Manuscript Information

Title: Pathogenesis of Multiple Sclerosis: Genetic, Environmental, and Random Mechanisms

Author: Douglas S. Goodin, MD

Department of Neurology, University of California, San Francisco & the San Francisco VA Medical Center, San Francisco, CA, USA

Address for Correspondence:

Douglas S. Goodin, MD
Department of Neurology; University of California, San Francisco
675 Nelson Rising Lane, Suite #221D
San Francisco, CA 94158
Phone: (415) 514 2464
Fax: (415) 514 2470
E mail: douglas.goodin@ucsf.edu

Manuscript Subject Areas:

Multiple Sclerosis, pathogenesis, environmental factors, genetic factors, randomness, determinism

Author Contributions: Douglas S. Goodin:

Conceptualization; Formal analysis; Methodology; Software; Writing – original draft, review & editing

Funding: None

Conflicts of Interest: None

Acknowledgements:

I am especially indebted to John Petkau, PhD, Professor Emeritus, Department of Statistics, University of British Columbia, Canada, for enormous help with this project. He devoted many hours of his time to critically reviewing early versions of this analysis and contributed immensely both to the clarity and to the logical development of the mathematical and statistical arguments presented herein. I am also indebted to my mentor, Michael J. Aminoff, MD, Professor Emeritus, Department of Neurology, University of California, San Francisco, USA, for his invaluable help with this project. He critically, and thoughtfully, reviewed many drafts of this manuscript and contributed enormously to the logic and clarity of its presentation.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

BACKGROUND: MS-pathogenesis requires both genetic factors and environmental events. The question remains, however, whether these factors and events completely describe the MS disease-process. This question was addressed using the Canadian MS-data, which includes 29,478 individuals, representing 65-83% of all Canadian MS-patients.

METHODS: The “genetically-susceptible” subset of the population, \(G \), includes everyone who has any non-zero life-time chance of developing MS, under some environmental-conditions. A “sufficient” environmental-exposure, for any “genetically-susceptible” individual, includes every set of environmental conditions, each of which is sufficient, by itself, to cause MS in that person. This analysis incorporates several different epidemiologic-parameters, involved in MS-pathogenesis, only some of which are directly-observable, and establishes “plausible-value-ranges” for each parameter. Those parameter-value combinations (solutions) that fall within these plausible-ranges are then determined.

RESULTS: Only a fraction of the population can possibly be “genetically-susceptible”. Thus, many individuals have no possibility of developing MS under any environmental conditions. Moreover, some “genetically-susceptible” individuals, despite their experiencing a “sufficient” environmental-exposure, will never develop disease.

CONCLUSIONS: This analysis explicitly includes all of those genetic factors and environmental events (including interactions), which are necessary for MS-pathogenesis, regardless of whether these are known, suspected, or as yet unrecognized. Nevertheless, in addition, “true” randomness seems to play a critical role in disease-pathogenesis. This observation provides empirical evidence that undermines the widely-held deterministic view of nature. Moreover, both sexes seem to have a similar genetic and environmental disease-basis. If so, this indicates that this random element is primarily responsible for the currently-observed differences in disease-expression between susceptible-women and susceptible-men.
Introduction

Multiple sclerosis (MS)-pathogenesis requires both environmental-events and genetic-factors [1-4]. Considering genetics, familial-aggregation of MS-cases is well-established. MS-risk is increased ~30-fold in non-twin siblings and ~250-fold in monozygotic (MZ)-twins of an MS-proband [1,2,5]. Moreover, 233 MS-associated genetic-traits are now identified [6]. Nevertheless, MS-genetics is complex. The strongest MS-association is with the Class-II haplotype, HLA-DRB1*15:01-DQB1*06:02, located at (6p21), having an odds-ratio (OR) of (~3) in heterozygotes and of (~6) in homozygotes [1,2,5,6]. Other MS-associations are quite weak [6] – (median — OR = 1.158; interquartile — range = 1.080 – 1.414). Also, DRB1*15:01-DQB1*06:02 is highly “selected”, accounting for (~13%) of DRB1-DQB1-haplotypes – the most frequent such haplotype – among European-decedents [1-8]. Moreover, everyone (except MZ-twins) possesses a unique combination of the 233 MS-associated genetic-traits [3]. Finally, the observed probability-range for MZ-twin-concordance is: (0.11 — 0.46) and, consequently, genetics plays only a minor role in determining disease-expression (Table-4; Reference:[3]).

MS is also linked to environmental-events. First, a well-documented month-of-birth effect, linking MS-risk to the solar cycle, likely implicates intrauterine/perinatal environmental-events in MS-pathogenesis [2,9-11]. Second, given an MS-proband, the MS-recurrence-rate for dizygotic (DZ)-twins exceeds that for non-twin siblings [2,3,5] – also implicating intrauterine/perinatal environmental-events [2,3]. Third, MS becomes increasingly prevalent farther north or south from equatorial-regions [2,12]. Because this gradient is also evident for MZ-twin-recurrence-rates (Table-4; Reference:[3]), environmental-factors are likely responsible. Fourth, a prior Epstein-Barr viral (EBV) infection is found in almost all (> 99%) current MS patients [2,13,14]. If these rare EBV-negative patients represent false-negative-tests – either from inherent-errors when using any fixed antibody-titer “cut-off” to determine EBV-positivity, or from only determining antibody-responses to some EBV-antigens [2] – then one can conclude that EBV-infection is a necessary-factor in every causal-pathway, which led to MS in these individuals [2]. Regardless, an EBV-infection must somehow be involved in MS-pathogenesis [2,13,14]. Lastly, smoking and vitamin-D deficiency are implicated in MS-pathogenesis [2,15,16].

