The long-term effect of bariatric/metabolic surgery versus pharmacologic therapy in type 2 diabetes mellitus patients: A systematic review and meta-analysis
Yumeng Yang 1, Chuhan Miao 1+, Yingli Wang 3, Jianxun He 4, Yan Bo *
1,1+ The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, China, yy_yym@163.com u3590608@connect.hku.hk
3 Shanghai Xuhui Central Hospital, Department of Rehabilitation Medicine, Shanghai, China, raineywong_0601@outlook.com
4 Gansu Provincial Maternity and Child Care Hospital, Department of Neurosurgery, Lanzhou, China, 13893321949@163.com
* Northwest Minzu University, College of Medicine, Lanzhou, China, thoseformylovedpeople@outlook.com
Abstract

Background: Metabolic/bariatric surgery as a treatment for obesity and related diseases, such as type 2 diabetes mellitus (T2DM), has been increasingly recognized. However, the long-term effect (≥ five years) of metabolic surgery in T2D patients is still unclear compared with conventional pharmacologic therapy. This study aims to evaluate the diabetes remission rate, diabetic microvascular complications incidence, macrovascular complications incidence, and mortality in T2D patients who received metabolic surgery versus pharmacologic therapy more than five years after the surgery.

Methods: Searching the database, including PubMed, Embase, Web of Science, and Cochrane Library from the inception to recent (2022), for randomized clinical trials (RCTs) or cohort studies comparing T2D patients treated with metabolic surgery versus pharmacologic therapy reporting on the outcomes of the diabetes remission rate, diabetic microvascular complications, macrovascular complications, or mortality over five years or more.

Results: A total of 13 articles with a total of 68,280 patients with T2D were eligible for review and meta-analysis in this study. There is a significant long-term increase in diabetes remission for metabolic surgery compared with conventional medical therapy in the overall pooled estimation and RCT studies or cohort studies separately (overall: OR = 8.39, 95%CI: 3.58-19.67, P<0.001). Significant long-term decreases showed in the pooled results of microvascular complications incidence (HR = 0.43, 95%CI: 0.37-0.49, P<0.001), macrovascular complications incidence (HR = 0.60, 95%CI: 0.48-0.75, P<0.001) and mortality (HR = 0.44, 95%CI: 0.37-0.49, P<0.001).

Conclusion: Metabolic surgery showed more significant long-term effects than pharmacologic therapy on diabetes remission, macrovascular complications, microvascular complications incidence, and all-cause mortality in patients with T2D using currently available evidence. More high-quality evidence is needed to validate the long-term effects of metabolic surgery versus conventional treatment in the management of diabetes.

Keywords: type 2 diabetes mellitus, metabolic surgery, bariatric surgery, pharmacologic therapy, conventional medical therapy, meta-analysis
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% CI</td>
<td>95% confidence interval</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type 2 diabetes mellitus</td>
</tr>
<tr>
<td>T2D</td>
<td>Type 2 diabetes</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized clinical trial</td>
</tr>
<tr>
<td>AGB</td>
<td>Adjustable gastric band</td>
</tr>
<tr>
<td>ASCVD</td>
<td>Atherosclerotic cardiovascular disease</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BPD</td>
<td>Biliopancreatic diversion</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>DS</td>
<td>Duodenal switch</td>
</tr>
<tr>
<td>FPG</td>
<td>Fasting plasma glucose</td>
</tr>
<tr>
<td>GIP</td>
<td>Gastric inhibitory polypeptide</td>
</tr>
<tr>
<td>GB</td>
<td>Gastric bypass</td>
</tr>
<tr>
<td>GLP-1</td>
<td>Glucagon-like peptide 1</td>
</tr>
<tr>
<td>HR</td>
<td>Hazard ratio</td>
</tr>
<tr>
<td>HbA1c</td>
<td>hemoglobin A1c</td>
</tr>
<tr>
<td>LDL</td>
<td>low-density lipoprotein</td>
</tr>
<tr>
<td>LSG</td>
<td>Laparoscopic sleeve gastrectomy</td>
</tr>
<tr>
<td>MI</td>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>NGB</td>
<td>Non-adjustable gastric banding</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>RYGB</td>
<td>Roux-en-Y Gastric Bypass</td>
</tr>
<tr>
<td>RR</td>
<td>Relative risk</td>
</tr>
<tr>
<td>VBG</td>
<td>Vertical banded gastroplasty</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Background

As one of the fastest growing diseases in the world, the number of people with type 2 diabetes mellitus (T2DM) has exceeded 420 million (1) and accounts for 90% of adults’ diabetes (2). It composes of a group of metabolic disorders due to hyperglycemia, that might lead to a series of chronic complications, both microvascular and macrovascular, which account for significant mortality in patients with T2D (3). The current standard of care for type 2 diabetes includes pharmacologic therapy (including medication and insulin therapy) and therapeutic lifestyle change (4). Yet the standard of care for type 2 diabetes is no cure for all T2D patients. Some studies have shown that the diabetes remission rate of those interventions is less than 15% (5, 6). And evidence has shown that medication and therapeutic lifestyle changes had no impact on diabetes complications incidence (2).

Meanwhile, other new treatments for type 2 diabetes such as weight loss medical devices and metabolic surgery continue to emerge (3). Especially, metabolic/bariatric surgery has been recognized as an effective treatment for obesity and its comorbidities, such as T2DM (7). In recent years, it has been found that bariatric surgery can not only achieve the effect of weight loss but also change the patient’s physiological condition and glucose metabolism, thereby achieving the effect of diabetes remission (8). And studies have shown that metabolic surgery contributes to diabetes remission (9, 10), microvascular and macrovascular complications (11, 12), and mortality (11) in T2D patients.

