Blood–Brain Barrier Opening in Alzheimer’s Disease Patients Using Portable Focused Ultrasound System

Sua Bae1, Keyu Liu1, Antonios N. Pouliopoulos1, Robin Ji1, Sergio Jiménez-Gambín1, Omid Yousefian1, Alina R. Kline-Schoder1, Alec Batts1, Danae Kokossis2, Akiva Mintz3, Lawrence S. Honig4, and Elisa E. Konofagou1,3*

1Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
2Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
3Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
4Department of Neurology and Taub Institute, Columbia University Irving Medical Center 10032, New York, NY, USA

Abstract

Focused ultrasound (FUS) has recently shown great promise in facilitating blood-brain barrier opening (BBBO) for drug delivery and immunotherapy in Alzheimer’s disease. However, FUS-mediated BBBO treatment is currently limited to systems integrated with the MRI or post-surgical implants, thus restricting its widespread clinical adoption. In this pilot study, we present the outcomes of a phase 1 clinical study with mild to moderate Alzheimer’s disease patients (N=6) using a portable neuronavigated FUS system that did not require surgery or an online MRI during treatment. BBBO occurred in 5 out of 6 subjects with the volume of 983±626 mm³ following a single session of FUS at the right frontal lobe. The outpatient treatment was completed within 34.8±10.7 min. Real-time cavitation monitoring was used to ensure the efficacy and safety of the BBBO procedure. Cavitation doses significantly correlated with the BBBO volume (R²>0.9, p<0.05), demonstrating the portable FUS system’s capability of predicting opening volumes. Larger BBBO volumes correlated with increased levels of Alzheimer’s disease biomarkers assayed in serum-derived extracellular vesicles, including Aβ42/Aβ40 (R²=0.74, p=0.1), Tau (R²=0.95, p=0.02), and P-Tau181 (R²=0.86, p=0.02), indicating the release of the two hallmark proteins into the bloodstream. Subjects showed a reduced Aβ accumulation rate in the treated frontal lobe region compared to the contralateral, as indicated by 18F-Florbetapir PET scans. Clinical changes in mini-mental state examination over 6 months were within the expected range of decline. In conclusion, we have shown the safety and feasibility of this low-cost and portable FUS for BBBO in Alzheimer’s patients, providing a new avenue for FUS treatment in Alzheimer’s disease, with or without drug delivery.

Correspondence to: Sua Bae, Elisa E. Konofagou
Full address: 630 West 168th Street, New York, NY 10032, USA
E-mail: sb4495@columbia.edu, ek2191@columbia.edu

Keywords: Alzheimer’s disease; blood–brain barrier; focused ultrasound; 18F-Florbetapir PET; biomarkers

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disorder, typically with progressive amnestic cognitive impairment, and its prevalence increases with the aged population growth\(^1\). Until recently, there were no effective disease modifying treatments. Recently monoclonal antibodies against amyloid beta (Aβ) have been shown to be effective, including aducanumab\(^2\), lecanemab\(^3\), and donenorab\(^4\). However, in general, drug treatments may be limited by the blood–brain barrier (BBB) that inhibits the access of therapeutic molecules to the central nervous system\(^5,6\). Most small molecule drugs, including anti-Aβ monoclonal antibodies, have very limited ability to penetrate the BBB\(^7–9\).

Although direct intracerebral infusion could possibly circumvent the BBB restriction, this invasive procedure entails risks\(^10\).

Microbubble-mediated focused ultrasound (FUS) is a promising non-invasive therapy for enhancing BBB permeability\(^11\). In this treatment, microbubbles are systemically administered while FUS induces the rapid oscillation of microbubbles, called cavitation, at a targeted volume in the brain (Fig. 1). Precise FUS treatment can induce local and transient BBB opening (BBBO) and promote immune response\(^12,13\).

Numerous preclinical studies have proven that BBBO can lead to a decrease in Aβ or tau proteins in the brain and the cognitive improvement with and without drugs by increased immune response such as microglial phagocytosis\(^14–16\).

