Is obesity in the Asia-Pacific body mass index classification associated with new-onset chronic kidney disease in non-diabetic Japanese men and women?

Authors' names and affiliations

Yukari Okawa1,2, Toshiharu Mitsuhashi3, and Toshihide Tsuda4

1Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan

2Department of Public Health and Welfare, Zentsuji City Hall, 2-1-1 Bunkyo-cho, Zentsuji City, Kagawa 765-0013, Japan

3Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan

4Department of Human Ecology, Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan

Corresponding author

Yukari Okawa

Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan

https://orcid.org/0000-0002-1704-6609

Tel. +81 86 223 7151 (ext. 7176)

Fax. +81 86 235 7178

okw3923@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Competing interests

Okawa declares a relationship with Zentsuji City that includes employment. Mitsuhashi and Tsuda declare no potential competing interests. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Abstract

Background/Objectives:

Obesity is a risk factor for the development of chronic kidney disease (CKD). However, little is known about the relationship between the Asia-Pacific body mass index classification (Asia-Pacific classification) and the subsequent development of CKD in non-diabetic Asian men and women.

Subjects/Methods:

Body mass index (BMI) was categorized in accordance with the Asia-Pacific classification: underweight (<18.5 kg/m²), normal weight (18.5–22.9 kg/m²), overweight (23.0–24.9 kg/m²), obesity class I (25.0–29.9 kg/m²), and obesity class II (≥ 30.0 kg/m²). Using administrative checkup data for non-diabetic Japanese adults (1998–2023), we assessed the relationship between the Asia-Pacific classification and new-onset CKD by sex. The Weibull accelerated failure time model was selected because the proportional hazards assumption was violated.

Results:

In total, 34.2% of 3,098 men and 34.8% of 4,391 women had newly developed CKD. The mean follow-up time was 7.41 person-years for men and 8.25 person-years for women. Compared with those of normal weight, obesity class I was associated with a 6% (95% confidence interval [CI]: 2%–10%) shorter time to CKD development in men and a 6% (95% CI: 2%–9%) shorter time to CKD development in women.
Obesity class II was associated with the shortest survival to CKD onset by point estimate in men but had an almost null value in women (i.e., 95% CIs crossed 1 in all of the models).

Conclusions:

Among non-diabetic Japanese men and women, obesity class I in the Asia-Pacific classification was associated with a shorter survival time to CKD onset than normal weight. Low point estimates for obesity class II suggested a dose-response relationship in men but a less clear relationship in women. The conventional cutoff value for obesity, BMI ≥ 30.0 kg/m2, may be too high a risk factor for new-onset CKD in non-diabetic Asians, regardless of sex.
Introduction

Worldwide, 697.5 million people have chronic kidney disease (CKD). CKD is defined as abnormalities of kidney structure or function that persist for ≥ 3 months. Generally, CKD is asymptomatic until it deteriorates irreversibly. As CKD progresses to end-stage renal failure, patients must overcome physical, psychological, and financial hardship in a context of limited treatment options, which include dialysis and kidney transplantation. Moreover, CKD increases the risk of a variety of outcomes including death, cardiovascular events, and hospitalization. Therefore, preventing the development of CKD is important.

Reported risk factors for the development of CKD include male sex, obesity, diabetes, high sodium intake, and low physical activity. Diabetes in particular is a major cause of CKD because the hyperglycemia caused by diabetes damages renal vessels over time. Therefore, many cohort studies that have examined the relationship between various exposures and the development of CKD have treated glycemic control status (e.g., fasting blood sugar levels, prevalent diabetes) as a confounding factor that is adjusted to reduce bias. Therefore, studies have assessed the risk factors above for the development of CKD in a non-diabetic population, in which diabetes-induced bias does not exist.

Obesity is a risk factor for developing CKD. A previous meta-analysis in which the results of 13 cohort studies were combined reported that the risk of an individual with obesity developing CKD was 1.28 times greater (95% confidence interval [CI]: 1.07–1.54) than that of a person of normal weight; however, no clear association was observed in individuals with overweight. These studies used multiple definitions of obesity and CKD, included participants with and without diabetes from multiple ethnic groups, and did not show sex-specific results. Therefore, studies that include sex-stratified, mono-ethnic, and non-diabetic participants are needed to more accurately evaluate the relationship between obesity and new-onset CKD.

A previous cohort study of non-diabetic Japanese men and women examined whether a dose-response relationship exists between body mass index (BMI) and the development of CKD. The study categorized BMI into seven groups (< 18.5, 18.5–20.9, 21.0–22.9 [reference], 23.0–24.9, 25.0–26.9, 27.0–29.9, and ≥ 30.0 kg/m²) and reported that individuals in the BMI categories ≥ 23.0 kg/m² for men and ≥ 27 kg/m² for women were at an elevated risk of developing CKD compared with the reference group. This suggests that even in a non-diabetic Asian population, elevated BMI is associated with the
development of CKD and that sex differences are observed. However, these results cannot simply be compared with previous findings because the studies use different BMI cutoff values and reference groups\(^7\)\(^{21}\). Therefore, sex-stratified studies in single-ethnic and non-diabetic populations that include a global standard BMI classification that accounts for racial differences are needed to examine the relationship between BMI and the development of CKD.