This manuscript presents an analysis regarding genetic and environmental susceptibility to MS [4] in a relatively non-mathematical format to make its conclusions accessible. The terms and definitions used for this analysis are presented in Table-1. For interested readers, the mathematical-development is presented in the Supplemental-Material. This analysis is based on the Canadian-Collaborative-Project-on-Genetic-Susceptibility-to-Multiple-Sclerosis (CCPGSMS)-dataset [5,8,9,17-23] – a summary of which is provided in the Supplemental-Material-Sections:10a-b. The CCPGSMS-dataset includes 29,478 MS-patients (born: 1891 — 1993) – estimated to represent (65 — 83%) of Canadian MS-patients [5,23,24]. This cohort is assumed to represent a large random sample of the Canadian MS-population. Also, this
single population provides point-estimates and confidence-intervals for the MS-recurrence-rates in MZ-twins, DZ-twins, and non-twin siblings (S), and for the time-dependent changes in the female-to-male \((F:M)\)-sex-ratio.

Methods

1. **Genetic-Susceptibility**

 A population \((Z)\), consists of \(N\) individuals. The “genetically-susceptible” \((G)\)-subset includes everyone who has any non-zero chance of developing MS under some environmental-conditions. Each of the \((m \leq N)\) individuals in the \((G)\)-subset \((i = 1, 2, \ldots, m)\) has a unique-genotype \([G_i]\). The probability of the event that a proband, randomly-selected from \((Z)\), is a \((G)\)-subset member is: \(P(G) = m/N\).

 Membership in \((G)\) is assumed independent of the environmental-conditions during any specific Time-Period \((E_T)\) – see legend Table-2; considering the definition of \((E_T)\).

 The \((MS)\)-subset includes everyone who either has, or will subsequently develop, MS. The probability of the event that a proband, randomly-selected from \((Z)\), is both an \((MS)\)-subset member and whose relevant-exposures occurred during \((E_T)\), is called the \(MS\)-penetrance for the population \((Z)\) during \((E_T)\), or \(P(MS \mid E_T)\). Also, during \((E_T)\), the probability of the event that a proband, randomly-selected from \((G)\), is an \((MS)\)-subset member, is called the \(MS\)-penetrance for the \((G)\)-subset during \((E_T)\), or \(P(MS \mid G, E_T)\). Both penetrance-values depend upon the environmental-conditions during \((E_T)\).

 Also defined are the subsets of susceptible-women \((F, G)\) and susceptible-men \((M, G)\). Their \(MS\)-penetrance-values, during \((E_T)\), are:

 \[
 Zw = P(MS \mid G, F, E_T)
 \]

 and:

 \[
 Zm = P(MS \mid G, M, E_T).
 \]

 These \(MS\)-penetrance-values, \((Zw)\) and \((Zm)\), are also called the “failure-probabilities” for susceptible-women and susceptible-men during \((E_T)\). During any \((E_T)\), because the proportion of women in \((G)\) is independent of environmental-conditions, the \((F:M)\)-sex-ratio always reflects the ratio of these two failure-probabilities (see Supplemental-Material-Section:5d).

2. **Environmental-Susceptibility**

 For each \((G)\)-subset member, a family of exposures is defined that includes every set of environmental-exposures, each of which is “sufficient”, by itself, to cause MS in that person. Moreover, for any susceptible-individual to develop MS, that person must experience at least one of the “sufficient-exposure-sets” within their family. Individuals sharing the same family of sufficient-exposures – although possibly requiring different “critical-exposure-intensities” \([4]\) – belong to the same “exposure-group"
Certain environments may be sufficient to cause MS in anyone but are so improbable (e.g., intentional inoculation of someone with myelin proteins or other agents) that, effectively, they never occur spontaneously. Nevertheless, even individuals who can only develop MS under such extreme (or unlikely) conditions, are still (G)-subset members – i.e., they can develop MS under some environmental-conditions.

The probability of the event (E) – i.e., that a randomly-selected member of (G), during (ET), experiences an environment sufficient to cause MS in them – is represented as: P(E | G, ET). A mathematical definition for the (E)-event is provided in the Supplemental-Material-Section:1a.

Each set of sufficient-exposures is completely undefined and agnostic regarding: 1) how many environmental-exposures are involved; 2) when, during life, and in what order, these exposures need to occur; 3) the intensity and duration of the required exposures; 4) what these exposures are; 5) whether any of these exposures needs to interact with any genetic-factors; and 6) whether certain exposures need to be present or absent. The only requirement is that each exposure-set, taken together, is sufficient, by itself, to cause MS in a specific susceptible-individual or in susceptible-individuals belonging to the same exposure-group.

3. MZ-Twins, DZ-Twins, and Siblings

The term (MZ) represents the event that a proband, randomly-selected from (Z), is an (MZ)-subset member or, equivalently, is an MZ-twin. This proband’s twin is called their “co-twin”. The probability that the proband belongs to the (MS,MZ)-subset and their co-twin belongs to (MZ) is the same as the probability that the proband belongs to (MZ) and their co-twin belongs to (MS,MZ). Therefore, for clarity, (MS,MZ) indicates this subset (or event) for the proband, whereas (MZMS) indicates the same subset (or event) for their co-twin. The analogous subsets (or events) for DZ “co-twins” (DZMS) and non-twin “co-siblings” (SMS) are defined similarly (Table-1).

Consequently, P(MS | MZMS) represents the life-time probability that a randomly-selected proband belongs to (MS,MZ), given that their co-twin belongs to (MZMS) – a probability estimated by the proband-wise (or case-wise) MZ-twin-concordance-rate [25].