However, some evidence has shown concerning conditions, that the diabetes remission rate is high in the short-term period after the surgery, but might relapse in the long term (13, 14). Moreover, previous studies also reported that metabolic surgery caused surgical-related morbidities in the short- and long-term (15). Short-term (perioperative) mortality and morbidity were rose due to bariatric surgery (16). Adverse events, such as anemia and hypoglycemic episodes, were
reported to be increased over a 5-year follow-up after the bariatric surgery (17). Moreover, the mechanisms by which metabolic surgery can stably improve the hyperglycemic metabolic status of patients with type 2 diabetes in the short- and long-term are still unclear (18). Therefore, the long-term effects (≥ 5 years) of diabetes remission, complications, and mortality in the T2D patients treated with metabolic surgery versus pharmacologic therapy remain unclear (19).

1.2 Objective

To compare the long-term effects of bariatric surgery and conventional medical therapy in patients with type 2 diabetes, this study systematically reviewed and evaluated the currently available data on multiple outcomes (diabetes remission, diabetic macrovascular complications, diabetic macrovascular complications, and all-cause mortality in T2D patients) of diabetes treatments. This systematic review and meta-analysis aimed to collect and summarize the long-term effects of bariatric surgery versus medical treatment in patients with type 2 diabetes, and to provide evidence for improving the treatment of type 2 diabetes. To provide high-level evidence in the hierarchy of evidence of evidence-based medicine (20) and concrete evidence for organizations such as the American Diabetes Association (ADA), to improve the guidelines of diabetes treatment and provide better care for T2DM patients. Also provide evidence for policy makers’ decision-making, such as which intervention campaign should be promoted in secondary and tertiary prevention of diabetes. This study could help understand the long-term effects of current treatments for type 2 diabetes and provide more insights into the optimal treatment of T2DM.

2 Materials and Methods

2.1 Search strategy and study selection

I conducted the systematic review and meta-analysis followed the guidelines of PRISMA (21). I searched the database including PubMed, Embase, Web of Science, and Cochrane Library from the inception of the databases to recent (2022). I searched
the database with the keywords: "Bariatric Surgery" or "Obesity surgery" or "Metabolic surgery" or "gastric bypass" or "gastric banding" or "gastric band" or "gastric sleeve" or "sleeve gastrectomy" or "duodenojejunal bypass" or "ileal interposition" or "biliopancreatic diversion" or "biliopancreatic diversion" and "diabetes mellitus" or "diabetes" or "T2DM" or "T2D", then restricted language to English, restricted study type to "randomized clinical trial" or "randomized controlled trial" or "cohort study" or "cohort", then excluded the studies with the key words "review" or "comment" or "letter" or "animal" or "rat" or "rats" or "mice". I included the randomized controlled trials (RCTs) or cohort studies with a comparison of bariatric surgery versus pharmacologic therapy that provided a baseline number of adult (> 18-year-old) patients with T2D and provided diabetes remission or other secondary outcomes at 5 or more years. I excluded the articles reported on type 1 diabetes patients, gestational diabetes patients, or the control group definition of not clear/not pharmacologic therapy.

2.2 Outcomes

The primary outcome is to compare the long-term diabetes remission rate in type 2 diabetes patients who received metabolic surgery versus pharmacologic therapy. The criteria of diabetes remission include a hemoglobin A1c (HbA1c) level < 6.5% and a fasting plasma glucose (FPG) level < 100–125 mg/dL without medicine, or the HbA1c level <6.0% with medicine, or other criteria defined by the articles.

The secondary outcomes are 1) long-term diabetic microvascular retinopathy, nephropathy, and neuropathy complications incidence(22), 2) long-term diabetic macrovascular complications incidence, including the coronary arteries, peripheral arteries, and cardiovascular disease, which includes atherosclerotic cardiovascular disease (ASCVD), heart failure, stroke, myocardial infarction (MI), angina pectoris, etc.(23, 24), and 3) long-term all-cause mortality in T2D patients with bariatric/metabolic surgery versus pharmacologic therapy.

2.3 Data extraction and quality assessment
The extracted information from the eligible articles includes the name of the first author, year of publication, country of origin, ethnicity of the targeted population, the surgery types of the bariatric surgery in the surgical group, the sample size, follow-up duration, estimation of the relative differences of incidence in outcomes between different treatment groups (odds ratios (ORs), or hazard ratios (HRs) and 95% confidence interval (95% CI)), and the baseline body mass index (BMI) and age. The Downs and Black scores (25) were used to assess the quality of the studies, critical appraisal of the study design, the data collection, and the statistical analysis.

2.4 Statistical analysis

I estimated the pooled estimates from the eligible studies of the relative differences in incidence (ORs or HRs) in diabetes remission, diabetic macrovascular complications, diabetic microvascular complications, and all-cause mortality between metabolic surgery and pharmacologic therapy group. Subgroup analysis was performed for the outcomes in randomized controlled trials (RCTs) and cohort studies separately. Heterogeneity was assessed by Cochran’s Q-test and Higgins (I^2) statistics, at a significance level of $P = 0.1$. I constructed the forest plots to show the pooled results, using the fixed effects model (when heterogeneity is low, $P \geq 0.1$ and $I^2 \leq 50\%$) or the random effects model (when heterogeneity is high, $P < 0.1$ or $I^2 > 50\%$). The publication bias was assessed by the visual symmetry in funnel plots. The sensitivity analysis to examine and compensate for the publication bias was assessed by Egger’s test and trim and fill analysis at a significance level of $P = 0.01$. The statistical analysis was performed using R version 4.1.2

3 Results

3.1 Study characteristics

The selection procedure of this meta-analysis was shown in Figure.1. In total, 4297 records were identified from the database through searching. After removal of the duplicate records ($n = 1370$), 2927 records were eligible to be screened by
title/abstract. After excluding 2881 articles by title/abstract, 46 articles were assessed for eligibility in full text. In the full-text screening, 33 articles were excluded. Among those, 9 of the articles reported on methodology only, 7 of the articles contained the same population as included ones, 6 of the articles were available for abstract only, and 11 of the articles had a control group that definition was not clear/not pharmacologic therapy. Finally, 13 articles were included in this review.