The World Health Organization Western Pacific Region proposed the Asia-Pacific BMI classification (Asia-Pacific classification)\(^22\). The classification has a lower BMI cutoff value than the conventional World Health Organization BMI classification (conventional classification) that is used for all races because Asians have higher morbidity and mortality even with a lower BMI\(^22\). Therefore, the Asia-Pacific classification should be used when assessing the relationship between BMI and CKD onset in Asian populations. On the basis of the above, the study’s purpose was to investigate the relationship between BMI that was defined using the Asia-Pacific classification and the subsequent development of CKD in non-diabetic Japanese men and women.

Materials and methods

Data source

The study was an ongoing open population-based longitudinal study of citizens of Zentsuji City, Kagawa Prefecture, Japan\(^23\). We used anonymized annual health checkup data from Zentsuji City from 6 April 1998 to 19 April 2023. On 1 April 2023, the city had a population of 30,431 (men: 49.7%), with 38.1% of citizens aged 60 years and older\(^23\). The city database used in our previous study was used for data extraction\(^18\). The data extraction date was 6 July 2023.

In checkups, the participants underwent anthropometric measurements, a blood pressure test, a blood test, and a urinalysis and answered a questionnaire about their lifestyle. The participants were not obliged to participate in a checkup, take all of the tests, or answer the questionnaire. Checkups were conducted in accordance with the protocol of the Ministry of Health, Labour and Welfare\(^24\).
Study participants

All citizens aged ≥ 40 years were eligible to receive a health checkup once every fiscal year (FY). In FYs 1998 and 1999 only, younger citizens aged 34–39 years were added to the eligible population on a trial basis to promote the health of younger people. In past years, approximately 30%–40% of the eligible population had received a checkup.

This study aimed to evaluate the relationship between BMI and new-onset CKD in non-diabetic Japanese men and women. Therefore, the following exclusion criteria were applied: non-Japanese, those with missing exposure and/or outcome data, prevalent CKD and/or diabetes at study entry, missing hemoglobin A1c (HbA1c) values, prevalent diabetes at study entry, and only one observation. The participants who developed diabetes during the follow-up were regarded as censored. Diabetes was defined as HbA1c ≥ 6.5%25.

Measures

Exposure

The exposure variable was obesity. BMI was used as the obesity definition. BMI was calculated by dividing weight (kg) by height (m) squared. Obesity was defined in accordance with the Asia-Pacific classification: underweight (< 18.5 kg/m²), normal weight (18.5–22.9 kg/m²), overweight (23.0–24.9 kg/m²), obesity class I (25.0–29.9 kg/m²), and obesity class II (≥ 30.0 kg/m²)26.

Outcome

The outcome variable in this study was new-onset CKD. The estimated glomerular filtration rate (eGFR) was used as a measure of renal function2. We used the three-variable revised Japanese equation to estimate glomerular filtration rate (GFR)27–29: eGFR(mL/min/1.73m²) = 194 × serum creatinine(mg/dL)−1.094 × age (years)−0.287(× 0.739, if female). Prevalent CKD was defined as eGFR < 60 mL/min/1.73 m²22. Serum creatinine (Scr) values in mg/dL were used up to two decimal places. The enzymatic method was used to measure Scr.
Other covariates
Age, self-reported drinking status, self-reported smoking status, hypertension, dyslipidemia, HbA1c, and residential district were treated as covariates for adjustment. Age groups were categorized as 34–59, 60–69, and 70–100 years. Self-reported drinking status was dichotomized into “non- or seldom-drinker” and “drinker” categories. Self-reported smoking status was grouped into “non- or ex-smoker” and “smoker” categories. Hypertension was defined as systolic blood pressure ≥ 140 mm Hg and/or diastolic blood pressure ≥ 90 mm Hg. The participants were considered dyslipidemic if they met at least one of the following conditions: serum low-density lipoprotein cholesterol ≥ 140 mg/dL, serum high-density lipoprotein cholesterol < 40 mg/dL, and/or serum triglycerides ≥ 150 mg/dL. HbA1c values (%) were treated as a continuous variable. To reduce the potential impact of where participants resided within the city, the district of residence was treated as one of the covariates. Zentsuji City has eight districts: East, West, Central, South, Fudeoka, Tatsukawa, Yogita, and Yoshiwara.

HbA1c was reported in Japan Diabetes Society units (%) from 1998 to 2012 and in units (%) from 2013 to 2023. HbA1c levels were standardized to National Glycohemoglobin Standardization Program values using the officially certified equation:

\[HbA1c_{NGSP}(\%) = 1.02 \times HbA1c_{IDS}(\%) + 0.25 \]

Statistical analysis
All analyses were conducted separately for men and women. The participants’ characteristics were summarized by BMI class. The person-years at risk were calculated from the date of the first participation to the date of onset of CKD or diabetes or the end of the last observation during the follow-up period. The participant demographics during the follow-up period were expressed as numbers by CKD onset, total person-years at risk, and incidence rate per 1,000 person-years.

