2.6)</td>
<td>(-4.8 to -2.4)</td>
<td>(-4.7 to -1.9)</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
<td>(-4.2 to -1.9)</td>
<td>(-4.3 to -1.4)</td>
<td>(-4.3 to -2.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-2.6 to -0.2)</td>
<td>(-2.6 to 0.2)</td>
<td>(-3.9 to -2.2)</td>
</tr>
<tr>
<td>NRS-2</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-0.5</td>
<td>-0.8</td>
<td>-1.4</td>
</tr>
<tr>
<td>Change from baseline</td>
<td>(-1.2 to -0.4)</td>
<td>(-1.2 to -0.4)</td>
<td>(-1.4 to -0.3)</td>
<td>(-1.4 to -0.2)</td>
<td>(-2.2 to -0.6)</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
<td>(-1.6 to -0.1)</td>
<td>(-1.6 to 0.0)</td>
<td>(-1.2 to -0.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-1.0 to -0.5)</td>
<td>(-1.0 to 0.5)</td>
<td>(-1.3 to -0.3)</td>
</tr>
<tr>
<td>PHQ-9</td>
<td>-1.7</td>
<td>-1.4</td>
<td>-1.7</td>
<td>-1.7</td>
<td>-2.3</td>
</tr>
<tr>
<td>Change from baseline</td>
<td>(-2.3 to -1.0)</td>
<td>(-2.1 to -0.8)</td>
<td>(-3.0 to -0.3)</td>
<td>(-2.6 to -0.8)</td>
<td>(-3.5 to -1.2)</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
<td>(-3.5 to -1.2)</td>
<td>(-3.5 to -0.4)</td>
<td>(-3.1 to -0.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-2.6 to -0.4)</td>
<td>(-2.6 to -0.4)</td>
<td>(-3.1 to -0.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-3.1 to -0.5)</td>
<td>(-2.2 to 0.6)</td>
<td>(-2.2 to -0.4)</td>
</tr>
</tbody>
</table>
Higher total scores on the NRS-2 indicate greater loudness of tinnitus.
Higher total scores on the PHQ-9 indicate greater severity of depression.
Further objectives and secondary clinical outcomes not reported in this table can be seen in the Supplementary Appendix.
Table 3. Primary and Secondary Clinical Outcomes at Final Visit: All Treatment Arms (Intention-to-Treat Population).