13 articles (Table 1) were eligible for review in this study, they were published between 2014 – 2021 and the studies were conducted in the US, Sweden, Taiwan, Italy, and Denmark. Of which, 2 were prospective cohort studies, 8 were retrospective cohorts and 3 are randomized controlled trials (RCTs). Surgery types of the surgical groups were various, and the Roux-en-Y Gastric Bypass (RYGB) remained the most common metabolic procedure in the US(26) and this study. In terms of the outcomes, 6 articles reported the diabetes remission rate for 5 years or longer in the surgery group verse the conventional therapy, of which 3 were cohort studies, and 3 are RCTs. 8 studies reported the secondary outcomes, including the long-term incidence in microvascular complications (n = 4), macrovascular complications (n = 5), and mortality (n = 4). A total of 68,280 participants were included, and 32,853 participants were in the surgical group, with follow-up durations between 5 to 15 years. Most of them(n = 9) recruited participants with body mass index (BMI) ≥35 kg/m² at baseline, adhering to the recommendations from the National Institutes of Health (NIH)(27). 3 of them contained participants with BMI < 35 kg/m² at baseline. In addition, those with baseline BMI < 35 kg/m² were Asian or mixed populations that contained Asians.
Records identified from database (n= 4297)
PubMed, n=1259
Embase, n=2285
Cochrane, n=526
Web of Science, n=228

Duplicate records removed (n = 1370)

Records screened by title/abstract

Records excluded (n = 2881)

Full text articles assessed for eligibility

Reports excluded:
- Report on methodology only (n = 9)
- Same population (n = 7)
- Only abstract available (n = 6)
- Control group definition not clear/not pharmacologic therapy (n= 1)

Studies included in review (n = 13)

Figure 1: Flow-chart of study inclusion
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Ethnicity</th>
<th>Study design</th>
<th>Surgery types</th>
<th>Outcomes</th>
<th>Follow-up (years)</th>
<th>Sample size</th>
<th>BMI at baseline (kg/m²)</th>
<th>Age at baseline (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sjöström L, 2014(28)</td>
<td>Swedish</td>
<td>NA</td>
<td>Prospective cohort</td>
<td>AGB or NGB or VBG or GB</td>
<td>Diabetes remission, microvascular complications, macrovascular complications</td>
<td>15</td>
<td>603</td>
<td>40(C) 42.1(S)</td>
<td>50.4(C) 48.7(S)</td>
</tr>
<tr>
<td>Hsu CC, 2015(29)</td>
<td>Taiwan</td>
<td>Asian</td>
<td>Retrospective cohort</td>
<td>LSG or GB</td>
<td>Diabetes remission</td>
<td>5</td>
<td>351</td>
<td>29.1(C), 31.0(S)</td>
<td>51.2(C) 44.2(S)</td>
</tr>
<tr>
<td>Schauer PR, 2017(30)</td>
<td>US</td>
<td>Mixed</td>
<td>RCT</td>
<td>RYGB or LSG</td>
<td>Diabetes remission</td>
<td>5</td>
<td>150</td>
<td>36.4(C) 36.5(S)</td>
<td>49.7(C) 48.1(S)</td>
</tr>
<tr>
<td>Adams TD, 2017(31)</td>
<td>US</td>
<td>NA</td>
<td>Prospective cohort</td>
<td>RYGB</td>
<td>Diabetes remission</td>
<td>12</td>
<td>212</td>
<td>>=35(all)</td>
<td>-</td>
</tr>
<tr>
<td>Ikramuddin S, 2018(32)</td>
<td>US and Taiwan</td>
<td>Mixed</td>
<td>RCT</td>
<td>GB</td>
<td>Diabetes remission</td>
<td>5</td>
<td>120</td>
<td>34.4(C) 34.9(S)</td>
<td>48(C) 49(S)</td>
</tr>
<tr>
<td>Mingrone G, 2021(33)</td>
<td>Italy</td>
<td>NA</td>
<td>RCT</td>
<td>RYGB or BPD</td>
<td>Diabetes remission</td>
<td>10</td>
<td>60</td>
<td>>=35(all) 45.4(C) 44.4(S)</td>
<td>43.3(C), 43.3(S)</td>
</tr>
<tr>
<td>Johnson, BL. MS, 2013(34)</td>
<td>US</td>
<td>Mixed</td>
<td>Retrospective cohort</td>
<td>RYGB or AGB or VBG or BPD or SG</td>
<td>Microvascular complications, macrovascular complications</td>
<td>5</td>
<td>15951</td>
<td>>= 35(all)</td>
<td>52.1(C), 47.5(S)</td>
</tr>
<tr>
<td>O’Brien R, 2018(35)</td>
<td>US</td>
<td>Mixed</td>
<td>Retrospective cohort</td>
<td>RYGB or SG or AGB</td>
<td>Microvascular complications</td>
<td>5</td>
<td>15083</td>
<td>43.8(C) 44.9(S)</td>
<td>48.7(C) 47.6(S)</td>
</tr>
<tr>
<td>Madsen LR, 2019(36)</td>
<td>Danish</td>
<td>NA</td>
<td>Retrospective cohort</td>
<td>RYGB</td>
<td>Microvascular complications, macrovascular complications</td>
<td>5.3</td>
<td>2185</td>
<td>>35</td>
<td>47.1(C) 46.8(S)</td>
</tr>
<tr>
<td>Fisher DP, 2018(37)</td>
<td>US</td>
<td>Mixed</td>
<td>Retrospective cohort</td>
<td>RYGB or SG or AGB</td>
<td>Macrovascular complications, mortality</td>
<td>5</td>
<td>20235</td>
<td>43.8(C) 44.7(S)</td>
<td>50.2(C) 49.5(S)</td>
</tr>
<tr>
<td>Aminian A, 2019(38)</td>
<td>US</td>
<td>Mixed</td>
<td>Retrospective cohort</td>
<td>RYGB or SG or AGB</td>
<td>Macrovascular complications, mortality</td>
<td>8</td>
<td>13722</td>
<td>42.6(C) 45.1(S)</td>
<td>54.8(C) 52.5(S)</td>
</tr>
<tr>
<td>Pontiroli, A, Italy E., 2016(39)</td>
<td>Italy</td>
<td>NA</td>
<td>Retrospective cohort</td>
<td>LAGB</td>
<td>Mortality</td>
<td>15</td>
<td>1066</td>
<td>>35(all) 51.9(C) 49.9(S)</td>
<td>41.9(C) 43.0(S)</td>
</tr>
<tr>
<td>Eliasson B, Sweden 2015(40)</td>
<td>Sweden</td>
<td>NA</td>
<td>Retrospective cohort</td>
<td>RYGB</td>
<td>Mortality</td>
<td>8</td>
<td>12264</td>
<td>41.4(C) 42.0(S)</td>
<td>50.5(C) 48.5(S)</td>
</tr>
</tbody>
</table>
Table 1 Baseline characteristics for included studies