We created Kaplan–Meier curves by Asia-Pacific classification for men and women. We assessed the proportional hazards (PH) assumption using log–log plots and the Schoenfeld residuals. We observed that the assumption was violated in this study. Therefore, the Weibull accelerated failure time model was selected in accordance with the Akaike and Bayesian information criteria. The time ratio and its 95% CI were a measure of the effect of exposure on an outcome of interest. For example, a time ratio of 0.9 signified a 0.9-fold longer survival to CKD onset than the reference group.
Adjustment variables were selected based on previous studies7, 21. Four adjusted models were constructed in addition to the crude model. Model 1 adjusted for age category; Model 2 further adjusted for self-reported drinking and smoking status; Model 3 further adjusted for hypertension, dyslipidemia, and HbA1c values; and Model 4 further adjusted for the residential district. To stabilize the models, a multiplicative term was added to Models 1–4 if an interaction effect between the exposure and the following variables was observed: age category, self-reported drinking status, self-reported smoking status, hypertension, dyslipidemia, and HbA1c values.

Given the nature of the voluntary checkup, missing values were observed for self-reported drinking status (missing in 31.0\% of men and 28.3\% of women), self-reported smoking status (missing in 24.9\% of men and 23.1\% of women), hypertension (not missing in men and missing in 0.02\% of women), and dyslipidemia (missing in 17.2\% of men and 24.4\% of women). Missing measurements were complemented using multiple imputation methods with chained equations with 40 imputations38, 39. Binary variables and categorical variables were imputed using logistic regression and multinominal logistic regression, respectively. Only imputed results were presented in this study because missing measurements were considered missing at random.

We restricted the presentation to the results of the main exposure variable only to avoid the Table 2 fallacy40. A two-tailed p-value of less than 0.05 was treated as statistically significant. All statistical analyses were performed using STATA/SE 18.0 (StataCorp, College Station, TX, USA). A participant flow and a district map of the city were drawn in Python 3.11.541–44. Data analysis was conducted from August to December 2023. This study followed the Strengthening the Reporting of Observational Studies in Epidemiology reporting guidelines45.

Sensitivity analyses

Two sensitivity analyses were conducted in this study. In the first sensitivity analysis, conventional classification (underweight [< 18.5 kg/m\(^2\)], normal weight [18.5–24.9 kg/m\(^2\)], overweight [25.0–29.9 kg/m\(^2\)], obesity class I [30.0–34.9 kg/m\(^2\)], obesity class II [35.0–39.9 kg/m\(^2\)], and obesity class III [≥ 40 kg/m\(^2\)]) were treated as exposure variables46. Obesity classes I–III were combined as one obesity category because of the small number of participants in this study with BMI ≥ 30.0 kg/m\(^2\). In the second sensitivity
analysis, to minimize the possibility of reverse causation, we excluded the participants who developed CKD at the second observation.

Ethics

All data were anonymized before receipt. The Ethics Committee of Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital approved this study (No. K1708-040). The Ethics Committee waived the need for informed consent. Study procedures were performed in accordance with the Declaration of Helsinki and Japanese Ethical Guidelines for Medical and Biological Research Involving Human Subjects.

Results

Main analysis

The initial participants were 6,309 men and 9,192 women, with a mean age at study entry of 70.0 years for men and 68.3 years for women. After exclusion, 3,098 men (mean age at study entry: 68.4 years) and 4,391 women (mean age at study entry: 65.9 years) who received checkups from 7 May 1998 to 19 April 2023 remained in the final cohort (Figure 1).

Figure 2 shows the map of the Zentsuji City district. The Kaplan–Meier curves stratified by BMI category in men and women are provided in Figure 3. The participants' characteristics by Asia-Pacific BMI classification during follow-up are presented in Table 1 for men and Table 2 for women. The mean follow-up time was slightly longer in women (8.25 person-years) than in men (7.41 person-years). For both men and women, obesity class II (≥30.0 kg/m²) had the shortest follow-up time, accounting for less than 3% of the total follow-up time. Men with higher BMI were more likely to be younger and have hypertension and/or dyslipidemia, and women with higher BMI were more likely to have hypertension. After 25 years of follow-up, 34.2% of men and 34.8% of women developed CKD.

Our main analysis examined the relationship between the Asia-Pacific classification and later-onset CKD by sex (Table 3). Similar results were observed in men and women, with those in obesity class I (25.0–29.9 kg/m²) having a 6% shorter survival to new-onset CKD than those of normal weight (18.5–
22.9 kg/m²). Men in obesity class II (≥30.0 kg/m²) had the shortest survival to CKD onset with a point estimate of 9%; however, the 95% CIs were across 1 in all of the models. For women in obesity class II, the results were almost null. Overweight (23.0–24.9 kg/m²) was associated with higher point estimates (i.e., close to 1) compared with obesity categories, especially null values in women.

In this study, the Weibull AFT model was used because the PH assumption was violated. For reference, the results of the Weibull PH model as the full model were as follows: adjusted hazard ratios in men with underweight, overweight, obesity class I, and obesity class II compared with men of normal weight were, in ascending order, 0.72 (95% CI: 0.51–1.00), 1.10 (95% CI: 0.94–1.28), 1.30 (95% CI: 1.11–1.52), and 1.48 (95% CI: 0.93–2.34), respectively. The hazard ratios for the same BMI categories in women compared with women of normal weight were 0.97 (95% CI: 0.79–1.19), 0.99 (95% CI: 0.86–1.14), 1.26 (95% CI: 1.11–1.44), and 1.02 (95% CI: 0.76–1.38), respectively.

