Changes in risk factor status and risk of future ASCVD events in primary prevention

In-Chang Hwang, MDa,b, Chee Hae Kim, MDc, Jae-Young Kim, MSd, Jiesuck Park, MDa, Hye Jung Choi, MDa, Hong-Mi Choi, MDa,b, Yeonyee E. Yoon, MD, PhDa,b, Goo-Yeong Cho, MD, PhDa,b

aCardiovascular Center and Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, South Korea
bDepartment of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
cVeteran Health Service Medical Center, Seoul, South Korea
dDepartment of Statistics, Soonchunhyang University Bucheon Hospital, Gyeonggi, South Korea

\textbf{Short title:} Risk factor status change and ASCVD risk

\textbf{Word count:} 778 words

\textbf{Acknowledgments:} We thank Professor Jeong-Ju Yoo, MD, PhD, for her dedication and support of this study.

\textbf{Sources of funding:} None.

\textbf{Disclosures:} None.

\textbf{Address for correspondence:}

In-Chang Hwang, MD
Associate Professor
Division of Cardiology, Department of Internal Medicine

Seoul National University Bundang Hospital

82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, South Korea

Tel.: +82-31-787-7065 / Fax: +82-31-787-4290

E-mail: inchang.hwang@gmail.com
Abstract

Primary cardiovascular prevention highlights the management of risk factors through lifestyle changes and therapeutic interventions. While most previous studies focused on the presence of risk factors assessed only at baseline, temporal changes in the risk factor status were not considered. We aimed to evaluate the prognostic impact of temporal changes in risk factor status in primary prevention settings. A population-based cohort of 211,077 individuals who underwent repetitive 10-year atherosclerotic cardiovascular disease (ASCVD) risk assessments over 4–5 years, was identified from National Health Insurance Services claims data of South Korea. Changes in risk-factor status for blood pressure, glycemic control, cholesterol levels, smoking status, body-mass index, and physical activity were assessed. Hazard ratios (HR) for ASCVD events after follow-up screening were calculated based on increased or decreased risk factors between baseline and follow-up. Regardless of baseline status, increased risk factors correlated with higher future ASCVD risk, while a decrease corresponded to a lower risk. Notably, individuals initially without risk factors but developing three at follow-up faced significantly higher ASCVD risk (adjusted HR 2.74, 95% CI: 1.31–5.76). Conversely, those decreasing three risk factors from 5 or 6 exhibited almost a 50% reduction in ASCVD risk. These findings show that primary prevention effects can be reflected by changes in risk factor status, underscoring the need to monitor temporal changes in risk factors for effective primary prevention.

Keywords: atherosclerotic cardiovascular disease; primary prevention; risk factor
Main text

In clinical practice, primary prevention focuses on the management of cardiovascular risk factors. Lifestyle changes and therapeutic interventions can modify risk factor status over time, which determines cardiovascular outcomes. However, previous studies have focused on the presence of risk factors assessed only at baseline, without consideration of temporal changes in risk factor status. Given that temporal changes in the 10-year atherosclerotic cardiovascular disease (ASCVD) risk estimates are significantly associated with the prognosis, changes in risk factor status can assess benefits from primary preventive measures. We aimed to evaluate the prognostic impact of temporal changes in risk factor status in primary prevention settings.

Data from the National Health Insurance Services Health Screening Cohort of South Korea, a nationwide claims database, were used. This study was approved by the institutional review board of Seoul National University Bundang Hospital and adhered to the principles of the Declaration of Helsinki. Among 1,108,369 individuals who participated in the screening program between 2009 and 2015, we excluded those without repeated health screenings at an interval of 4–5 years and those without sufficient data to assess changes in risk factors. Additionally, individuals with established ASCVD, malignancy, or end-stage renal disease were excluded. A total of 211,077 individuals were analyzed. The primary outcome was the occurrence of ASCVD events after follow-up screening (4–5 years after baseline screening). Changes in risk-factor status between baseline and follow-up screenings were assessed for 5 components: blood pressure (≥140/90 mmHg), glycemic control (fasting glucose of ≥130 mg/dL for diabetic patients; and the occurrence of diabetes for non-diabetic patients), low-density lipoprotein cholesterol level (≥160 mg/dL), smoking status, body-mass index (≥25 mg/kg²), and physical activity. Appropriate physical activity was defined as at least 150 min of moderate-intensity exercise or 75 min of weekly vigorous-intensity
exercise. Study population was divided based on the number of risk factors at baseline. Hazard ratios (HR) for ASCVD events occurring after the follow-up screening were calculated according to an increase or decrease in the number of risk factors, by counting the number of risk factors that changed in status between baseline and follow-up screenings. Multivariable Cox proportional hazard regression model was used, adjusting for age, sex, smoking status, presence of diabetes, total cholesterol, high-density lipoprotein cholesterol, systolic blood pressure, and treatment for hypertension. For patients with 0, 1, or 2 risk factors at baseline, the HR was calculated according to an increase in the number of risk factors, with those having minimum risk factors at follow-up serving as the reference group. For patients with 3, 4, or 5–6 risk factors at baseline, the HR was calculated according to a decrease in the number of risk factors, with those with maximum risk factors at follow-up as the reference group.

Regardless of the risk factor status at baseline, an increase in the number of risk factors resulted in a higher risk of ASCVD events, whereas a decrease in the number of risk factors resulted in a lower risk (Figure). Among individuals without any risk factors at baseline, those with 3 risk factors at follow-up had a higher risk of future ASCVD events (adjusted HR 2.74, 95% confidence interval: 1.31–5.76), compared to those with no change in risk factor status (no risk factors at both baseline and follow-up examinations). The same trend was observed among individuals with poor risk factor control at baseline. Compared to those with 5 or 6 risk factors at both baseline and follow-up examinations, individuals with a decrease of 3 risk factors had reduced risk of ASCVD events by nearly 50%.

Several limitations should be acknowledged in this study, including the reliance on a claims database within a population-based cohort framework. Despite the universal coverage of National Health Insurance Services among the Korean population and a high participation rate (~75%) in the general health screening program, our study population could be
influenced by selection bias, as we included individuals who underwent repeated healthcare examinations over an interval of 4–5 years. In addition, the impact of medications was not evaluated in our analyses.

Nevertheless, this is the first population-based cohort study focusing on the temporal changes in cardiovascular risk factor status in primary preventive setting. Our findings show that the effects of primary prevention can be reflected by changes in risk factor status. Particularly, among individuals with appropriate risk factor control at baseline, newly developed risk factors lead to a significant increase in the risk of ASCVD events. In contrast, even in individuals with poor risk factor control at baseline, appropriate risk factor control can significantly improve the prognosis. These findings highlight the importance of managing cardiovascular risk factors and provide practical evidence for the usefulness of assessing changes in risk factor status.
References

Figure Legend

Figure. Associations between changes in risk-factor status and ASCVD events.

The risk of ASCVD events is shown according to the increase (left) and decrease (right) in the number of risk factors between baseline and follow-up health screenings. ASCVD, atherosclerotic cardiovascular disease.