Biliopancreatic diversion (BPD), Roux-en-Y Gastric Bypass (RYGB), Laparoscopic sleeve, gastrectomy (LSG), gastric bypass (GB), adjustable gastric band (AGB), non-adjustable gastric banding (NGB), Vertical banded gastroplasty (VBG), Duodenal switch (DS), Control group (C), Surgical group (S)
3.2 Meta-analysis of long-term outcomes of metabolic surgery versus pharmacologic therapy

This review evaluated the long-term effects, including diabetes remission, microvascular complications, macrovascular complications, or mortality, of patients with type 2 diabetes in metabolic surgery and the conventional medical treatment groups.

3.2.1 Diabetes remission

Meta-analysis Result

The characteristics of the diabetes remission rate and patients are shown in Table 2, and figure 2A showed the overall pooled estimation (log-scale) and the data extracted from 6 studies (log-scale). All the included studies (n = 6) report a higher long-term diabetes remission rate in the surgical group than the medical treatment group, and most of them (n = 5) had a significant result. The overall pooled estimation (Table 3) showed a significant increase in diabetes remission of the metabolic surgery compared with conventional medical therapy (OR = 8.39, 95% CI: 3.58-19.67, \(P < 0.001 \)). In the subgroup analysis, the pooled estimate showed a significant higher remission rate of the metabolic surgery in the RCT studies (OR = 4.02, 95% CI: 1.80-8.96, \(P = 0.001 \)) (Table 3) and in the cohort studies (OR = 13.62, 95% CI: 3.95-46.99, \(P < 0.001 \)) (Table 3) respectively. The advantage of diabetes remission rate in the surgical group compared with the medical treatment group of T2D patients in the RCT was smaller than the pooled diabetes remission rate advantage in the cohort studies, which might due to the small number size in the RCT studies (n = 3) and cohort studies (n = 3), or other known bias in the cohort studies.

Heterogeneity analysis

The heterogeneity of outcomes in the eligible studies with diabetes remission was between 0 to 64.25% (table 3). Significant heterogeneity was found in the diabetes remission rate between the surgical group and the medical treatment group in overall
results ($I^2 (%) = 55.59, P_o = 0.047$). After stratified by the study types, the heterogeneity was still significant and in the cohort studies results ($I^2 (%) = 64.25, P_o = 0.057$), but not significant in the RCT studies results ($I^2 (%) = 0, P_o = 0.613$). Therefore, I used a random-effects model to estimate the pooled estimations in overall estimations of diabetes remission; and the fixed-effects models were applied for the diabetes remission rate in the cohort studies. The high heterogeneity in the overall estimation, might be due to the different pooled results in the different types of studies, the follow-up period was not the same, or the diagnostic criteria and definitions of diabetes remission included in this study were various.

Publication bias and sensitivity analysis

The publication bias of reported diabetes remission in the eligible studies was assessed by Egger’s regression test (Table 3) and the funnel plots (Figure 3A-C). The funnel plots illustrated no obvious asymmetry in all over diabetes remission or in RCT studies or cohort studies respectively. There was no significant publication bias found in diabetes remission rate (overall: $P_{Egger} = 0.373$; RCTs, $P_{Egger} = 0.384$; or cohorts $P_{Egger} = 0.894$) indicators. Therefore, the trim and fill analyses were not necessary for the above analyses. But funnel plots were suggested to be used to assess the publication bias of the meta-analysis contained more than 10 studies(41), neither the overall estimation ($n = 6$) nor the subgroup (RCT: $n = 3$, cohort: $n = 3$) were eligible for the criteria. Therefore, the potential publication bias was still possible existed and not able to be assessed in this study.