Sensitivity analyses

In the first sensitivity analysis in which the conventional classification was used, more participants (68.9% of men and 71.0% of women) were classified as having normal weight (18.5–24.9 kg/m²) than in the main analysis in which the Asia-Pacific classification (43.3% of men and 50.6% of women) was used (Tables 1–2, Supplementary Table 1). The results were similar for the obesity (≥30.0 kg/m²) group using the conventional classification and the obesity class II (≥30.0 kg/m²) group using the Asia-Pacific classification (Table 3). Overweight (25.0–29.9 kg/m²) was associated with a shorter survival than normal weight in each sex, similar to the results for obesity class I (25.0–29.9 kg/m²) in the Asia-Pacific classification (Table 3).

The second sensitivity analysis attempted to minimize reverse causation by excluding the participants who had developed CKD at the second observation and included 2,723 men and 3,822 women. The average age at study entry (61.4 years for men and 58.3 years for women) was lower than in the main analysis. Checkup dates were from 7 May 1998 to 19 April 2023. The mean follow-up period of the second sensitivity analysis was 8.14 person-years for men and 9.14 person-years for women—slightly longer than those in the main analysis (Tables 1–2). The distribution of follow-up time by BMI category...
was similar to that of the main analysis. After the follow-up period, 25.1% of men and 25.2% of women developed CKD—lower than in the main analysis.

The relationship between the Asia-Pacific classification and the subsequent development of CKD after exclusion is shown in Supplementary Table 2. Most results were similar to those of the main analysis; however, point estimates of survival for obesity class II were longer in men and shorter in women than those in the main analysis (Table 3).

Discussion

Main analysis

In the current analysis based on annual health checkups from 1998 to 2023 in non-diabetic Japanese adults (3,098 men and 4,391 women), obesity class I (25.0–29.9 kg/m²) as defined by the Asia-Pacific classification was associated with the earlier development of CKD. The 95% CIs for overweight (23.0–24.9 kg/m²) and obesity class II (≥ 30.0 kg/m²) were across 1 in all models; however, the point estimates implied a dose-response relationship, especially in men (Table 3). In all of the analyses, the results for the crude and adjusted models were similar, suggesting a lack of solid evidence that covariates affect the association between exposure and outcome.

These results partly agreed with those of the Ibaraki Prefecture Health Study (IPHS), a previous cohort study in diabetes-free Japanese participants. The IPHS showed the dose-response relationship between BMI categories and the onset of CKD: adjusted hazard ratios were higher in BMI categories 23.0–24.9, 25.0–26.9, 27.0–29.9, and ≥ 30.0 kg/m² in men and 27.0–29.9 and ≥ 30.0 kg/m² in women compared with the BMI category 21.0–22.9 kg/m². However, no clear evidence of a dose-response relationship was observed in our study, and only obesity class I (25.0–29.9 kg/m²) shortened survival to CKD.

Three factors may have influenced the difference between the results of these two studies. First, the number of participants in our study (n = 7,489) was smaller than that of the IPHS (n = 89,760). Both studies included non-diabetic Japanese adults and reflected the Asian characteristic of low obesity prevalence (2%–3% of the total population). Therefore, the study’s power may have been
insufficient to detect a true effect in a small number of participants with BMI ≥ 30.0 kg/m². Second, our participants were older than those in the IPHS. The age of our study participants ranged from 34 to 100 years compared with a range of 40 to 79 years in the IPHS. Consequently, efforts were made to mitigate bias by adjusting for age, thus reducing the likelihood of significant over- and underestimation from older adults’ tendency toward a lower BMI⁵,⁵⁰. Notably, however, the generalizability of this study’s findings to populations of different ages is limited. Third, the observational period for our study was longer (1998–2023) than that of the IPHS (1993–2006). As the follow-up period increases, participants’ susceptibility to outcomes decreases⁵¹,⁵². Specifically, our study had more built-in selection bias than the IPHS, which may have led to an underestimation of our results²¹.

In this study, men had shorter survival by point estimate at a BMI ≥ 23.0 kg/m², whereas women had shorter survival at a BMI ≥ 25.0 kg/m². Therefore, men had a shorter survival time to CKD onset than women with the same BMI. This trend was consistent with that in the IPHS and previous findings and is partly explained by sex differences²,²¹.

First, men’s higher muscle mass compared with women can lead to systematic errors in eGFR in men when the higher muscle is misclassified as low eGFR⁵³,⁵⁴. Consequently, the results are likely to be overestimated in men. However, the overestimation may have been attenuated by the large number in our study of older participants (i.e., those aged ≥ 70 years), whose low BMI and muscle mass may have contributed to the underestimation (Tables 1–2)⁵⁰. Second, men had shorter follow-up times than women, potentially resulting in larger random errors and wider 95% CIs than women, especially in the category (≥ 30.0 kg/m²) with the shortest follow-up time.

