Sex Differences in the Role of Sleep on Cognition in Older Adults

Yumiko Wiranto1,* and Amber Watts1,2

1Department of Psychology, University of Kansas, Lawrence, Kansas, United States of America
2University of Kansas, Alzheimer’s Disease Research Center, Fairway, Kansas, United States of America

* Corresponding author

Email: yumiko.wiranto@ku.edu (YW)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
SEX DIFFERENCES IN SLEEP AND COGNITION

Abstract

Advancing age is associated with decreased sleep quality and cognition. Previous work has shown differences in sleep patterns and perceptions of sleep quality between men and women. However, whether the effects of sleep quality on cognition differ between sexes in older populations remains unclear. We analyzed data from 207 cognitively intact and mildly cognitively impaired participants (89 men and 118 women) aged 60< to estimate the effects of subjective and objective measures of sleep on executive function, verbal memory, and attention using generalized additive models. Objective sleep was measured with the GT9X Link Actigraph, and subjective sleep was measured with the Pittsburgh Sleep Quality Index. We found that women showed optimal executive function with up to about 400 minutes of total sleep time, followed by a decline in performance ($p = 0.01$). Additionally, a longer total sleep time contributed to lower verbal memory in a linear manner ($p = 0.043$). In men, there was a marginally significant improvement in executive function with higher sleep efficiency ($p = 0.05$). Higher self-reported sleep complaints were associated with poorer executive function in cognitively intact women ($p = 0.024$). Our findings suggest that the effects of sleep quality on cognitive performance differ between older men and women. Furthermore, executive function seems to be the cognitive domain that was most closely related to objective and subjective sleep. This study indicates that interventions focusing on sleep to mitigate the risk of cognitive impairment in older adults may need to be sex-specific.

Keywords: sleep, cognition, aging, sex differences, actigraphy
Introduction

The impact of aging on sleep and cognition is well documented in the literature. Aging has been associated with fragmented sleep and decreased sleep quality, which could exacerbate cognitive decline that occurs with aging [1]. However, the literature on sex differences in sleep and its interaction with cognition in older adults is still limited. Women experience dramatic hormonal and physiologic developmental changes (puberty, pregnancy, and menopause) across the lifespan that contribute to alterations in sleep patterns and a higher number of reported sleep complaints [2]. Moreover, women have twice the risk of developing Alzheimer’s disease (AD), for which poor sleep is a risk factor [3,4]. Understanding how men and women differ in their sleep health and the implications of these differences on cognition is vital for designing effective interventions and prevention strategies for AD.

Sleep and Aging

Advancing age is associated with physiological changes, among which are the alterations of sleep architecture (i.e., stages of sleep) and circadian rhythm. Older adults have a shorter duration of deep sleep (i.e., slow wave and rapid eye movement sleep) and more frequent awakenings during the night [5,6]. Additionally, they tend to go to bed earlier in the evening and wake up earlier in the morning. These changes contribute to the high prevalence of sleep disturbances experienced by this population. Previous studies reported that up to 75% of older adults experienced sleep difficulty [7–9]. In addition to sleep issues, increasing age is associated with the accumulation of beta-amyloid, a protein that is strongly implicated in cognitive decline and AD [10,11]. Because one of the roles of sleep is to clear out neurotoxic waste products produced during the day, poor sleep has been found to exacerbate beta-amyloid deposition and cognitive aging [12].
The investigation of the interrelationships between aging, sleep, and cognition has been relatively limited in the existing literature. Moreover, the results from these studies have been inconclusive. In cognitively healthy older adults, both short (< 6 hours) and long (> 9 hours) sleep durations have been linked to reduced global cognition and memory [12,13]. However, Sabeti et al. [14] observed this association solely in cognitively impaired older adults. In a two-year longitudinal study, it was found that older women who slept for only four hours exhibited a more significant cognitive decline compared to those who slept for seven hours. Notably, individuals who slept for nine hours did not experience any cognitive decline during the same period [15]. Conversely, Faubel et al. [16] indicated that older adults who slept for 11 hours demonstrated lower cognitive performance compared to those who slept for seven hours. In addition to global cognition and memory, sleep disturbances have been reported to impact other cognitive domains, including attention and executive function, in older populations. Specifically, Blackwell et al. [17] and Wilckens et al. [18] revealed a negative correlation between frequent nighttime awakenings and performance on executive function and attention. However, Wilckens et al. [18] did not find a significant association between sleep duration and cognitive performance in their study.