<table>
<thead>
<tr>
<th></th>
<th>CBT</th>
<th>HA</th>
<th>SC</th>
<th>ST</th>
<th>CBT+HA</th>
<th>CBT+SC</th>
<th>CBT+ST</th>
<th>HA+SC</th>
<th>HA+ST</th>
<th>SC+ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome</td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td></td>
</tr>
<tr>
<td>Change from baseline</td>
<td>-16.9</td>
<td>-14.4</td>
<td>-12.0</td>
<td>-3.8</td>
<td>-15.2</td>
<td>-17.4</td>
<td>-14.1</td>
<td>-20.0</td>
<td>-12.9</td>
<td>-12.7</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(-22.7 to</td>
<td>(-19.7 to</td>
<td>(-17.5 to</td>
<td>(-9.2 to</td>
<td>(-26.0 to</td>
<td>(-23.8 to</td>
<td>(-19.8 to</td>
<td>(-29.3 to</td>
<td>(-20.5 to</td>
<td>(-17.8 to</td>
</tr>
<tr>
<td></td>
<td>-11.0)</td>
<td>-9.2)</td>
<td>-6.5)</td>
<td>1.5)</td>
<td>-4.4)</td>
<td>-11.0)</td>
<td>-8.4)</td>
<td>-10.8)</td>
<td>-5.3)</td>
<td>-7.5)</td>
</tr>
<tr>
<td>Cohen’s d</td>
<td></td>
</tr>
<tr>
<td>(95% CI)</td>
<td>0.93</td>
<td>1.00</td>
<td>0.83</td>
<td>0.24</td>
<td>1.13</td>
<td>1.19</td>
<td>0.80</td>
<td>1.35</td>
<td>0.78</td>
<td>0.71</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(0.70 to</td>
<td>(0.78 to</td>
<td>(0.51 to</td>
<td>(-0.02 to</td>
<td>(0.74 to</td>
<td>(0.91 to</td>
<td>(0.55 to</td>
<td>(0.98 to</td>
<td>(0.43 to</td>
<td>(0.46 to</td>
</tr>
<tr>
<td></td>
<td>1.21)</td>
<td>1.28)</td>
<td>1.27)</td>
<td>0.53)</td>
<td>1.83)</td>
<td>1.59)</td>
<td>1.12)</td>
<td>1.99)</td>
<td>1.37)</td>
<td>1.02)</td>
</tr>
<tr>
<td>Secondary Outcome</td>
<td></td>
</tr>
<tr>
<td>TFI</td>
<td></td>
</tr>
<tr>
<td>Change from baseline</td>
<td>-16.1</td>
<td>-14.5</td>
<td>-9.7</td>
<td>-3.7</td>
<td>-15.1</td>
<td>-10.9</td>
<td>-12.2</td>
<td>-10.1</td>
<td>-15.8</td>
<td>-9.4</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(-22.2 to</td>
<td>(-20.1 to</td>
<td>(-15.6 to</td>
<td>(-9.5 to</td>
<td>(-26.1 to</td>
<td>(-17.4 to</td>
<td>(-18.5 to</td>
<td>(-20.0 to</td>
<td>(-24.0 to</td>
<td>(-15.1 to</td>
</tr>
<tr>
<td></td>
<td>-10.0)</td>
<td>-8.9)</td>
<td>-3.8)</td>
<td>2.0)</td>
<td>-4.0)</td>
<td>-4.4)</td>
<td>-5.9)</td>
<td>-0.2)</td>
<td>-7.6)</td>
<td>-3.8)</td>
</tr>
<tr>
<td>Mini-TQ</td>
<td></td>
</tr>
<tr>
<td>Change from baseline</td>
<td>-4.1</td>
<td>-3.5</td>
<td>-2.9</td>
<td>-1.2</td>
<td>-4.0</td>
<td>-4.1</td>
<td>-3.6</td>
<td>-3.2</td>
<td>-2.3</td>
<td>-2.9</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(-5.5 to</td>
<td>(-4.8 to</td>
<td>(-4.3 to</td>
<td>(-2.6 to</td>
<td>(-6.7 to</td>
<td>(-5.6 to</td>
<td>(-5.0 to</td>
<td>(-5.5 to</td>
<td>(-4.3 to</td>
<td>(-4.2 to</td>
</tr>
<tr>
<td></td>
<td>-2.6)</td>
<td>-2.2)</td>
<td>-1.4)</td>
<td>0.2)</td>
<td>-1.3)</td>
<td>-2.6)</td>
<td>-2.2)</td>
<td>-0.9)</td>
<td>-0.4)</td>
<td>-1.6)</td>
</tr>
<tr>
<td>NRS-2</td>
<td></td>
</tr>
<tr>
<td>Change from baseline</td>
<td>-0.5</td>
<td>-1.4</td>
<td>-0.8</td>
<td>-0.3</td>
<td>-1.0</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-0.3</td>
<td>-1.1</td>
<td>-0.7</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(-1.4 to</td>
<td>(-2.1 to</td>
<td>(-1.6 to</td>
<td>(-1.1 to</td>
<td>(-2.5 to</td>
<td>(-1.8 to</td>
<td>(-1.5 to</td>
<td>(-1.6 to</td>
<td>(-2.2 to</td>
<td>(-1.5 to</td>
</tr>
<tr>
<td></td>
<td>0.3)</td>
<td>-0.6)</td>
<td>0.0)</td>
<td>0.5)</td>
<td>0.6)</td>
<td>0.0)</td>
<td>0.1)</td>
<td>1.1)</td>
<td>-0.1)</td>
<td>0.0)</td>
</tr>
<tr>
<td>PHQ-9</td>
<td></td>
</tr>
<tr>
<td>Change from baseline</td>
<td>-1.7</td>
<td>-2.3</td>
<td>-1.7</td>
<td>-0.9</td>
<td>-1.2</td>
<td>-1.8</td>
<td>-1.8</td>
<td>-2.0</td>
<td>-1.3</td>
<td>-0.8</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(-3.0 to</td>
<td>(-3.6 to</td>
<td>(-3.1 to</td>
<td>(-2.2 to</td>
<td>(-3.7 to</td>
<td>(-3.2 to</td>
<td>(-3.2 to</td>
<td>(-4.2 to</td>
<td>(-3.1 to</td>
<td>(-2.1 to</td>
</tr>
<tr>
<td></td>
<td>-0.3)</td>
<td>-1.1)</td>
<td>-0.4)</td>
<td>0.4)</td>
<td>1.2)</td>
<td>-0.3)</td>
<td>-0.4)</td>
<td>0.2)</td>
<td>0.6)</td>
<td>0.4)</td>
</tr>
</tbody>
</table>