Sensitivity analyses

The conventional BMI classification was used as exposure in the first sensitivity analysis (Supplementary Table 1). Obesity (≥ 30.0 kg/m²) had the lowest point estimates for men and an almost null value for women, with all 95% CIs crossing 1. Compared with the findings of the main analysis, overweight (25.0–29.9 kg/m²), which corresponds to obesity class I (25.0–29.9 kg/m²) in the Asia-Pacific classification, was associated with shorter survival to CKD (5% shorter in men and 6% shorter in women). Thus, the cutoff
value of BMI ≥ 30.0 kg/m2 for obesity may be too high a risk factor for CKD in a non-diabetic Asian population.

The second sensitivity analysis was conducted to minimize the possibility of reverse causation by excluding the participants who had developed CKD at the second observation (Supplementary Table 2). The results for all but the highest category showed a similar trend to that in the main analysis (Table 3), suggesting no clear evidence of reverse causation between the BMI categories of less than 30.0 kg/m2 and CKD onset. However, these findings indicate a possible weak inverse association between the BMI ≥ 30.0 kg/m2 category and CKD onset that may be partly due to the shorter follow-up period in the BMI ≥ 30.0 kg/m2 category (449.9 person-years for men [2.03% of the total] and 1,027.6 person-years for women [2.94% of the total]) compared with those in the other categories. As a result, the relationship between BMI ≥ 30.0 kg/m2 and the development of CKD could not be fully assessed in all of the models because of reduced power—especially in men, who had the shortest survival to CKD onset by point estimate in the main analysis. Therefore, a type II error may exist in the BMI ≥ 30.0 kg/m2 category, and a dose-response relationship may exist between BMI and the development of CKD in this analysis.

Strengths and limitations

A strength of this study was that it used the Asia-Pacific BMI classification to evaluate the impact of elevated BMI on the development of CKD in non-diabetic monoracial Asian men and women. Additionally, the maximum follow-up time was 24.5 years in men and 24.7 years in women—follow-up periods that are considered long enough for the development of the early stages of CKD (Tables 1–2).

However, several limitations must be specified. First, our results are not generalizable because this was a longitudinal study that was conducted in a single city and included only 7,489 participants. As noted above, the small number of participants prevented a full evaluation of the association between the highest BMI category (≥ 30.0 kg/m2) and the development of CKD. Second, the exact date of CKD onset could not be known—a major and unresolved shortcoming of cohort studies that are based on annual checkup data and in which participants can decide when to be screened. These factors lead to interval censoring, which requires extremely complex statistical models to address.
Third, measurement errors in renal function may have occurred. Insulin clearance values, the gold standard for measuring GFR, could not be obtained in our study because the test is too time-consuming and expensive for inclusion in regular checkups by local governments. Instead, we used SCr to estimate GFR using the three-variable revised Japanese equation, which is more accurate than the Modification of Diet in Renal Disease equations. Unlike insulin clearance, SCr is affected by factors such as muscle mass and high protein intake, and participants with such characteristics may be classified as CKD without having CKD. However, the average age of our participants at study entry was late 60s, suggesting that the effect of these characteristics, which are more common in younger people, was small.

Fourth, our study participants were healthier than the general population. A previous study reported that those who voluntarily attended checkups were more likely to be health-conscious and healthier than the general population. This selection bias may be responsible for the underestimated results. Fifth, the presence of competing risks that may have modified the occurrence of an event such as death or hospitalization could not be assessed because the necessary data were unavailable.

Finally, indicators of central and visceral fat, such as waist circumference or waist-to-hip ratio, were not available. In the Hallym Aging Study, a cohort study of 454 adult Korean participants, elevations in these factors were more strongly associated with CKD than BMI regardless of prevalent diabetes. In the future, these variables should be used together with BMI to create an obesity index that more clearly indicates the risk of developing CKD by race for men and women without diabetes.

Conclusion

Our study of 7,489 non-diabetic Japanese adults in which the Asia-Pacific BMI classification was used showed that men and women with obesity class I had 6% shorter survival to subsequent CKD than those of normal weight. Obesity class II had the shortest survival to CKD onset by point estimates in men and an almost null value in women, with all 95% CIs across 1. The results support previous findings of a dose-response relationship between BMI and the development of CKD, especially in men. Our results add new evidence to support that the BMI cutoff values for obesity that are based on the conventional BMI classification are too high when considering the association between obesity and future CKD development in non-diabetic Asian men and women.
Data statement

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Acknowledgments

We are grateful to all participants of this study, Ayaka Nakatsu, Masako Matsumoto, RN, PHN, Mayumi Kitadani, and all local government officers of Zentsuji City for their support and contribution. We thank Anahid Pinchis, BSc, MBA, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author contributions

Yukari Okawa: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Visualization; Roles/Review - original draft; and Writing - review & editing. Toshiharu Mitsuhashi: Methodology; Supervision; Writing - review & editing. Toshihide Tsuda: Methodology; Supervision; and Writing - review & editing.

References

21 Tsujimoto T, Sairenchi T, Iso H, Irie F, Yamagishi K, Watanabe H et al. The dose-response relationship between body mass index and the risk of incident stage ≥3 chronic kidney disease in a

Figure legends

Figure 1. Participant flow chart of the study cohort.