3.2.2 Microvascular complications

Meta-analysis Result

Diabetic microvascular included in this study was composed of neuropathy, nephropathy, and retinopathy microvascular complications (22). Diabetic retinopathy is caused by hyperglycemia that damages the retina and can lead to blindness(22). Diabetic nephropathy includes peripheral neuropathy and cardiac autonomic.
neuropathy and their incidence is closely related to glycemic control(42). Diabetic chronic kidney disease can cause albuminuria or other manifestations of kidney damage(43). All the included studies (n = 4) reported a long-term protective effect of the diabetic microvascular complications received surgery than the medical treatment group, and most of them (n = 3) had a significant result. The pooled estimations of the microvascular complications of the surgery compared with the medical treatment were illustrated in Table 3, Figure 2B. There was a significant decrease in the microvascular complication incidence (n = 4) in T2D patients who received bariatric surgery compared with the medical therapy (HR = 0.43, 95%CI: 0.37-0.49, P<0.001). The detailed results and participants' characteristics of studies with the outcome of the long-term microvascular complications incidence were shown in Appendix 1.

Heterogeneity analysis

The heterogeneity of outcomes in the eligible studies with microvascular complications was 29.42 (Table 3). The incidence of macrovascular complications (I² (%) = 29.42, P = 0.236) in T2D patients in the eligible studies the did not show significant heterogeneity. Therefore, the fixed-effects model was performed to estimate the pooled estimations on microvascular complications incidence.

Publication bias and sensitivity analysis

The publication bias reported on the long-term microvascular complications incidence in the eligible studies was assessed by Egger’s regression test (Table 3) and the funnel plots (figure 3D). There was no significant publication bias found in microvascular complications (P_Egger = 0.309) indicators. Therefore, the trim and fill analyses were not necessary. Yet the sample size of eligible studies that reported the long-term microvascular complications in this meta-analysis is small (n = 4) and less than the recommended number (n = 10) for the funnel plot to assess the publication bias. The potential publication bias was still possible existed and not able to be assessed in this meta-analysis.
3.2.3 Macrovascular complications

Meta-analysis Result

The macrovascular complications of diabetes - coronary heart disease (CHD), such as cerebrovascular disease, and atherosclerotic peripheral arterial disease, are one of the most dangerous complications that largely increase the risk of death in patients with type 2 diabetes(44). All the included studies (n = 5) reported a significant long-term protective effect of the diabetic macrovascular complications in people who received metabolic surgery than in the medical treatment group. The pooled estimations of the macrovascular complications of metabolic surgery compared with conventional medical therapy were illustrated in table 3, figure 2C. There was a significant decrease in the incidence of macrovascular complications (n = 4) in T2D patients who received metabolic surgery compared with conventional medical therapy (HR = 0.60, 95%CI: 0.48-0.75, P<0.001). The detailed results and participants' characteristics of studies with the outcome of the long-term macrovascular complications incidence were shown in Appendix 1.

Heterogeneity analysis

The heterogeneity of outcomes in the eligible studies with macrovascular complications was 13.02 (Table 3). The incidence of macrovascular complications (I² (%) = 13.02, P = 0.011) in T2D patients in the eligible studies showed significant heterogeneity. Therefore, the random-effects model was performed to estimate the pooled estimations on macrovascular complications incidence. The high heterogeneity of outcomes in macrovascular complications incidence might be due to the different types of macrovascular complications demonstrated by the included studies. But unfortunately, this study was unable to distinguish the specific complications.
Publication bias and sensitivity analysis

The publication bias reported on the long-term macrovascular complication incidence in the eligible studies was assessed by Egger’s regression test (Table 3) and the funnel plots (Figure 3E). There was no significant publication bias found in macrovascular complications ($P_{\text{Egger}} = 0.835$) indicators. Therefore, the trim and fill analyses were not necessary. But the number of eligible studies of the incidence of macrovascular complications ($n = 4$) included in this meta-analysis was less than the recommended number ($n = 10$)(41) for the funnel plot to assess the publication bias. The potential publication bias was still possible existed and not able to be assessed in this meta-analysis.

Mortality

Mortality in T2D patients is mainly caused by cardiovascular disease, followed by malignancy and cerebrovascular disease(45). And chronic complications, especially nephropathy, the survival of T2D patients has been prolonged(46). In this meta-analysis, all the included studies ($n = 5$) reported a significant decrease in the results of all-cause mortality in patients who received metabolic surgery than in the medical treatment group for a 5-year or more period. The pooled estimations of the mortality of the surgery compared with the medical therapy were illustrated in Table 3, Figure 2D. There was a significant protective effect against death in T2D patients who received bariatric surgery compared with the medical therapy ($HR = 0.44, 95\% CI: 0.37-0.49, P<0.001$). The detailed results and participants’ characteristics of studies with the outcome of the long-term all-cause mortality were shown in Appendix 1.

Heterogeneity analysis

The heterogeneity of outcomes in the eligible studies reporting on long-term mortality was 13.02 (Table 3). The long-term mortality ($I^2 (\%) = 60.28, P_o = 0.056$) in T2D patients in the eligible studies the showed significant heterogeneity. Therefore, I performed the random-effects model to estimate the pooled estimations of mortality of
patients with type 2 diabetes. The high heterogeneity of outcomes in mortality might be due to the different types of metabolic surgery having different mortality in the short- and long-term (47). But unfortunately, this study was unable to distinguish the specific surgical types.