The term P(MS | IGMZ) represents this concordance-rate – i.e., P(MS | MZMS) – adjusted because MZ-twins, in addition to sharing “identical” genotypes (IG), also share intrauterine and, probably, other environments. This adjustment – made by multiplying the proband-wise MZ-twin-concordance-rate by the (S:DZ) concordance-ratio [4] – isolates the genetic-contribution to the observed MZ-twin concordance-rates (see Supplemental-Material-Section:2a).
4. **Estimating \(P(G) \)**

If the population \((Z)\) and the \((G)\)-subset are identical, then, during any \((E_T)\), the **MS-penetrance** of \((Z)\) and \((G)\) are also identical. Consequently, the ratio of these two **penetrance-values** \([4]\) estimates \(P(G) \) such that:

\[
P(G) = \frac{P(MS \mid E_T)}{P(MS \mid G, E_T)} \quad \text{Equation-1}
\]

If this ratio is (1), then everyone in the population can develop MS under some environmental-conditions. However, if the **MS-penetrance** of \((G)\) exceeds that of \((Z)\), then this ratio is less than (1), indicating that only some members of \((Z)\) have any possibility of developing MS, regardless of any exposure they either have had or could have had. Even if the “exposure-probability”, \(P(E \mid G, E_T) \), never reaches 100% under any realistic conditions, if \((Z)\) and \((G)\) are the same, then this ratio is (1) during every \((E_T)\). Moreover, in any circumstance where: \([p = P(F \mid G) \neq P(F)]\), it must be that: \((P(G) < 1)\).

5. **Data-Analysis**

Cross-sectional-Models use data from the “current” \((E_T)\) – Table-2. *Longitudinal-Models* use data regarding changes in MS-epidemiology, which have occurred over the last century \([3,4,23]\) – see also Supplemental-Material; Figure-S1. *Cross-sectional-Models* make the two common assumptions that:

1) **MZ-twinning** is independent of genotype and: 2) **MS-penetrance** is independent of \((MZ)\)-subset membership (Supplemental-Material-Section:4a). *Longitudinal-Models* make neither assumption. Initially, “**plausible-value-ranges**” are defined for both “observed” and “non-observed” parameter-values (Table-2). Subsequently, a “substitution-analysis” determined those parameter-value-combinations (solutions) that fall within the “**plausible-value-ranges**” for each parameter. For each Model, \((\sim 10^{11})\) possible parameter-value-combinations were systematically-interrogated.

Currently, **MS-penetrance** for female-probands, whose co-twin belongs to \((MZ_{MS})\), is \((5.7)\)-fold greater than **MS-penetrance** for comparable male-probands (Table-2). Moreover, currently, both the \((F: M)\)-sex-ratio and \(P(MS)\) are increasing \([2-4,23]\). Under such circumstances, almost certainly, the current **MS-penetrance** in susceptible-women exceeds that in susceptible-men (see Supplemental-Material-Sections:3a&7g). Therefore, it is assumed that, currently:

\[
Z_w = P(MS \mid F, G) > P(MS \mid M, G) = Z_m
\]

No assumptions are made regarding the circumstances of other **Time-Periods**

6. **Cross-sectional Models:**
For notational simplicity, parameter-abbreviations are used: MS-penetrance for the ith susceptible individual is: $\{x_i = P(MS \mid G_i)\}$; the set (X) consists of MS-penetrance values for all susceptible-individuals – i.e., $(X) = (x_1, x_2, ..., x_m)$; the variance of (X) is: σ_X^2; MS-penetrance for the (G)-subset is: $x = P(MS \mid G)$; the adjusted MZ-twin concordance-rate is: $x' = P(MS \mid IG_{MS})$.

During any (E_T), the MS-penetrance for (Z) is $P(MS)$. As demonstrated in the Supplemental-Material-Section:4a, during any (E_T), the MS-penetrance for (G) is:

$$x = (x'/2) \pm \sqrt{(x'/2)^2 - \sigma_X^2}$$

Consequently, during any (E_T), the probability $P(G)$ is estimated by the ratio of these penetrance-values (Methods #4).

7. Longitudinal Models:

General Considerations

Using standard survival-analysis methods [26], the exposure (u) is defined as the odds that the event (E) occurs for a randomly-selected member of the (G)-subset during any Time-Period (see Supplemental-Material-Sections:5a-c). Hazard-functions in men, $h(u)$, and women, $k(u)$, are defined in the standard manner [26] and, if these unknown hazard-functions are proportional, a proportionality-factor ($R > 0$) is defined such that:

$$k(u) = R \cdot h(u).$$

The exposure-level ($u = a$), during some Time-Period, is then converted into “cumulative-hazard-functions”, $H(a)$ and $K(a)$, which represent definite integrals of these unspecified hazard-functions from an exposure-level of: $(u = 0)$ to an exposure-level of: $(u = a)$.

[NB: Cumulative-hazard measures exposure, not failure. Failure is the event that the proband develops MS. The mapping of $(u = a)$ to $H(a)$ or $K(a)$, if proportional, is “one-to-one and onto” [4]. Therefore, both exposure-measures are equivalent. However, the failure-probabilities (Zw and Zm) are exponentially related to cumulative-hazard and, therefore, are mathematically-tractable, despite the underlying hazard-functions being unspecified. Moreover, any two points on any exponential curve defines the entire curve.]

Unlike true-survival, for MS, the failure-probability may not approach 100% as the exposure-probability approaches unity (see Supplemental-Material-Sections:5b-e). Moreover, the limiting-value for this failure-probability in susceptible-men (c) and susceptible-women (d) may not be the same. Also, (c) and (d) are constants, estimated from the parameter-values of (ZW), (Zm), $P(MS)$, and the $(F:M)$-
sex-ratio “observed” during any two Time-Periods.