Figure 2. Map of Zentsuji City districts.

Figure 3. Kaplan–Meier survival estimates by Asia-Pacific body mass index classification for men and women.
Table 1. Descriptive statistics of all observations stratified by the Asia-Pacific BMI classification in 3,098 non-diabetic Japanese male citizens in Zentsuji City (1998–2023)

<table>
<thead>
<tr>
<th>Asia-Pacific BMI classification</th>
<th><18.5 kg/m²</th>
<th>18.5–22.9 kg/m²</th>
<th>23.0–24.9 kg/m²</th>
<th>25.0–29.9 kg/m²</th>
<th>≥30.0 kg/m²</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td>Failure</td>
<td>PY</td>
<td>IR*</td>
<td>Failure</td>
<td>PY</td>
<td>IR*</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.71</td>
<td>0.40</td>
<td>0.46</td>
<td>0.34</td>
<td>0.60</td>
<td>0.34</td>
</tr>
<tr>
<td>Maximum</td>
<td>20.4</td>
<td>24.5</td>
<td>23.2</td>
<td>24.3</td>
<td>22.2</td>
<td>24.5</td>
</tr>
<tr>
<td>Mean</td>
<td>4.44</td>
<td>6.05</td>
<td>4.82</td>
<td>5.23</td>
<td>4.15</td>
<td>7.41</td>
</tr>
<tr>
<td>Median</td>
<td>2.91</td>
<td>4.19</td>
<td>3.16</td>
<td>3.89</td>
<td>2.99</td>
<td>5.99</td>
</tr>
<tr>
<td>Failure/IR*</td>
<td>40</td>
<td>34.92</td>
<td>438</td>
<td>44.06</td>
<td>272</td>
<td>46.28</td>
</tr>
<tr>
<td>Time at risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,145.5</td>
<td>9,941.5</td>
<td>5,877.1</td>
<td>5,532.7</td>
<td>468.8</td>
<td>22,965.6</td>
</tr>
<tr>
<td>Self-reported drinking status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nondrinker</td>
<td>20.3</td>
<td>554.0</td>
<td>36.70</td>
<td>173.2</td>
<td>2,375.6</td>
<td>45.76</td>
</tr>
<tr>
<td>Drinker</td>
<td>19.7</td>
<td>591.5</td>
<td>33.27</td>
<td>241.9</td>
<td>2,415.0</td>
<td>48.93</td>
</tr>
<tr>
<td>Self-reported smoker status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsmoker</td>
<td>25.9</td>
<td>718.2</td>
<td>36.00</td>
<td>302.3</td>
<td>6,727.5</td>
<td>44.93</td>
</tr>
<tr>
<td>Smoker</td>
<td>14.2</td>
<td>427.3</td>
<td>33.12</td>
<td>135.7</td>
<td>3,726.1</td>
<td>48.93</td>
</tr>
<tr>
<td>Hypertension†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>22.0</td>
<td>647.0</td>
<td>34.00</td>
<td>190.0</td>
<td>5,100.0</td>
<td>37.26</td>
</tr>
<tr>
<td>Yes</td>
<td>18.0</td>
<td>498.5</td>
<td>36.11</td>
<td>248.0</td>
<td>4,945.1</td>
<td>48.93</td>
</tr>
<tr>
<td>Dyslipidemia‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>24.1</td>
<td>691.2</td>
<td>34.86</td>
<td>198.3</td>
<td>4,965.6</td>
<td>39.69</td>
</tr>
<tr>
<td>Yes</td>
<td>15.9</td>
<td>454.3</td>
<td>35.12</td>
<td>239.7</td>
<td>4,945.1</td>
<td>48.48</td>
</tr>
<tr>
<td>Residential district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>8.2</td>
<td>208.3</td>
<td>39.14</td>
<td>103.1</td>
<td>1,987.4</td>
<td>51.88</td>
</tr>
<tr>
<td>Tatsukawa</td>
<td>4.3</td>
<td>142.6</td>
<td>29.79</td>
<td>60.3</td>
<td>1,749.2</td>
<td>34.45</td>
</tr>
<tr>
<td>Central</td>
<td>7.2</td>
<td>162.6</td>
<td>44.14</td>
<td>64.0</td>
<td>1,244.4</td>
<td>51.45</td>
</tr>
<tr>
<td>Fudeoka</td>
<td>2.1</td>
<td>117.3</td>
<td>17.70</td>
<td>39.5</td>
<td>1,180.3</td>
<td>33.46</td>
</tr>
<tr>
<td>South</td>
<td>5.1</td>
<td>177.0</td>
<td>28.95</td>
<td>48.9</td>
<td>1,123.9</td>
<td>43.53</td>
</tr>
<tr>
<td>West</td>
<td>5.1</td>
<td>159.9</td>
<td>31.59</td>
<td>54.1</td>
<td>1,001.0</td>
<td>54.00</td>
</tr>
<tr>
<td>Yoshinawara</td>
<td>5.2</td>
<td>94.0</td>
<td>55.05</td>
<td>43.8</td>
<td>1,052.4</td>
<td>41.62</td>
</tr>
<tr>
<td>Yogyta</td>
<td>3.0</td>
<td>83.8</td>
<td>35.81</td>
<td>24.4</td>
<td>603.3</td>
<td>40.40</td>
</tr>
<tr>
<td>HbA1c values, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>5.42</td>
<td>(0.38)</td>
<td>5.42</td>
<td>(0.41)</td>
<td>5.46</td>
<td>(0.43)</td>
</tr>
<tr>
<td>Variance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.53</td>
<td>(0.43)</td>
</tr>
</tbody>
</table>
| Abbreviations: BMI, body mass index; HbA1c, hemoglobin A1C; IR, incidence rate; SD, standard deviation.