Sex Differences in Sleep

Biological sex is another major factor that influences sleep. Research investigating sex differences in subjective sleep quality suggests that middle-aged and older women take longer to fall asleep, have shorter sleep duration, and have lower sleep efficiency [19,20]. However, this result is contradicted by studies looking at objective sleep quality between older men and women using actigraphy and polysomnography (PSG). A meta-analysis including studies on sleep characteristics across three countries reported that older women had longer sleep duration and
higher sleep efficiency based on actigraphy data [21]. Studies using PSG show that reduced slow-wave sleep due to age is more pronounced in men than women [22,23]. The variation between subjective and objective sleep quality may be attributed to sex-related differences in sleep perception and symptom reporting. Recent research suggests a stronger link between objective and subjective sleep quality in women compared to men [24,25], potentially indicating that women have a more accurate perception of their sleep quality. Additionally, it raises questions about whether the current criteria for defining good objective sleep quality apply equally to both sexes, suggesting a need for distinct criteria for women [26,27].

Regarding the cognitive implications of poor sleep, limited research has been conducted to investigate sex differences in this topic. Notably, it has been observed that sleep deprivation affects working memory to a greater extent in young women compared to men [28,29]. However, whether the same findings apply to older populations is still not well understood. This lack of research leaves an important gap in our understanding of how sleep impacts cognitive function across the lifespan. Some possible mechanistic explanations for sex differences in this relationship include depletion in sex steroids (estradiol) due to menopause that could adversely affect cognition, specifically memory processing [30]. Moreover, since sleep is known to influence memory performance, the connection between reduced estradiol levels due to menopause and memory might be further intensified by poor sleep.

Objective

The present study investigated sex differences in the relationship between sleep quality and cognitive performance among older individuals. We assessed sleep quality using subjective (self-report) and objective (actigraphy) measures including total sleep time and sleep efficiency.
We hypothesized that sleep quality would be more significantly associated with cognitive performance in older women than it would in older men.

Materials and Methods

Participants

Participants were recruited from the University of Kansas Alzheimer's Disease Research Center (KU-ADRC) Clinical Cohort, an ongoing longitudinal observational study to support regional and national research on aging, cognition, and AD. This study collects demographic, medical, psychological, and cognitive data annually, and imaging and biospecimen data as needed if participants opt in. In the second year of participation (the first follow-up visit), participants could opt to partake in the Physical Activity and Sleep Study (PASS), a sub-study of the Clinical Cohort initiated on July 29, 2015, that was repeated once every two years until May 27, 2021. To be eligible for the Clinical Cohort study, participants had to be at least 60 years old, native English speakers, and not exhibit the following conditions: significant depressive symptoms, untreated thyroid dysfunction, visual or auditory impairment, active (< 2 years) ischemic heart disease, and uncontrolled insulin-dependent diabetes mellitus.

In the current analysis, we included 207 participants with normal cognition or mild impairment as indicated by clinical dementia rating (CDR) scores of 0 and >0, respectively. Among these participants, 161 exhibited normal cognitive function, while 46 had mild cognitive impairment with a CDR of 1. The research was approved by the KU-ADRC's Institutional Review Board, and all participants provided written informed consent separately for both the KU-ADRC Clinical Cohort and the PASS study.

Sleep Quality Measures
Actigraphy

ActiGraph GT9X Link accelerometers (Pensacola, FL) are body-worn monitors that measure objective sleep patterns. Our study used placement on the non-dominant wrist to estimate sleep parameters. The GT9X devices were programmed to collect data at a sample rate of 30 Hz. ActiLife software version 6.13.2 or 6.13.4 (ActiGraph, LLC) was used to process and analyze the raw actigraphy data using the Cole-Kripke algorithm [31]. Wear time was measured using the Choi algorithm, and a valid wear time included a minimum of ten hours per day, at least one weekend day, and a minimum of four days [32].