The exposure-level at which MS becomes possible (i.e., the threshold) must be zero for susceptible-women or susceptible-men or both. The difference between the threshold in women (λ_w) and that in men (λ_m) is defined as:

$$ (\lambda = \lambda_w - \lambda_m). $$

And, therefore: if: ($\lambda_w > \lambda_m$); then (λ) is positive and ($\lambda_m = 0$)

if: ($\lambda_w < \lambda_m$); then (λ) is negative and ($\lambda_w = 0$)

if: ($\lambda_w = \lambda_m$); then: ($\lambda = \lambda_w = \lambda_m = 0$)

As demonstrated in the Supplemental-Material-Section:7a, if hazards are proportional and if: $[H(a) \geq \lambda]$, the cumulative-hazards in men and women are related such that:

$$ K(a) = R \ast [H(a) - \lambda]$$

Moreover, any causal-chain leading to disease can only include genetic-factors, environmental-events, or both (including any interactions). Therefore, if any member of (G) experiences an exposure sufficient to cause MS in them, and if, in this circumstance, this person’s probability of developing (MS) is less than (100%); then their outcome, in part, must be due to a “truly” random mechanism.

Consequently, if randomness plays no role in MS-pathogenesis, then: ($c = d = 1$) – see Discussion.

Also, regardless of proportionality, any disparity between women and men in their likelihood of developing MS, during any Time-Period, must be due to a difference between (c) and (d), between susceptible-men and women in the likelihood of their experiencing a sufficient-exposure, or between both (Supplemental-Material-Section:5d). Therefore, assuming that: ($c = d \leq 1$), also assumes that any difference between men and women in their failure-probability is due, exclusively, to a difference in their likelihood of experiencing a sufficient-exposure.

Non-proportional Hazard

If hazards in women and men are not proportional, the “plausible-parameter-value” ranges still limit possible solutions. However, any difference that these values take during different Time-Periods could be attributed, both potentially and plausibly, to the different environmental-circumstances of different times and places.

Proportional Hazard
The “apparent” value of \(R \), or \(R^{\text{app}} \), is defined as the value of \(R \) when: \(c = d \leq 1 \). As demonstrated in Supplemental-Material-Sections:7c&7g, for proportional-hazards with proportionality-factor \(R \), three conditions must hold:

1) \(R \leq 1 \); or, if: \(R < R^{\text{app}} \); or, if: \(\lambda \leq 0 \); then: \(c < d \)

2) if: \(c = d \leq 1 \); then, both: \(R > 1 \) and: \(\lambda > 0 \)

3) if: \(R > 1 \); then: \(\lambda > 0 \)

Condition #1 excludes any possibility that: \(c = d \leq 1 \) – see Figures-1&2 and Results.

Conditions #2&3 (where: \(\lambda > 0 \)), require that, as the odds of a sufficient-exposure decreases, there must come a point where only susceptible-men can develop MS. This implies that, at (or below) this sufficient-exposure-level, \(R = 0 \). Consequently, the additional requirement that: \(R > 1 \) poses a potential paradox.

There are two obvious ways to avoid this paradox (see Supplemental-Material-Sections:7d-h). First, if the hazards are non-proportional, although this creates other problems. For example, women and men in the same exposure-group, necessarily, have proportional-hazards (Supplemental-Material-Section:7h). Therefore, if women and men are never in the same exposure-group, each sex must develop MS in response to distinct \(E_i \) families, in which case female-MS and male-MS would represent different diseases.

Second, Condition #1 is compatible with any \(\lambda \) so that, if: \(\lambda > 0 \) and \(R \leq 1 \), then, at every sufficient-exposure-level \(u = a \), the probability that a susceptible-man, randomly-selected, will experience a sufficient-exposure is as great, or greater, than this probability for a susceptible-woman.

Results

1. Cross-sectional Models

For all Cross-sectional analyses [4], the supported-range for \(P(G) \) is:

\[0.003 \leq P(G) < 0.83 \]

From Equation-1, assuming: \(x \geq x'/2 \); the supported-range for \(P(G) \) is:

\[0.003 \leq P(G) < 0.55 \]

2. Longitudinal Models

For either non-proportional or proportional-hazards and, if proportional, any \(R \), the supported-range for \(P(G) \) is:

\[0.001 < P(G) \leq 0.52 \]

For proportional-hazards and: \(c = d = 1 \), the supported ranges for the threshold-difference between susceptible-women and susceptible-men (\(\lambda \)); for the proportionality-factor \(R = R^{\text{app}} \); and the probability-ratio for receiving a sufficient-exposure – i.e., \(P(E \mid F,G)/P(E \mid M,G) \) – are:
0.0005 ≤ λ ≤ 0.13
1.3 ≤ R = R^{opp} ≤ 1177
1.2 ≤ P(E|F,G)/P(E|M,G) ≤ 32

For proportional-hazards and both (R = 1) & (d = 1), the supported-ranges for (λ) and for the limiting probability of developing MS in susceptible-men (c) are:

0.002 < λ < 2.4
0.002 ≤ c ≤ 0.786

Discussion

The two principal conclusions from this analysis are: 1) the penetrance of (G) is greater than that of (Z) and, thus, not everyone in the population is susceptible to developing MS and: 2) at maximum exposure-levels, the limiting probability for developing MS in susceptible-men (c) is less than that for susceptible-women (d). These two conclusions, stated explicitly, are:

1. \(P(G) \leq 0.52 \)
and:
2. \(c < d \leq 1 \)

Conclusion #1 seems inescapable (see Results). Indeed, given any of the reported MZ-twin-concordance-rates, the notion that MS-penetrance for (G) is the same as that for (Z) is untenable (Table-4; Reference:[3]). Therefore, a large proportion of the population (Z) must be impervious to developing MS, regardless of any environmental-events they either have experienced or could have experienced.