Results for multiple imputed variables (self-reported drinking status, self-reported smoking status, hypertension†, dyslipidemia‡, and residential district) are averaged over 40 imputations.

*Incidence rate is reported per 1000 person-years.
†Hypertension is defined as systolic blood pressure ≥90 mmHg and/or diastolic blood pressure ≥140 mmHg.
‡Dyslipidemia is defined as serum low-density lipoprotein cholesterol ≥140 mg/dL, serum high-density lipoprotein cholesterol <40 mg/dL, and/or serum triglycerides ≥150 mg/dL.
<table>
<thead>
<tr>
<th>Gender</th>
<th>Age at diagnosis</th>
<th>Time at risk (years)</th>
<th>Age category in years</th>
<th>Total Failure PY</th>
<th>60–69 Failure PY</th>
<th>70–79 Failure PY</th>
<th>80–89 Failure PY</th>
<th>90+ Failure PY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>34–59</td>
<td>57.86</td>
<td>23</td>
<td>1,137.7</td>
<td>20.22</td>
<td>187</td>
<td>7,825.2</td>
<td>23.90</td>
</tr>
<tr>
<td></td>
<td>60–69</td>
<td>52.72</td>
<td>23</td>
<td>761.2</td>
<td>30.22</td>
<td>199</td>
<td>5,690.4</td>
<td>34.97</td>
</tr>
<tr>
<td></td>
<td>70–79</td>
<td>51.78</td>
<td>60</td>
<td>905.2</td>
<td>66.28</td>
<td>311</td>
<td>4,790.9</td>
<td>64.91</td>
</tr>
<tr>
<td>Female</td>
<td>34–59</td>
<td>63.84</td>
<td>23</td>
<td>1,137.7</td>
<td>20.22</td>
<td>187</td>
<td>7,825.2</td>
<td>23.90</td>
</tr>
<tr>
<td></td>
<td>60–69</td>
<td>58.72</td>
<td>23</td>
<td>761.2</td>
<td>30.22</td>
<td>199</td>
<td>5,690.4</td>
<td>34.97</td>
</tr>
<tr>
<td></td>
<td>70–79</td>
<td>57.78</td>
<td>60</td>
<td>905.2</td>
<td>66.28</td>
<td>311</td>
<td>4,790.9</td>
<td>64.91</td>
</tr>
</tbody>
</table>

Hypertension†

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age category in years</th>
<th>Total Failure PY</th>
<th>60–69 Failure PY</th>
<th>70–79 Failure PY</th>
<th>80–89 Failure PY</th>
<th>90+ Failure PY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>34–59</td>
<td>7.17</td>
<td>53.0</td>
<td>1,950.5</td>
<td>27.17</td>
<td>330.0</td>
</tr>
<tr>
<td></td>
<td>60–69</td>
<td>6.17</td>
<td>53.0</td>
<td>853.7</td>
<td>62.09</td>
<td>367.0</td>
</tr>
<tr>
<td>Female</td>
<td>34–59</td>
<td>7.17</td>
<td>53.0</td>
<td>1,950.5</td>
<td>27.17</td>
<td>330.0</td>
</tr>
<tr>
<td></td>
<td>60–69</td>
<td>6.17</td>
<td>53.0</td>
<td>853.7</td>
<td>62.09</td>
<td>367.0</td>
</tr>
</tbody>
</table>

Dyslipidemia‡

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age category in years</th>
<th>Total Failure PY</th>
<th>60–69 Failure PY</th>
<th>70–79 Failure PY</th>
<th>80–89 Failure PY</th>
<th>90+ Failure PY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>34–59</td>
<td>7.17</td>
<td>53.0</td>
<td>1,950.5</td>
<td>27.17</td>
<td>330.0</td>
</tr>
<tr>
<td></td>
<td>60–69</td>
<td>6.17</td>
<td>53.0</td>
<td>853.7</td>
<td>62.09</td>
<td>367.0</td>
</tr>
<tr>
<td>Female</td>
<td>34–59</td>
<td>7.17</td>
<td>53.0</td>
<td>1,950.5</td>
<td>27.17</td>
<td>330.0</td>
</tr>
<tr>
<td></td>
<td>60–69</td>
<td>6.17</td>
<td>53.0</td>
<td>853.7</td>
<td>62.09</td>
<td>367.0</td>
</tr>
</tbody>
</table>

Residential district

<table>
<thead>
<tr>
<th>Gender</th>
<th>East</th>
<th>Tatsukawa</th>
<th>Central</th>
<th>Fudeoka</th>
<th>South</th>
<th>West</th>
<th>Yoshinari</th>
<th>Yotogata</th>
<th>HbA1c values, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>22.0</td>
<td>255.3</td>
<td>411.8</td>
<td>270.0</td>
<td>11.0</td>
<td>6.0</td>
<td>10.0</td>
<td>11.0</td>
<td>5.45 (0.35)</td>
</tr>
<tr>
<td>Female</td>
<td>22.0</td>
<td>255.3</td>
<td>411.8</td>
<td>270.0</td>
<td>11.0</td>
<td>6.0</td>
<td>10.0</td>
<td>11.0</td>
<td>5.45 (0.35)</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; HbA1c, hemoglobin A1C; IR, incidence rate; SD, standard deviation.