We included sleep efficiency (SE) and total sleep time (TST) in this analysis due to the prevalent occurrence of sleep disturbances and variations in sleep duration among older adults. SE refers to the percentage of total time spent asleep during the total time in bed (Time asleep / Time in Bed). TST refers to the time spent asleep in bed (in minutes). TST was calculated by subtracting duration to fall asleep and awakenings from the total amount of time in bed (in minutes; Out of Bed Time – In Bed Time). A higher TST means a longer sleep duration.

The Pittsburgh Sleep Quality Index

The Pittsburgh Sleep Quality Index (PSQI) is a self-report questionnaire consisting of 10 items measuring sleep quality over the past month. The overall score of the PSQI ranges from 0 (“good sleep quality”) to 21 (“poor sleep quality”). The PSQI is a reliable measure to distinguish between good and poor sleepers (PSQI > 5) with a sensitivity of 89.6% and a specificity of 86.5% [33]. It is also valid to use for clinical and research purposes.

Cognitive Performance

As part of the Clinical Cohort study annual evaluation, participants completed a cognitive test battery, specifically the National Alzheimer’s Coordinating Center (NACC) Uniform Data
Set (UDS), and several additional tests. The UDS was designed to measure cognitive performance in mild cognitive impairment or dementia due to AD by the Alzheimer’s Disease Centers Clinical Task Force established by the National Institute on Aging. The subtests included in the present analyses were the Wechsler Adult Intelligence Scales-Revised (WAIS-R; Digit Symbol Substitution Test) [34], two subtests from the Wechsler Memory Scales-Revised (WMS-R; Letter Number Sequencing and Digit Span Forward and Backward) [35], the Stroop Test (interference condition) [36], the Craft Story 21 Immediate and Delayed recall [37], the Free and Cued Selective Reminding Test [38], two tests of semantic verbal fluency (animal and vegetable naming) [39], and Trail Making Test B [40]. The administration procedures of the subtests are described in their respective references.

The present study used cognitive factor scores derived from a confirmatory factor analysis. This approach reduces type I error resulting from multiple testing and improves measurement accuracy by combining common variance across multiple subtests while accounting for measurement error. The details of this analysis can be found elsewhere [41]. The result yielded three factors: verbal memory (immediate and delayed logical memory, selective reminding test trials sum), attention (digits forward, digits backward, letter-number sequencing), and executive function (category fluency sum of animals and vegetables, Stroop color word interference, Trail Making Test B, and digit symbol substitution test).

Statistical Analysis

We implemented generalized additive models (GAMs) with the mgcv package in R to analyze the relationship between sleep and each cognitive domain (executive function, verbal memory, and attention). Because previous studies have suggested that men and women have different sleep patterns and perceptions of sleep quality, we chose to perform the analyses...
SEX DIFFERENCES IN SLEEP AND COGNITION

separately for men and women to allow for clearer interpretations. We selected GAMs because
previous research has shown that sleep and cognition were non-linearly correlated in older adults
[42]. GAMs are suitable for accounting for non-parametric and non-linear relationships. The
spline fitting, a method to find the best fit of the data points, was estimated using Restricted
Maximum Likelihood (REML). REML is particularly adept at reducing bias in the estimation of
variance components. It adjusts for the degrees of freedom used by the fixed effects, allowing for
more accurate and less biased estimates of the random effects variance. There was 16.4% (n =
34) of missing data in the PSQI variable and was imputed with multiple imputation chained
equation with the mice package in R. The imputation was performed by dividing the dataset into
two: cognitively healthy and cognitively impaired groups. This was done because previous
research has shown that cognitively impaired older adults have skewed awareness resulting in
inaccurate self-reporting [43]. Other variables, such as age, years of education, and CDR, that
affect cognitive performance were added as covariates.

Cognition ~ s(total sleep time) + s(sleep efficiency) + s(PSQI, by=CDR) +
Age + Education + CDR

Results

The summary of participants’ demographics is presented in Table 1. Most participants
were White (93.70%), educated (16.4 years), and cognitively normal (i.e., CDR = 0) (77.78%).
Our results revealed that women outperformed men in verbal memory (β = 0.330, p = 0.029)
accounting for age, educational level, and CDR score. Consistent with previous findings, women
reported more sleep problems (β = 0.995, p = 0.010) on the PSQI after adjusting for age and
CDR score. We did not find significant differences in sleep duration and sleep efficiency
between older men and women as measured by the actigraphy.
Table 1. Descriptive Statistics on Demographics, Sleep, and Cognitive Performance