Regarding Conclusion #2, however, scenarios exist where: \(c = d \leq 1 \) might be possible. Principal among these is the possibility of non-proportional-hazards, which requires female-MS and male-MS to be different diseases (Methods #7). However, given the genetic and environmental evidence, this too seems untenable. For example, all but one of the 233 MS-associated loci are autosomal, and the single X-chromosome risk-variant is present in both sexes [6] – see also Supplemental-Material-Section:7f. Moreover, the MS-association with different HLA-haplotypes is the same for both sexes – see Tables-3&4; Reference:[4]. Family studies also suggest a common genetic-basis for MS in women and men [2-5,8,22,27,28]. Thus, both twin and non-twin siblings (male or female) of an MS-proband have increased MS-risk, regardless of proband sex [5,27,28]. Similarly, both sons and daughters of conjugal couples have markedly increased MS-risk [8,27]. Also, male and female full- or half-siblings with an MS-proband parent (mother or father) have increased MS-risk [2,8,22,27]. Each of these observations, supports a similar (if not the same) genetic-basis for MS in both sexes.

Also, contrary to those circumstances required whenever the proportionality-factor (R) is greater than (1) – i.e., when (R > 1) – women don’t seem more likely than men to experience the MS-associated environmental-events (either known or suspected). Thus, for both sexes, the month-of-birth effect is
equally evident [2,4,9-11]; the latitude gradient is the same [2,4,12]; the impact of intrauterine/perinatal environments is similar (Supplemental-Material-Section:2c); EBV infection is equally common [2,4,13,14]; vitamin-D levels are the same [2,4,15,16]; and smoking tobacco is actually less common among women [2,4]. Collectively, these observations suggest that, currently, each sex experiences the relevant environmental-events in an approximately equivalent manner. Taken together, this genetic and environmental evidence implies that female-MS and male-MS represent the same underlying disease-process and, therefore, that the hazards are proportional (Methods #7).

Also, several lines of evidence indicate that the proportional-hazard condition of: \((c = d \leq 1) \) is unlikely. First, the environmental-observations (described above) suggest that: \((R^{\text{app}} > R \approx 1) \), which is impossible whenever: \((c = d \leq 1) \) – see Methods #7 & Results. Second, as in Figure-1, whenever \((\lambda \leq 0) \) or whenever \((R \leq 1) \), the condition that: \((c < d) \) is established (Methods #7). Third, the alternative of: \((R > 1) \) & \((\lambda > 0) \) creates a potential paradox (Methods #7). Although there are ways to rationalize this potential paradox with: \((c = d \leq 1) \), in every case, the conditions required whenever: \((c < d \leq 1) \) are far less extreme [4]. Finally, the response-curves when: \((c = d \leq 1) \) & \((R > 1) \) are steeply ascending and present only a very narrow exposure-window to explain the \((F:M)-sex-ratio\) data [23] – see Figures-2A&2B. Moreover, following this narrow-window, the \((F:M)-sex-ratio\) decreases with increasing exposure. By contrast, the Canadian MS-data documents a steadily-progressive rise in the \((F:M)-sex-ratio\) over the past century [4,23] – see also Supplemental-Material; Figure-S1.

Nevertheless, whenever \((c < d) \), some susceptible-men will never develop MS, even when a susceptible-genotype co-occurs with a sufficient-exposure. Thus, the Canadian MS-data [5,8,9,17-23] seems to indicate that MS-pathogenesis involves a “truly” random element. This cannot be attributed to other, unidentified, environmental-factors (e.g., other infections, diseases, nutritional deficiencies, toxic-exposures, etc.) because each set of environmental-exposures is defined to be sufficient, by itself, to cause MS in a specific susceptible-individual. If other conditions were necessary for this individual to develop MS, then one (or more) of their sufficient-exposure sets would include these conditions (Methods #2). This also cannot be attributed to the possibility that some individuals can only develop MS under improbable conditions. Thus, the estimates for \((c) \) and \((d) \) are based solely upon observable parameter-values (Methods #7). Finally, this cannot be attributed to mild or asymptomatic-disease because this disease-type occurs disproportionately among women compared to the current \((F:M)-sex-ratio\) in MS [4,23]. Naturally, invoking “truly” random-events in disease-expression requires replication. Nevertheless, any finding that: \((c < d) \) indicates that the behavior of some complex physical-systems (e.g., organisms) involve “truly” random-mechanisms.

Moreover, considering those circumstances where: \((R = 1) \) & \((d = 1) \) and, also, considering a
man, randomly-selected from the \((M, G)\)-subset, who also experiences a sufficient-environment, the chance that he will not develop MS is \((21 - 99\%)\) – see Results. Consequently, both the genetic and environmental data, which support the conclusion that: \((R \approx 1)\) – see above – also, support the conclusion that it is this “random-element” of disease-pathogenesis, which is primarily responsible for the difference in disease-expression currently-observed between susceptible-women and men. Importantly, the fact that a process favors disease-development in women over men does not imply that the process must be non-random. For example, when flipping a biased-coin compared to a fair-coin – if both are random-processes – the only difference is that, for the biased-coin, the two possible outcomes are not equally likely. In the context of MS-pathogenesis, the characteristics of “female-ness” and “male-ness” would each simply be envisioned as biasing the coin differently (whatever characteristics are implied by these two terms).