*Incidence rate is reported per 1000 person-years.

†Hypertension is defined as systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg.

‡Dyslipidemia is defined as serum low-density lipoprotein cholesterol ≥140 mg/dL, serum high-density lipoprotein cholesterol <40 mg/dL, and/or serum triglycerides ≥150 mg/dL.

<table>
<thead>
<tr>
<th>Asia-Pacific BMI classification</th>
<th>Men (n=3,098)</th>
<th>Women (n=4,391)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude PY</td>
<td>Crude PY</td>
</tr>
<tr>
<td><18.5 kg/m²</td>
<td>1,145.5</td>
<td>2,804.2</td>
</tr>
<tr>
<td>18.5–22.9 kg/m² (reference)</td>
<td>9,941.5</td>
<td>18,306.5</td>
</tr>
<tr>
<td>23.0–24.9 kg/m²</td>
<td>5,877.1</td>
<td>7,424.3</td>
</tr>
<tr>
<td>25.0–29.9 kg/m²</td>
<td>5,532.7</td>
<td>6,627.6</td>
</tr>
<tr>
<td>≥30.0 kg/m²</td>
<td>468.8</td>
<td>1,055.4</td>
</tr>
</tbody>
</table>

Abbreviations: aTR, adjusted time ratio; CI, confidence interval; HbA1c, hemoglobin A1C; PY, person-years; TR, time ratio.

*Hypertension is defined as systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg.
†Dyslipidemia is defined as serum low-density lipoprotein cholesterol ≥140 mg/dL, serum high-density lipoprotein cholesterol <40 mg/dL, and/or serum triglycerides ≥150 mg/dL.

Multiple imputed variables: hypertension*, dyslipidemia†, self-reported drinking status, self-reported smoking status, and residential district.

Model 2: Adjusted for the variable of Model 1, self-reported drinking status (no[reference]/yes), and self-reported smoking status (no[reference]/yes).
Model 3: Adjusted for all variables of Model 2, hypertension* (no[reference]/yes), dyslipidemia† (no[reference]/yes), and HbA1c values.
Model 4: Adjusted for all variables of Model 3 and residential district (East[reference]/Tatsukawa/Central/Fudeoka/South/West/Yoshiwara/Yogita).
Figure 1. Participant flow chart of the study cohort.

Initial participants:
Men n = 6,309 (45,657 observations)
Women n = 9,192 (75,670 observations)

Japanese?

Japanese

Non-Japanese

Missing renal function values?

Missing

Not missing

Prevalent chronic kidney disease at study entry?

Yes

No

Missing body mass index information?

Missing

Not missing

Missing HbA1c values?

Missing

Not missing

Prevalent diabetes at study entry?

Yes

No

Developed diabetes during the follow-up period?

Yes

No

Single observation?

Single

Multiple

Excluded:
Men n = 14 (30 observations)
Women n = 18 (49 observations)

Excluded:
Men n = 65 (3,412 observations)
Women n = 66 (3,387 observations)

Excluded:
Men n = 1,768 (11,629 observations)
Women n = 3,212 (25,725 observations)

Excluded:
Men n = 0 (8 observations)
Women n = 0 (5 observations)

Excluded:
Men n = 0 (2,876 observations)
Women n = 0 (6,111 observations)

Excluded:
Men n = 342 (1,616 observations)
Women n = 250 (1,338 observations)

Excluded:
Men n = 0 (1,976 observations)
Women n = 0 (1,800 observations)

Excluded:
Men n = 1,022 (1,022 observations)
Women n = 1,255 (1,255 observations)

Excluded:
Men n = 0 (2,876 observations)
Women n = 0 (6,111 observations)

Excluded:
Men n = 0 (2,876 observations)
Women n = 0 (6,111 observations)

Excluded:
Men n = 0 (2,876 observations)
Women n = 0 (6,111 observations)

Final cohort:
Men n = 3,098 (23,090 observations)
Women n = 4,391 (35,400 observations)
Figure 2.
Map of Zentsuji City districts.
Figure 3.
Kaplan–Meier survival estimates by Asia-Pacific body mass index classification for men and women.

Asia-Pacific body mass index (BMI) classification

- **Underweight**: BMI <18.5 kg/m²
- **Normal weight**: BMI 18.5–22.9 kg/m²
- **Overweight**: BMI 23.0–24.9 kg/m²
- **Obesity class I**: BMI 25.0–29.9 kg/m²
- **Obesity class II**: BMI ≥30.0 kg/m²