<table>
<thead>
<tr>
<th>Participants characteristics</th>
<th>Men (n = 89)</th>
<th>Women (n = 118)</th>
<th>Total (N= 207)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>76.1 6.9</td>
<td>74 6.6</td>
<td>74.9 6.8</td>
</tr>
<tr>
<td>Education (years)</td>
<td>16.7 2.8</td>
<td>16.1 3</td>
<td>16.4 2.9</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>86 96.6</td>
<td>108 91.5</td>
<td>194 93.7</td>
</tr>
<tr>
<td>African American</td>
<td>2 2.3</td>
<td>8 6.8</td>
<td>10 4.8</td>
</tr>
<tr>
<td>Asian</td>
<td>1 1.1</td>
<td>2 1.7</td>
<td>3 1.5</td>
</tr>
<tr>
<td>CDR = 0</td>
<td>63 70.8</td>
<td>98 83.1</td>
<td>161 77.78</td>
</tr>
<tr>
<td>TST (minutes)</td>
<td>409.7 68.3</td>
<td>419.8 60.4</td>
<td>415.5 64</td>
</tr>
<tr>
<td>PSQI</td>
<td>5.8 * 2.5</td>
<td>6.8 * 2.9</td>
<td>6.4 2.7</td>
</tr>
<tr>
<td>SE (%)</td>
<td>85.4 7</td>
<td>86.6 6</td>
<td>86.1 6.4</td>
</tr>
<tr>
<td>Verbal Memory</td>
<td>0.4 * 1.3</td>
<td>0.9 * 1.2</td>
<td>0.7 1.3</td>
</tr>
<tr>
<td>Executive Function</td>
<td>0.1 0.4</td>
<td>0.4 0.8</td>
<td>0.3 0.8</td>
</tr>
<tr>
<td>Attention</td>
<td>0.1 0.4</td>
<td>0.2 0.4</td>
<td>0.2 0.4</td>
</tr>
</tbody>
</table>

CDR = Clinical Dementia Rating. TST = total sleep time. PSQI = Pittsburgh Sleep Quality Index. SE = sleep efficiency. M = mean. SD = standard deviation.

* Differences between men and women, p < 0.05

Sleep and Cognitive Function

The General Additive Models (GAMs) revealed significant correlations between sleep parameters and cognitive function in older adults, after accounting for age, education, and CDR score. In older women, total sleep time (TST) showed a non-linear association with executive function (edf = 2.178, p = 0.01; Table 2). This relationship demonstrated stable executive function performance up to a TST of 400 minutes, beyond which a decrease in executive function was observed (Fig 1). Additionally, TST presented a negative linear connection with verbal memory (edf = 1.0, p = 0.043) and attention (edf = 1.0, p = 0.078) as shown in Figs 2 and 3. This indicated that TST contributed to lower performance, although the relationship was not significant in the case of attention. Contrarily, for older men, TST did not significantly influence
cognitive performance across the three domains: executive function (edf = 3.233; \(p = 0.167 \); Fig 4), verbal memory (edf = 1.885; \(p = 0.296 \); Fig 5), and attention (edf = 1.001; \(p = 0.789 \); Fig 6).

Table 2. Generalized Additive Models of the Relationship Between Sleep Quality (Total Sleep Time, Sleep Efficiency, and PSQI) and Cognitive Performance (Executive Function, Verbal Memory, and Attention)

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Executive Function</th>
<th>Verbal Memory</th>
<th>Attention</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Women</td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td>Spline fit</td>
<td>EDF</td>
<td>EDF</td>
<td>EDF</td>
</tr>
<tr>
<td>TST</td>
<td>2.178**</td>
<td>1.000</td>
<td>1.000*</td>
</tr>
<tr>
<td>SE</td>
<td>1.872</td>
<td>1.000*</td>
<td>1.000</td>
</tr>
<tr>
<td>PSQI (CDR =0)</td>
<td>1.000*</td>
<td>1.000</td>
<td>2.4</td>
</tr>
<tr>
<td>PSQI (CDR =1)</td>
<td>1.450</td>
<td>2.178***</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Covariate Estimate Estimate Estimate Estimate Estimate Estimate
Age -0.021** -0.031** -0.062*** -0.034* -0.017** -0.016**
Education 0.045** 0.022 0.083** 0.004 0.019 0.015
CDR -0.936*** -1.037*** -1.152*** -1.609*** -0.308** -0.444***