Publication bias and sensitivity analysis

The publication bias reported on the long-term mortality in the eligible studies was assessed by Egger’s regression test (Table 3) and the funnel plots (Figure 3F). There was no significant publication bias found in mortality ($P_{\text{Egger}} = 0.067$) indicators. Therefore, the trim and fill analyses were not necessary. Yet the sample size of eligible studies reported that long-term mortality in this meta-analysis is small ($n = 4$) and less than the recommended number ($n = 10$) (41) for the funnel plot to assess the publication bias. The potential publication bias was still possible existed and not able to be assessed in this meta-analysis.
Table 2 Summary table of the diabetes remission rate in the included studies

<table>
<thead>
<tr>
<th>Author, year, Study design</th>
<th>Surgical group</th>
<th>Control group</th>
<th>Odds Ratio of diabetes remission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sjöström L, 2014, cohort</td>
<td>35 of 115</td>
<td>4 of 62</td>
<td>6.3(2.1,18.9)</td>
</tr>
<tr>
<td>Hsu CC, 2015, cohort</td>
<td>18 of 50</td>
<td>3 of 250</td>
<td>46.3(12.92,165.99)</td>
</tr>
<tr>
<td>Adams TD, 2017, cohort</td>
<td>43 of 84</td>
<td>5 of 52</td>
<td>8.9(2.0,40.0)</td>
</tr>
<tr>
<td>Schauer PR, 2017, RCT</td>
<td>36 of 96</td>
<td>6 of 38</td>
<td>3.2(1.22,8.40)</td>
</tr>
<tr>
<td>Ikramuddin S, 2018, RCT</td>
<td>11 of 66</td>
<td>3 of 31</td>
<td>4.62(0.64,33.13)</td>
</tr>
<tr>
<td>Mingrone G, 2021, RCT</td>
<td>15 of 40</td>
<td>1 of 18</td>
<td>10.2(1.23,84.63)</td>
</tr>
</tbody>
</table>

Table 3 Overall meta-analysis of the outcomes in T2DM patients who received metabolic surgery compared with conventional therapy

- **Outcomes**: Diabetes remission, Microvascular complications, Macrovascular complications, Mortality
- **Model**: Meta-analysis models; RE: Random-effects model; FE: Fixed-effects model; P_O: Cochran’s Q test’s P-value; P_{OR}: OR test’s P-value; P_{Egger}: Egger’s test’s P-value; Trill and fill ORs: trim and fill analysis to generate the refined ORs

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Studies Number</th>
<th>OR (95% CI)</th>
<th>P_{OR}</th>
<th>I^2 (%)</th>
<th>P_O</th>
<th>Model</th>
<th>P_{Egger}</th>
<th>Trill and fill ORs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes remission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>6</td>
<td>8.39(3.58,19.67)</td>
<td><.001</td>
<td>55.59</td>
<td>0.047</td>
<td>RE</td>
<td>0.373</td>
<td>Not necessary</td>
</tr>
<tr>
<td>RCTs</td>
<td>3</td>
<td>4.02(1.80, 8.96)</td>
<td>0.001</td>
<td>0</td>
<td>0.613</td>
<td>FE</td>
<td>0.384</td>
<td>Not necessary</td>
</tr>
<tr>
<td>Cohorts</td>
<td>3</td>
<td>13.62(3.95,46.99)</td>
<td><.001</td>
<td>64.25</td>
<td>0.057</td>
<td>RE</td>
<td>0.894</td>
<td>Not necessary</td>
</tr>
<tr>
<td>Microvascular</td>
<td>4</td>
<td>0.43(0.37, 0.49)</td>
<td><.001</td>
<td>29.42</td>
<td>0.236</td>
<td>FE</td>
<td>0.309</td>
<td>Not necessary</td>
</tr>
<tr>
<td>complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrovascular</td>
<td>5</td>
<td>0.60(0.48, 0.75)</td>
<td><.001</td>
<td>13.02</td>
<td>0.011</td>
<td>RE</td>
<td>0.835</td>
<td>Not necessary</td>
</tr>
<tr>
<td>complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>4</td>
<td>0.44(0.33, 0.60)</td>
<td><.001</td>
<td>60.28</td>
<td>0.056</td>
<td>RE</td>
<td>0.067</td>
<td>Not necessary</td>
</tr>
</tbody>
</table>

The copyright holder for this version posted December 28, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The cumulative incidence rates of microvascular complications in bariatric/metabolic surgery versus pharmacologic therapy

The mortality in bariatric/metabolic surgery versus pharmacologic therapy

Log OR [95% CI]

- 2.32 [0.21, 4.44]
- 1.53 [-0.44, 3.50]
- 1.16 [0.20, 2.13]
- 2.61 [1.37, 3.85]
- 2.19 [0.69, 3.68]
- 3.84 [2.56, 5.11]
- 1.84 [0.74, 2.94]
- 1.39 [0.59, 2.19]
- 2.13 [1.28, 2.98]

Log Odds Ratio

Hazard Ratio

Bartlett, 2015
Postma, A. E., 2016
Fisher DP, 2018
Amirian A, 2019

42 [0.3]
0.34 [0.1]
0.33 [0.2]
0.59 [0.4]

0.44 [0.3]

The diabetes remissions rates in RCTs, surgery versus conventional therapy

Standard Error

Log Odds Ratio

A pooled log ORs with subgroup str
1 HRs for microvascular complications(B), pooled HRs for macrovascular complications(C), pooled HRs for mortality(D)
Funnel plots to check publication bias, (A) Funnel plot for diabetes remissions rate in overall studies. (B) Funnel plot for diabetes remissions rate in Cohort studies. (D) Funnel plot for microvascular complications. (E) Funnel plot for mortality.
4 Discussion
This study examined the long-term effects of bariatric/metabolic surgery compared with pharmacologic therapy in patients with type 2 diabetes. The meta-analyses were performed to assess the long-term incidence of differences in diabetes remission, diabetic macrovascular complications incidence, microvascular complications incidence, and all-cause mortality between metabolic surgery and pharmacologic therapy. Overall, the long-term effects of metabolic surgery were greater than the effects of the pharmacologic therapy in T2D patients. And in the subgroup analysis of the diabetes remission in RCTs and cohort studies respectively, diabetes remission was still significantly higher in people who received surgery in both groups. These results were concluded from the 68,280 participants from large-scaled prospective cohorts and RCTs with a follow-up period of 5 years or more.