Values depict least-squares mean changes at week 12 for primary and secondary outcomes with 95% confidence intervals. Higher total scores on the THI, TFI and Mini-TQ indicate greater severity of tinnitus. Higher total scores on the NRS-2 indicate greater loudness of tinnitus. Higher total scores on the PHQ-9 indicate greater severity of depression. Cohen’s d indicate the standardized effect size of the respective treatment.
The effect sizes and the corresponding confidence intervals were first computed in each of the 50 imputed data sets before they were averaged to a single value. Further objectives and secondary clinical outcomes not reported in this table can be seen in the Supplementary Appendix.
Discussion

In this first-in-kind randomized trial investigating the effects of combination treatment in chronic tinnitus, we compared the efficacy of established tinnitus treatments (CBT, HA, SC, and ST) applied either alone or as a combination of two treatments. All treatments were safe and the improvement in THI scores from baseline to week 12 was stronger for combination treatment arms. Our results suggest that the additional effect of a treatment combination depends on the efficacy of a single treatment as illustrated by pairwise post hoc comparisons of the various treatment arms. In the case of ST, a clear superiority in favor of combination treatment was present, with the combination CBT+ST being statistically more effective than single ST. Importantly, there was no significant difference between CBT alone and CBT+ST. This finding shows that combining a treatment with low efficacy (in this case ST) together with a treatment of high efficacy (in this case CBT) does not lead to a simple regression to the mean. Rather the high-efficacy treatment counterbalances the effect of the low-efficacy treatment and elevates the clinical improvement up to a level comparable to the single high-efficacy treatment. Together with the observation that ST was the treatment which demonstrated the smallest improvements in tinnitus-related handicap (significantly less than CBT, HA, CBT+SC, CBT+ST, HA+SC), the additional beneficial effect of a treatment combination appears to depend on how effective a single treatment already performs. For the single treatment arm with ST, we observed a weak effect size of 0.24 (CI, -.02 to .53) while combinations of treatments including ST yielded medium to strong effect sizes: SC+ST (Cohen’s d = 0.71, CI, .46 to 1.02), HA+ST (Cohen’s d = 0.78, CI, .43 to 1.37), and CBT+ST (Cohen’s d = 0.80. CI, .55 to 1.12), which is driven by the combination treatments of higher efficacy.

The weak clinical efficacy of sound treatment alone is in line with previous work where sound treatment was used as an active comparator. \(^{41}\) This trial shows that combining a treatment of weak clinical efficacy with a treatment of stronger clinical efficacy counterbalanced the weak effect and provokes a clinical improvement comparable to the stronger effect. On the other
hand, if a single treatment is already effective, a combination might not result in a synergistic effect.

This is the first systematic trial to investigate CBT, HA, ST, and SC within the scope of one investigation. With the present trial, we can directly put into perspective the effect size of CBT as the most established treatment in tinnitus,11–13,40 with HA, ST and SC (ST and SC provided with mobile applications) as well as their combinations as treatment options for tinnitus. The combination of HA+SC, which provided the strongest effect size in our trial, has not been investigated so far, and data about the clinical efficacy in tinnitus are not yet available.42–44

For the interpretation of the results, it should be considered that we worked with a selected set of four tinnitus treatments and combinations of two treatment types. Thus, it remains unknown, whether the combination of other treatment sets or combinations of three or more treatment types would lead to additional treatment benefits. The duration of treatment was 12 weeks in all treatment arms, as this is the typical standard treatment duration for the tested interventions. Meaningful clinical improvements were observed in most treatment arms after 6 weeks and improved further towards the final assessment after 12 weeks and remained during the follow-up period. Further, our data demonstrates low efficacy of ST as a single treatment, supporting its use as an active control condition in randomized controlled trials.46 Thus, the two treatment arms ST and CBT can be considered as reliable reference anchors for the interpretation of the results of the other 8 investigated treatment arms.

In this trial involving adults with chronic tinnitus, we found that 12 weeks of treatment with CBT, HAs, SC, or ST applied as single or in combinations of two treatments led to an amelioration in tinnitus-related distress. There was no unambiguous synergistic effect of treatment combination, rather a compensatory effect, where a more effective treatment offsets the clinical effects of a less effective treatment. In clinical situations where it is unclear which
treatment will benefit the patient, a combination of treatments might help to increase the chances of treatment success.

Funding

This clinical trial received funding from the European Union’s Horizon 2020 Research and Innovation Program (grant agreement number: 848261).

Acknowledgment

We would like to thank all patients who participated in this trial, without whom this research would not have been possible. We would like to further thank the whole consortium of the UNITI-project for their feedback and support. Moreover, we would like to thank Simon Grund for his support regarding the mitml R package.
References

unification of treatments and interventions for tinnitus patients randomized clinical trial (UNITI-RCT). Trials 2023;24(1):472.