Dependent variables: executive function, verbal memory, and attention. TST = total sleep time. SE = sleep efficiency. CDR = Clinical Dementia Rating. EDF = effective degrees of freedom. *\(p < 0.05 \), **\(p < 0.01 \), ***\(p < 0.001 \)

Sleep efficiency demonstrated non-linear associations with both executive function (edf = 3.233; \(p = 0.167 \)) and attention (edf = 3.233; \(p = 0.167 \)), while it was linearly related to verbal memory (edf =1.000; \(p =0.0795 \)) in older women (Figs 1-3). However, these associations did not reach statistical significance. Intriguingly, in older men, sleep efficiency positively correlated with executive function in a linear manner, a relationship that was marginally significant (edf = 1.000, \(p =0.050 \); Fig 4). The same pattern was observed between sleep efficiency and both verbal memory (edf = 1.000, \(p =0.559 \)) and attention (edf = 1.000, \(p =0.123 \)) in this group, although these relationships were not significant (Figures 5-6).

For self-report measured by the PSQI, our findings suggest that total PSQI scores showed non-linear associations with verbal memory (edf = 2.4; \(p =0.159 \)) in cognitively intact (CDR = 0) older women. This relationship was characterized by a relatively stable executive function up to a PSQI score of 8, after which a decline in performance was observed. In addition, the PSQI
had a linear negative relationship with executive function (edf = 1.000; \(p = 0.024 \)) and attention (edf = 1.000; \(p = 0.104 \); Figs 1-3). However, the relationship was only significant with executive function indicating poorer subjective sleep quality, marked by a higher PSQI score, was associated with lower performance. In men, the PSQI did not significantly correlate with cognitive performance across the three domains: executive function (edf = 1.000; \(p = 0.625 \); Fig 4), verbal memory (edf = 1.000; \(p = 0.352 \); Fig 5), and attention (edf = 1.000; \(p = 0.929 \); Fig 6).

Remarkably, among cognitively impaired participants, non-linear positive relationships emerged between PSQI scores and executive function (edf = 1.450; \(p = 0.143 \); Fig 1) and attention (edf = 1.794; \(p = 0.564 \); Fig 3) in women. The same pattern was observed in men’s executive function (edf = 2.178, \(p = 0.0002 \); Fig 4) and verbal memory (edf = 2.102, \(p = 0.002 \); Fig 5), with the notable difference that these associations were statistically significant.

Discussion

Our study examined whether objective and subjective sleep quality, as measured by actigraphy and self-report questionnaire, impact cognitive performance, specifically verbal memory, executive function, and attention, within the older adult population. Concurrently, we investigated potential sex-related disparities in this association. Our data revealed noteworthy distinctions in sleep between sexes, with women reporting more sleep-related symptoms, consistent with previous findings [20,44]. However, we did not find significant differences in total sleep time and sleep efficiency between the two sexes. Further research is needed to determine what constitutes optimal sleep for older women and men.

Based on our analysis, we found that total sleep time affected older women but not older men in executive function and memory, while attention was not affected in both sexes. The
presence of both non-linear and linear relationships across various cognitive areas suggests that sleep's influence on cognition is not uniform but rather specific to distinct cognitive domains. This implies that each aspect of cognition may have its own threshold and optimal conditions for sleep duration and quality. To elucidate the causes of these varied associations, more research is required to unravel the complexities of how different cognitive functions are differentially affected by sleep. Meanwhile, low sleep efficiency was associated with lower executive function in older men. These findings suggest that sleep duration and sleep efficiency may have different impacts on cognitive function between older women and men. Additionally, the results could indicate that sleep could have more pronounced effects on higher-order cognitive processes, such as memory and executive function [18] and less with attention that is considered a more basic cognitive process. Prior studies reported that acute sleep loss impacts different types of attention from the one focused on in our study, such as sustained attention, processing speed, and vigilance [45,46]. It is noteworthy that our study concentrated on attention more closely aligned with working memory and short-term attention span, which could contribute to different findings from previous research.