Other authors, modeling immune-system function, also invoke random-events in MS-disease-expression [4]. In these cases, however, randomness is incorporated into their Models to reproduce the MS-disease-process more faithfully. However, the fact that including randomness improves a model’s performance doesn’t constitute a test of whether “true” randomness ever occurs. For example, the outcome of a dice-roll may be most accurately modeled by treating this outcome as a random-variable with a well-defined probability-distribution. Nevertheless, the question remains whether this probability distribution represents a complete description of the process, or whether this distribution is merely a convenience, compensating for our ignorance regarding the initial orientation of the dice and the direction, location, and magnitude of the forces that act on the dice during the roll [4,29,30].

It is hard to imagine that the outcomes of complex-biological-processes such as evolution and immune-function are pre-determined events, especially considering the fact that both processes are so remarkably adaptive to contemporary external-events [4,30]. Nevertheless, proving that any macroscopic-process is “truly” random is difficult. This requires an experiment (i.e., a test), in which the outcome predicted by determinism differs from that predicted by non-determinism.

The Canadian MS-data presents an opportunity to apply just such a test. Thus, the widely-held deterministic-hypothesis [4,30] requires that: \((c = d = 1)\). Any observation that either: \((c < d = 1)\) or: \((c \leq d < 1)\) indicates that “true” randomness is a component of disease-development and undermines the deterministic-view. Therefore, the Canadian MS-data [5,8,9,17-23], which strongly implies that: \((c < d)\), provides empirical evidence in support of the non-deterministic hypothesis. Importantly, this analysis explicitly includes all those genetic-factors and environmental-events (including interactions), which are necessary for MS-pathogenesis, regardless of whether these factors, events, and interactions are known, suspected, or as yet unrecognized. Nevertheless, in addition to these necessary prerequisites, “true” randomness also seems critical to disease-pathogenesis. Moreover, both sexes seem to have the same
underlying-disease. Thus, both seem to have a similar genetic-basis and, also, a similar response to the same environmental disease-determinants (see above). These observations suggest both that the hazards are proportional (Methods #7) and that \(R \approx 1 \). If correct, this indicates that it is this “truly” random-element in disease-pathogenesis, which is primarily responsible for the currently-observed differences in disease-expression between susceptible-women and susceptible-men.
References

30. Layzer D. Why we are free: Consciousness, free will and creativity in a unified scientific worldview. Information Publisher. 2021;ISBN-10 0983580251.
Figure Legends

Figure 1. Response-curves representing the likelihood of developing MS in genetically-susceptible women (black lines) and men (red lines) with an increasing probability of a sufficient environmental exposure – see Methods #2 & Supplemental-Material-Section:1a. The curves depicted in Panels A and B are proportional, with a proportionality-factor \((R)\), although the environmental threshold is greater for men than for women – i.e., under conditions in which: \((\lambda < 0)\) – see Text. The curves depicted in Panels C and D are “strictly” proportional, meaning that the environmental threshold is the same for both men and women – i.e., under conditions in which: \((\lambda = \lambda_w = \lambda_m = 0)\) – see Text. The blue lines represent the change in the \((F:M)\)-sex-ratio (plotted at various scales; indicated in each Panel) with increasing exposure. The thin grey vertical lines represent the portion of the response-curve that covers the change in the \((F:M)\)-sex-ratio from 2.2 to 3.2 (i.e., the actual change observed in Canada [23] between Time-Periods #1 & #2). The grey lines are omitted in Panel C because the observed \((F:M)\)-sex-ratio change is not possible under these conditions. In Panel A, although the \((F:M)\)-sex-ratio change is possible, the condition \((Zw > Zm)\) is never possible throughout the entire response-curve. Response-curves A, B, and D reflect conditions in which \((R < 1)\); whereas curve C reflects conditions in which \((R > 1)\). If \((R = 1)\), the blue line in Panel C would be flat (see Supplemental-Material-Sections;7c-f). Response-curves A and C reflect conditions in which \((c = d = 1)\); whereas curves B and D reflect those conditions in which \((c < d = 1)\).

Figure 2. Response-curves for the likelihood of developing MS in genetically susceptible-women (black lines) and men (red lines) with an increasing probability of a sufficient environmental exposure – see Methods #2 & Supplemental-Material-Section:1a. The curves depicted are proportional, with a proportionality-factor \((R)\), although the environmental threshold is greater for women than that it is in men – i.e., these are conditions in which: \((\lambda > 0)\). Also, all of these response-curves represent actual solutions. The blue lines represent the change in the \((F:M)\)-sex-ratio (plotted at various scales; indicated in each Panel) with increasing exposure. Panels A and B are for conditions where: \((c = d = 1)\). The value of \((R)\), specific for this condition, is termed \((R^{opp})\). Indeed, for every condition in which: \((c = d \leq 1)\), both: \((R = R^{opp})\) and the response curves for men and women have the same relationship to each other (see Supplemental-Material-Sections;7c-f). By contrast, Panels C and D represent conditions where: \((c < d \leq 1)\) and, in these circumstances: \((R < R^{opp})\). To account for the observed increase in the \((F:M)\)-sex-ratio, the response-curves in Panels A and B require that the Canadian observations [23] were made within a very narrow window – i.e., for most of these response-curves, the \((F:M)\)-sex-ratio is actually decreasing. By contrast, the response-curves in Panels C and D demonstrate an increasing \((F:M)\)-sex-ratio for every two-point interval of exposure along the entire response-curves for women and men. The thin grey vertical lines represent the portion of these response-curves (for the depicted solution), which represents the actual change in the \((F:M)\)-sex-ratio for specific “solutions” between Time-Periods #1 & #2.
Table 1. Definition of Terms