4.1 diabetes remission
The significant long-term increases in diabetes remission for metabolic surgery compared with conventional medical therapy were reported by several previous studies. It is shown that metabolic surgery is associated with a 6-7 times higher diabetes remission rate in the long-term compared with conventional treatment (6, 48). And my study found that the diabetes remission rate of bariatric surgery is 8.39 times (OR: 8.39, 95%CI = 3.58-19.67) higher than the conventional medical treatment, although the pooled advantage in the RCT (OR: 4.02, 95%CI = 1.80-8.96) was smaller than the pooled diabetes remission rate advantage in the cohort study (OR: 13.62, 95%CI = 3.95-46.99), which might due to the small number size in the RCT studies or unknown bias in the cohort studies. A meta-analysis of 10 studies with more than 5 years of follow-up reported that the long-term diabetes remission rate in the surgical group was 5.9 times higher than in the conventional care group (RR, 95% CI = 3.75-9.27)(6), but the study contained only one RCT. Another meta-analysis of 7 RCTs (49) reported a 10-fold better diabetes remission rate of surgery than medical therapy, on a follow-up basis for at least 2 years. The study also reported that the pooled diabetes remission rate at 2 years after bariatric surgery (52.5%) was greater than the 5-year outcome (27.5%) but higher than the diabetes remission rate in the medical treatment group (3.5%-3.8%). In addition, another study with six years of follow-up also showed that the rate of diabetes remission from bariatric surgery peaked at 2 years after surgery, and relapsed (19%) after 3 years (50). However, there was another meta-analysis (51) (including 8 RCTs) that indicated no difference between the glycemic control of 1-2 years or more than 3 years after the surgery in the participants received surgery. All studies have shown that diabetes remission
rates in the surgical group are significantly better in both the short- and long-term than in medical therapy, although relapses may occur.

In recent years, the effects of metabolic surgery in improving obesity-related metabolic diseases, such as type 2 diabetes mellitus and hyperlipidemia have become increasingly recognized(52). Bariatric surgery can effectively improve hyperglycemia and glucose homeostasis; those improvements were shown to be positively associated with BMI or weight loss(53). But the mechanism may not entirely account for the reductions in body weight and BMI. Studies have pointed out that the significant improvements in hyperglycemia in patients with type 2 diabetes after surgery usually occur within a short period when there was no significant change in BMI(54). Bariatric surgery might change hormone secretion by blocking or restricting the physiological structure of the gastrointestinal tract(55), thereby increasing orexin such as ghrelin, secreted by the stomach fundus(56), or glucagon-like peptide 1(GLP-1), oxyntomodulin and other hindgut hormones(57) to stimulate the gastrointestinal tract and accelerate the transporting of food. Through those enzymes, metabolic surgery can regulate energy and glucose metabolism. Yet another meta-analysis(18) showed that a series of hormones related to insulin sensitivity, including GLP-1, gastric inhibitory peptide (GIP), and ghrelin, did not have a significant effect on insulin resistance in T2DM patients who received metabolic surgery. Another possible mechanism of the metabolic improvement of surgery is the increased bile acid levels, which in turn increases fat absorption and cholesterol absorption, thereby indirectly achieving control of glucose metabolism(58). Improving long-term inflammatory status triggered by obesity is also a possible mechanism(59), with one study reporting detection of reduced inflammation markers and found that metabolic surgery improved metabolic disturbances in people with type 2 diabetes(60), thereby improving glycemic control. Alterations in the gut microbiota have also been proposed as a possible mechanism. Some studies showed RYGB increases gram-negative bacteria(60) of the gut microbiota and improves chronic inflammation over obesity(61).

4.2 microvascular complications

Diabetic microvascular was composed of neuropathy, nephropathy, and retinopathy microvascular complications (22). Diabetic retinopathy is closely related to diabetes onset durations and glycemic control(62). The cardiac autonomic neuropathy and peripheral neuropathy incidence are also closely related to glycemic control(42). Diabetic chronic kidney disease, which can cause albuminuria or other manifestations of kidney damage, occurs in one-fifth to half of people with type 2 diabetes(43). In this study, compared to the conventional treatment, metabolic surgery has a stronger
protective effect on microvascular complications in T2D patients (HR: 0.43, 95%CI = 0.37-0.49). A meta-analysis of 10 studies also reported that bariatric surgery reduced the incidence of microvascular complications (OR: 0.26, 95%CI = 0.16-0.42)(12). Another meta-analysis reported a similar result, that metabolic surgery reduced the incidence of microvascular complications in obese patients with T2D (OR: 0.34, 95% CI = 0.30–0.39)(63). Unfortunately, those studies mentioned above did not limit the years of follow-up in the included studies, so the long-term impact of metabolic surgery on diabetic complications of microvascular may remain to be assessed.

4.3 macrovascular complications

The macrovascular complications of diabetes - atherosclerotic cardiovascular diseases (ASCVD), such as cerebrovascular disease, atherosclerotic peripheral arterial disease, and coronary heart disease (CHD), are one of the most dangerous complications and one of the leading causes of death in T2D patients(44). Although there is evidence that medical therapy and intensive lifestyle intervention can improve cardiovascular risk factors(64, 65) including low-density lipoprotein (LDL), cholesterol, etc., the impact on cardiovascular outcomes(66, 67) is uncertain. In my study, metabolic surgery has a stronger protective effect on macrovascular complications in T2D patients than pharmacologic therapy (HR: 0.60, 95%CI = 0.48-0.75). This result is similar to a recently published meta-analysis(68), which showed surgery has a reduced effect on macrovascular complications incidence over 5 years in patients with type 2 diabetes (HR = 0.52, 95% CI = 0.39-0.71). Another meta-analysis(6) also showed that compared with the non-surgical group, the five-year macrovascular events rate was lower in the surgery group (RR = 0.52, 95% CI = 0.44-0.61). However, this study and the others above included results from observational studies and the number of included studies was small (n<=9). Therefore, the role of metabolic surgery on macrovascular outcomes in patients with type 2 diabetes remains to be assessed in high-quality evidence.