We noted that men with Mild Cognitive Impairment (MCI) who reported more sleep disturbances tended to exhibit better cognitive performance. This observation raises certain considerations. Existing research has proposed that those with cognitive impairment might have diminished self-awareness (i.e., anosognosia; [43], potentially leading to inaccuracies in their self-reports. Additionally, previous research suggests that women generally have a more accurate perception of their sleep quality, which may contribute to the sex differences we observed. This cautions against relying solely on self-report data when assessing cognitively impaired individuals and highlights the importance of obtaining collateral information from caregivers.
Another plausible explanation could be that sleep may no longer play as significant a role in cognition because these individuals may have already surpassed a critical threshold in their cognitive decline.

One main difference between our study and most studies that investigate sleep and cognition is that prior research typically induces sleep loss to investigate the effects of acute or chronic sleep loss on cognitive performance, resulting in a significant impact on memory and executive function [28,29,47], as opposed to natural observations in our study. Furthermore, the majority of our participants exhibited ideal sleep efficiency levels (around 85%). Studies that include those with sleep disorders (e.g., insomnia, sleep apnea) may yield different results and provide insights into the cognitive sequelae of clinically impaired sleep duration and efficiency.

Our study has several strengths. First, we used a comprehensive neuropsychological battery to gauge participants’ cognitive performance, opting for a more in-depth assessment rather than relying on a simple test battery (e.g., the Mini Mental State Examination), which is less sensitive to subtle cognitive impairment. Second, we included composite scores of cognitive domains generated through confirmatory factor analysis to represent each cognitive domain using multiple tests. This approach allows for better representation of each cognitive domain. Third, we employed generalized additive models to capture non-linear relationships between sleep quality and cognitive performance without imposing symmetrical curves. Moreover, GAMs have the built-in capability to determine the appropriate level of smoothness for each predictor, ensuring an optimal fit. Fourth, we objectively measured total sleep time and sleep efficiency over multiple nights allowing for a more representative result of typical sleep and compared it to self-reported measures to evaluate distinctions between the two common types of measures.
Several limitations should also be acknowledged. First, the present study is limited by the characteristics of the sample. The participants were primarily White, highly educated, relatively healthy, and motivated to engage in research leading to limited generalizability of the findings. Most of the participants in this study had relatively healthy sleep patterns. Second, our participants did not undergo comprehensive check-ups to assess for sleep disorders, which are prevalent in older adults. Third, we did not differentiate between how total sleep time and sleep efficiency might distinctly impact cognitive performance in individuals with intact cognition compared to those with mild cognitive impairment. This aspect remains unexplored in our study, highlighting an area for further research to understand the nuanced effects of different sleep parameters on cognitive functions across varying cognitive states.

Our study has yielded foundational evidence suggesting that sleep exerts differing effects on cognitive health in older women and men. It also appears that sleep may impact distinct cognitive domains. Nevertheless, we have yet to determine the optimal sleep characteristics required to maintain cognitive health in individuals of different sexes. Future research should explore the long-term effects of midlife hormonal changes on sleep and cognitive health in aging populations since this period is notable for hormonal shifts. Midlife may serve as an optimal window for intervention, as cognitive decline resulting from sleep deprivation tends to be less severe at this stage. The implications of future findings have the potential to shape public health policies and strategies for aging. Healthcare professionals should consider recommending regular sleep assessments as part of a comprehensive check-up to promote cognitive well-being in aging populations.
References

Fig 1. Partial effects of total sleep time, sleep efficiency, and Pittsburgh Sleep Quality Index (PSQI) on executive function in women.
Fig 2. Partial effects of total sleep time, sleep efficiency, and Pittsburgh Sleep Quality Index (PSQI) on verbal memory in women.
Fig 3. Partial effects of total sleep time, sleep efficiency, and Pittsburgh Sleep Quality Index (PSQI) on attention in women.
Fig 4. Partial effects of total sleep time, sleep efficiency, and Pittsburgh Sleep Quality Index (PSQI) on executive function in men.
Fig 5. Partial effects of total sleep time, sleep efficiency, and Pittsburgh Sleep Quality Index (PSQI) on verbal memory in men.
Fig 6. Partial effects of total sleep time, sleep efficiency, and Pittsburgh Sleep Quality Index (PSQI) on attention in men.