<table>
<thead>
<tr>
<th>Terms</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>((Z))</td>
<td>The population – a set consisting of ((N)) individuals</td>
</tr>
<tr>
<td>((F,M))</td>
<td>Subsets of women ((F)) and men ((M)) within ((Z))</td>
</tr>
<tr>
<td>((MS))</td>
<td>Subset of all individuals within ((Z)) who either have, or will subsequently develop, MS</td>
</tr>
<tr>
<td>((G))</td>
<td>Subset of all individuals within ((Z)) who have any non-zero chance of developing MS under some environmental conditions</td>
</tr>
<tr>
<td>((MZ), (DZ), (S))</td>
<td>Subsets of monozygotic-twins ((MZ)), dizygotic-twins ((DZ)), and non-twin siblings ((S)) within ((Z))</td>
</tr>
<tr>
<td>Proband</td>
<td>An individual, randomly-selected either from ((Z)) or from one of its subsets</td>
</tr>
<tr>
<td>Co-twin, Co-sibling</td>
<td>Either a twin – ((MZ)) or ((DZ)) – or a non-twin sibling ((S)) of the proband</td>
</tr>
<tr>
<td>Recurrence Rate</td>
<td>Probability that the proband is a member of the ((MS))-subset, given that their co-twin or non-twin co-sibling is a member of the ((MS))-subset</td>
</tr>
<tr>
<td>Penetrance</td>
<td>Probability that a proband will develop MS over the course of their lifetime</td>
</tr>
<tr>
<td>((MZ, MS))</td>
<td>Subset of (MZ)-twin probands within the ((MS)) subset</td>
</tr>
<tr>
<td>((MZ_{co}))</td>
<td>Subset of (MZ) co-twins within the ((MS)) subset</td>
</tr>
<tr>
<td>((DZ_{co}), (S_{co}))</td>
<td>Subsets of (DZ) co-twins ((DZ_{co})) and non-twin co-siblings ((S_{co})) within the ((MS)) subset</td>
</tr>
<tr>
<td>(P(MS</td>
<td>G_{co}))</td>
</tr>
<tr>
<td>(E_r)</td>
<td>Some specific Time-Period – see legend: Table 2</td>
</tr>
<tr>
<td>(P(MS</td>
<td>E_r))</td>
</tr>
<tr>
<td>(C)</td>
<td>Ratio of MS-penetrence during Time-Period #1, (P(MS</td>
</tr>
<tr>
<td>(P(MS</td>
<td>G, E_r))</td>
</tr>
<tr>
<td>(Z_w)</td>
<td>Penetrance of MS for the subset of susceptible-women ((F, G)) within ((Z)) during ((E_r)) – Also called the failure probability for susceptible-women during ((E_r))</td>
</tr>
<tr>
<td>(Z_m)</td>
<td>Penetrance of MS for the subset of susceptible-men ((M, G)) within ((Z)) during ((E_r)) – Also called the failure probability for susceptible-men during ((E_r))</td>
</tr>
<tr>
<td>(c, d)</td>
<td>Limiting values ((c, d)) for the failure probability in susceptible-men ((C)); and susceptible-women ((d)) – i.e., ((Zm \leq c \leq 1)) and ((Zw \leq d \leq 1))</td>
</tr>
<tr>
<td>(p)</td>
<td>Proportion of women in the ((G)) subset – i.e., (p = P(F</td>
</tr>
<tr>
<td>((E))</td>
<td>Event that a randomly-selected member of ((G)) – the proband – experiences an environment sufficient to cause MS in them</td>
</tr>
<tr>
<td>(P(E</td>
<td>G, E_r))</td>
</tr>
<tr>
<td>(u)</td>
<td>Variable, which represents the level of environmental-exposure as measured by the odds that the event ((E)) occurs during any ((E_r))</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Level of environmental-exposure during some specific ((E_r)) – i.e., when: ((u = \alpha))</td>
</tr>
<tr>
<td>(h(u), h(u))</td>
<td>Unknown (and unspecified) hazard functions for susceptible-men – (h(u)); and for susceptible-women – (k(u))</td>
</tr>
<tr>
<td>(H(\alpha), K(\alpha))</td>
<td>Cumulative hazard functions for susceptible-men – (H(\alpha)); and for susceptible-women – (K(\alpha)) – Defined as the definite integrals of these unknown and unspecified hazard functions from an exposure-level of: ((u = 0)) to an exposure-level of: ((u = \alpha)).</td>
</tr>
<tr>
<td>(R > 0)</td>
<td>Value of the proportionality-factor ((\text{if the hazards are proportional})) – i.e., (k(u) = R \cdot h(u))</td>
</tr>
<tr>
<td>(R^{\text{app}})</td>
<td>The “apparent” value of (R) – i.e., the value of (R) for proportional hazards when: ((c = d \leq 1))</td>
</tr>
<tr>
<td>(\lambda_w, \lambda_m)</td>
<td>Environmental-exposure thresholds for developing MS in susceptible women ((\lambda_w)) and susceptible men ((\lambda_m)) – see Text</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Difference in the environmental-exposure threshold between susceptible women and susceptible men: (\lambda = \lambda_w - \lambda_m)</td>
</tr>
</tbody>
</table>

It is made available under a [CC-BY-NC 4.0 International license](https://creativecommons.org/licenses/by-nc/4.0/).
Table 2. Parameter-values – Point Estimates and Plausible Ranges *