Many clinical trials have demonstrated that magnetic resonance (MR)-guided focused ultrasound (MRgFUS) can safely and transiently open BBB in patients with Alzheimer’s disease\(^17–20\), amyotrophic lateral sclerosis\(^21\), Parkinson’s disease\(^22\), glioma\(^23,24\), and brain metastases\(^25\). Previous studies with Alzheimer’s disease patients have shown the modest reduction in \(^{18}\)F-Florbetaben uptake ratio in PET and no cognitive worsening after multiple sessions of MRgFUS treatments\(^17–20,26\). While currently MRgFUS is the most-used approach for clinical trials of BBBO, it generally requires the patient to stay still with their heads fixed by a stereotaxic frame in the MR scanner for a few hours. Alternatively, an implantable FUS device has been utilized in clinical trials, demonstrating a non-significant reduction in amyloid based on \(^{18}\)F-Florbetatir PET scans after multiple treatments\(^27\). Although this approach has been proven well-tolerated, it requires a burr hole achieved with brain surgery, making it invasive.

Given the need for repetitive treatments and the advanced age of Alzheimer’s disease patients, there is a compelling demand for facilitating a low-cost and non-invasive treatment approach. Portable neuronavigation-guided FUS (NgFUS) systems can provide FUS treatment outside an MR scanner in an outpatient room. Portable systems have been employed in both preclinical and clinical studies\(^28–31\), but only one clinical study has been reported in the context of Alzheimer’s disease, showing modest cognitive improvement after FUS\(^28\). However, this study did not induce BBBO or investigate if there were any changes in amyloid or tau protein load.
In this Phase 1 clinical study (NCT04118764), we assessed the clinical feasibility and safety of BBBO in six subjects with mild-to-moderate Alzheimer’s disease using a portable FUS system that we developed and verified in preclinical studies\[^{32-34}\]. A single 2-minute FUS sonication session was performed per subject without a stereotaxic frame or a MR scanner. Real-time cavitation monitoring was employed to measure the treatment dose and assess its capability of predicting BBBO volume in the human brain. To our knowledge, this is the first report of real-time cavitation mapping in the human brain using a portable FUS system. Neurological and biological effects of the portable FUS system were evaluated by blood biomarker analysis, \(^{18}\)F-Florbetapir PET scans, and mini-mental state examination (MMSE).

Results

Study Participants

Six Alzheimer’s disease patients (2M/4F, age = 69.7±7.2 yr) were enrolled in a phase 1 trial under FDA and Columbia University IRB approval (NCT04118764). Inclusion and exclusion criteria, including diagnosis of Alzheimer's disease, amyloid positivity on \(^{18}\)F-Florbetapir PET scan, and an MMSE score between 12 and 26, are listed in Supplementary Table 1. Enrolled patient characteristics are shown in Supplementary Table 2. The timeline of the clinical trial including treatment and imaging is presented in Fig. 2.

Portable NfUS system allowed for efficient BBBO

All subjects received a single FUS treatment at the right frontal lobe, while seated in a medical recliner chair in an outpatient unit with the portable FUS system guided by neuronavigation and cavitation monitoring (Supplementary Fig. 1). FUS was deployed through a contact area with a diameter of less than 50 mm, which allowed for partial hair shaving instead of complete head shaving (Supplementary Fig. 2). The FUS transmit power was adjusted to achieve a target peak-negative pressure of 0.2 MPa at the focus in the brain, based on the skull-induced attenuation estimates (Table 1). All sessions were uneventful and the average treatment procedure time was 34.8±10.7 min (Table 1).

Five subjects had successful BBBO at the treated location in the frontal lobe (Fig. 3A), and the quantified contrast-enhanced volume in the post-FUS T1-weighted MRI, which serves as a measure of BBBO size, was 983±626 mm\(^3\) (Fig. 3C and 3D and Table 1). One participant (subject 3) had no detectable opening, likely due to inadequate microbubble administration and substantial head movement during treatment. Subject 1 exhibited the largest opening volume of 2,013 mm\(^3\), which extended to the left thalamus beyond the lateral ventricles while subject 4 exhibited the smallest opening volume of 278 mm\(^3\). All of the openings from the 5 subjects were closed within 72 hrs, which was confirmed by the follow-up scans on day 3 (Fig. 3B).
Safety evaluation

There were no serious adverse events (SAEs) and no clinical changes after the treatments. One subject (subject 1) had an adverse event (AE) including both mild skin erythema on day 0 (resolved within 3 days) and asymptomatic cerebral edema with superficial hemorrhagic component on day 3. MRI images showed an area of T2 fluid-attenuated inversion recovery (FLAIR) hyper-intensity on day 3, most intense at the cortical targeted location but extending deeper (Supplementary Fig. 3), with susceptibility-weighted imaging (SWI) hypo-intensity superficially within the same region (Supplementary Fig. 4). The subject was asymptomatic and the MRI abnormalities were all resolved in follow-up scans on day 15. Other subjects did not show abnormalities in the safety MR scans 3 days after the treatment (Supplementary Fig. 3).