4.4 Mortality

The all-cause mortality in the T2DM patient over 5 years or longer period after the surgery is significantly decreased compared to the conventional treatment in this study (HR: 0.44, 95%CI = 0.33-0.60). Another meta-analysis also reported lower all-cause mortality in the subgroup of T2D patients who underwent metabolic surgery (HR: 0.41, 95% CI = 0.37–0.45)(69). However, the perioperative (≤30 days) mortality of metabolic surgery is not negligible. In a meta-analysis of 38 RCTs, short-term all-cause mortality in all patients who received metabolic surgery was 0.18% (95% CI, 0.04%-0.38%)(47). In the perioperative period, surgical complications such as anastomotic leakage, intestinal obstruction, and marginal ulcers have incidence rates
of 0.1% - 5%(16). Cardiopulmonary complications are rare but remain the main cause of perioperative mortality(17). Long-term adverse events, such as anemia and hypoglycemic episodes, also had a higher incidence in the surgical group(70).

4.5 limitations
Limitations of this study are illustrated as followed. Firstly, most of the studies on the effects of bariatric surgery in the long-term included in this study were observational studies, and the outcomes of microvascular, macrovascular complications and all-cause mortality did not include RCTs. This makes the results likely to be affected by potential bias or confounding. Secondly, the diagnostic criteria and definitions of diabetes remission in the included studies were not completely uniform, which may increase the probability of heterogeneity in the pooled results. In addition, this study had a small sample size of included studies, this study cannot identify the possible publication bias. Therefore, further high-quality evidence may be needed to demonstrate the long-term advantages of metabolic surgery over drugs in people with type 2 diabetes.

4.6 Recommendation
This meta-analysis examined the long-term the diabetes remission rate, incidence of macrovascular complications, microvascular complications, and all-cause mortality of bariatric/metabolic surgery versus pharmacologic therapy in type 2 diabetes patients. In this study, metabolic surgery had better effects than conventional therapy for all outcomes over 5 years period. However, short-term (perioperative) mortality and morbidity from bariatric surgery(16), as well as adverse events such as anemia and hypoglycemic episodes in the long-term, were reported to be increased in the surgical group(17). Moreover, the mechanisms by which metabolic surgery can stably improve the hyperglycemic metabolic status of patients with type 2 diabetes in the short- and long-term are still unclear(18). Therefore, I recommend that further high-quality evidence is needed to provide on whether metabolic surgery can become the first-line treatment for type 2 diabetes replacing or combining with the medical treatment and brings long-term stable well-being to people with type 2 diabetes.

6 Conclusion
Metabolic surgery had significantly greater long-term effects than pharmacologic therapy for the diabetes remission rate, incidence of macrovascular complications, microvascular complications, and all-cause mortality in T2DM patients. Yet the limitations of this study might affect the outcomes. More RCT studies with long-term follow-up are needed to validate the long-term effects of metabolic surgery compared to conventional treatment in the management of diabetes.

7 Acknowledgements
Thanks to all people who helped me, especially my capstone advisor, Dr. Youngwon Kim (HKU), who provided me with a lot of support and help, even though we haven't seen each other face to face because of the pandemic. And my roommates, who have given me a lot of spiritual support. This meta-analysis would never have been completed without you.

8 Conflict of interests
The authors declare no conflicting interests.

9 References

<table>
<thead>
<tr>
<th>Author, year, Study design</th>
<th>Sample size</th>
<th>Hazard Ratio of Macrovascular complications</th>
<th>Hazard Ratio of Microvascular complications</th>
<th>Hazard Ratio of Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson, BL. MS, 2013</td>
<td>13,371</td>
<td>0.39 (0.29,0.51)</td>
<td>0.22 (0.09,0.59)</td>
<td>-</td>
</tr>
<tr>
<td>Sjöström L, 2014</td>
<td>115</td>
<td>0.74 (0.58,0.94)</td>
<td>0.43 (0.33,0.58)</td>
<td>-</td>
</tr>
<tr>
<td>Eliasson B, 2015</td>
<td>6132</td>
<td>-</td>
<td>-</td>
<td>0.42 (0.30,0.57)</td>
</tr>
<tr>
<td>Pontiroli, A., E., 2016</td>
<td>52</td>
<td>-</td>
<td>-</td>
<td>0.34 (0.13,0.87)</td>
</tr>
<tr>
<td>O'Brien R, 2018</td>
<td>4,024</td>
<td>-</td>
<td>0.41 (0.34,0.48)</td>
<td>-</td>
</tr>
<tr>
<td>Fisher DP, 2018, cohort</td>
<td>5,301</td>
<td>0.60 (0.42,0.86)</td>
<td>-</td>
<td>0.33 (0.21,0.52)</td>
</tr>
<tr>
<td>Aminian A, 2019</td>
<td>2,287</td>
<td>0.61 (0.55,0.69)</td>
<td>-</td>
<td>0.59 (0.48-0.72)</td>
</tr>
<tr>
<td>Madsen LR, 2019</td>
<td>1,111</td>
<td>0.76 (0.49,1.1)</td>
<td>0.53 (0.38,0.73)</td>
<td>-</td>
</tr>
</tbody>
</table>

Appendix 1 Summary table of the secondary outcomes in the included studies