<table>
<thead>
<tr>
<th>Observed Parameters</th>
<th>Definition</th>
<th>Estimate</th>
<th>Estimated Range †</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetrance of MS for the Population (Z)</td>
<td>$P(\text{MS}) = P(\text{MS} \mid Z)$</td>
<td>0.0035</td>
<td>0.001 – 0.006</td>
</tr>
<tr>
<td>Proportion of women in the Population (Z)</td>
<td>$P(F) = P(F \mid Z)$</td>
<td>0.504</td>
<td>–</td>
</tr>
<tr>
<td>Proportion of women in the (MS) subset</td>
<td>$P(F \mid MS)$</td>
<td>0.717</td>
<td>0.66 – 0.78</td>
</tr>
<tr>
<td>Time-Period #1 (1941 – 1945)</td>
<td>$P(F \mid MS)_1$</td>
<td>0.685</td>
<td>0.67 – 0.71</td>
</tr>
<tr>
<td>Time-Period #2 (1976 – 1980)</td>
<td>$P(F \mid MS)_2$</td>
<td>0.762</td>
<td>0.74 – 0.78</td>
</tr>
<tr>
<td>Recurrence-Rate for MZ-twins (MZ)</td>
<td>$P(\text{MS} \mid MZ_{\text{MS}})$</td>
<td>0.253</td>
<td>0.18 – 0.33</td>
</tr>
<tr>
<td>Female MZ-twins</td>
<td>$Zw = P(\text{MS} \mid F, MZ_{\text{MS}})$</td>
<td>0.340</td>
<td>0.24 – 0.44</td>
</tr>
<tr>
<td>Male MZ-twins</td>
<td>$Zm = P(\text{MS} \mid M, MZ_{\text{MS}})$</td>
<td>0.065</td>
<td>0.014 – 0.18</td>
</tr>
<tr>
<td>Difference between females and males</td>
<td>$Zw = Zm$</td>
<td>0.275</td>
<td>0.16 – 0.39</td>
</tr>
<tr>
<td>Recurrence-Rate for DZ-twins (DZ)</td>
<td>$P(\text{MS} \mid DZ_{\text{MS}})$</td>
<td>0.054</td>
<td>0.018 – 0.09</td>
</tr>
<tr>
<td>Recurrence-Rate for non-twin siblings (S)</td>
<td>$P(\text{MS} \mid S_{\text{MS}})$</td>
<td>0.029</td>
<td>0.017 – 0.041</td>
</tr>
<tr>
<td>$(S:DZ)$ Concordance-ratio</td>
<td>$P(\text{MS} \mid S_{\text{MS}}) / P(\text{MS} \mid DZ_{\text{MS}})$</td>
<td>0.537</td>
<td>0.12 – 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-observed Parameters</th>
<th>Definition</th>
<th>Estimate</th>
<th>Plausible Range ††</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of Population in the (G) subset</td>
<td>$P(G)$</td>
<td>–</td>
<td>$0 < P(G) \leq 1$</td>
</tr>
<tr>
<td>Proportion of women in the (G) subset</td>
<td>$p = P(F \mid G)$</td>
<td>–</td>
<td>$0 < P(F \mid G) < 1$</td>
</tr>
<tr>
<td>Ratio of $[P(\text{MS})]$ during Time-Period #1, to that during Time-Period #2</td>
<td>$C = [P(\text{MS})_1 / P(\text{MS})_2]$</td>
<td>–</td>
<td>$0.25 \leq C \leq 0.9$</td>
</tr>
</tbody>
</table>

* Estimated values and “plausible” ranges for observed and non-observed parameters [4] – Supplemental Material (Sections 10a-b). Because the MS-status of individuals born during Time-Period #2 (1976–1980), cannot be determined until 25-35 years later, all parameter estimates – except $P(F \mid MS)_1$ – are for the “current” Time-Period (2001–2015). Estimates for all observed parameter-values – except $P(\text{MS})$ and $P(F)$ – are exclusively from the CCPGSM-dataset [5,8,9,17-23]. The estimate for $P(\text{MS})$ is based upon three measures: 1) the population-prevalence of MS; 2) the age-specific prevalence of MS in the age-band of 45-54 years; and 3) the proportion of death certificates mentioning MS [3]. The parameter $P(F)$ is taken from the 2010 Canadian census [24]. Also, $P(\text{MS})$ has been increasing in many regions around the world – especially among women [3,4]. In Canada, based on the point-estimates provided in this Table, it has increased by (≥ 32%) between the two Time-Periods – see Supplemental-Material-Section:8a). If all of the environmental events, relevant to MS-pathogenesis, take place prior to the age of 30 years, then, for an individual born in 1975, (E_T) would extend from 1975 to 2005 whereas, for a person born in 1980, (E_T) would extend from 1980 to 2010. If the relevant age-window is different than 30 years, then the definition of (E_T) would change accordingly.

† Ranges represent the 95% confidence intervals [4]. To include a broader range of possible solutions, the range for $P(\text{MS})$ was expanded beyond the range of: $(0.0025 \leq P(\text{MS}) \leq 0.0046)$, which was supported by the three above methods [3]. The range for $P(F \mid MS)$ was similarly expanded [4], as was the range for the $(S:DZ)$ concordance-ratio, considering the
theoretical constraint [4] that: \((S: DZ) \leq 1\). Because \(P(F)\) is taken from a census of the entire "current" Canadian population at the time (2010), there is no estimated range [24].

†† Ranges represent the “plausible” parameter-value range for each parameter. For example, because, currently, both men and women can (and do) develop MS, \(P(G)\) cannot be (0) and \(P(F|G)\) cannot be either (0) or (1). Also, the theoretical upper-limit for the value of the ratio \((C)\) is 0.9 [2-4]. In addition, a greater than 4-fold increase in the prevalence of \(MS\) over the last 35 years seems implausible based upon the available world-wide evidence [2-4]; including the evidence for MS in Canada – see Supplemental Material (Sections 8a & 10a-b); see also Rosati G, Neurol Sci 2001;22:117-39.