Cavitation dose and map showed promising results for predicting the BBBO

We obtained the frequency spectrum and cavitation dose (CD) of harmonic, ultraharmonic, and broadband frequencies for subjects 1–4 (Figs. 4A and 4B) to monitor the safety and efficacy of the treatment. For subjects 1, 2, and 4, ultraharmonic and broadband CD increased after the microbubble injection ($t = 20–30$ s) and persisted until the end of the sonication ($t = 120$ s), indicating the cavitation activity of the injected microbubbles. On the other hand, for subject 3 which exhibited no detectable opening, the increased CD was not sustained over time, resulting in a low cumulative CD (CCD). Across the four subjects, the higher CCDs were detected with increasing BBBO volume (Fig. 4C), resulting in strong positive linear correlations ($R^2 > 0.9$, $p < 0.05$).

For subjects 5 and 6, the cavitation map that shows the spatial information of microbubble activity (Fig. 4D) was obtained. The spatial distribution of acoustic energy (Fig. 4D) roughly matched with the BBBO location (Fig. 4E); both the acoustic energy and BBBO locations were shifted to the left side of the focus in subject 5, and aligned with the focus in subject 6. Compared to subject 5, subject 6 showed approximately 12 dB higher averaged acoustic energy in the map and exhibited a larger opening (278 mm3 vs. 1262 mm3). From the pixel-wise correlation analysis between the cavitation map and the BBBO, the area under the curve (AUC) of the receiver operating characteristic (ROC) and precision-recall (PR) curves were $AUC_{ROC}=0.8$ and $AUC_{PR}=0.7$, respectively, indicating good agreement between the cavitation map and the BBBO volume observed in MRI. To our knowledge, this is the first demonstration of passive acoustic mapping in the human brain using an NgFUS system.

Elevated blood biomarker levels correlated with BBBO size

Both serum and serum-derived extracellular vesicle (EV) levels of biomarkers 3 days after FUS were compared with the baseline levels obtained 1–2 hours prior to NgFUS for subject 2–6. Subjects with larger opening volumes displayed elevated serum levels of S100 calcium-binding protein β (S100β) (p
< 0.05), indicating compromised BBB integrity35 (Fig. 5A). Furthermore, we identified several statistically-significant positive linear relationships between the opening size and the serum-derived EV levels of Alzheimer’s disease-related proteins, while such relationships were not observed with serum biomarker levels. Notably, glial fibrillary acidic protein (GFAP), Tau, and phosphorylated-Tau 181 (pT181) fold-changes exhibited significant linear correlations ($p < 0.05$) (Fig. 5D–5F), while the correlations for Aβ42 ($p = 0.062$) and the Aβ42/Aβ40 ratio ($p = 0.096$) were not statistically significant (Fig. 5B and 5C). There were no significant group-wise changes possibly due to the large variation in BBBO volume (Supplementary Fig. 5).

A modest decrease in asymmetry SUVR correlated with the size of BBBO and cavitation dose

Although there was no group-wise reduction in standard uptake value ratio (SUVR) of 18F-Florbetapir (Fig. 6A–6C, Table 2), all subjects with BBBO showed a modest reduction in asymmetry SUVR which assesses the SUVR in the treated region compared to that of the contralateral region (Fig. 6D–6F, Table 2). Specifically, asymmetry values decreased by 1.47±0.77\% ($p=0.013$) in the frontal lobe and by 0.90±0.26\% ($p=0.001$) in the hemisphere at the 2nd follow-up compared to the baseline. A non-significant linear relationship ($R^2=0.69, p=0.08$) was measured between the BBBO volume and the 1st follow-up asymmetry changes within the respective volumes (Fig. 6G). Strong negative linear relationship was observed between the 1st follow-up asymmetry changes and the ultraharmonic CCD ($R^2=0.998, p=0.026$) although the number of subjects were small (Fig. 6H). Changes in SUVR and asymmetry values for each subject are listed in Table S4 and PET images are presented in Supplementary Fig. 6.

A single BBBO treatment did not significantly change cognitive function

Comparing the baseline scores, the MMSE score decreased by 1.80±2.71 among the five subjects with BBBO and by 2.50±2.93 among all six enrolled subjects, approximately 3 months after NgFUS. When compared with the Alzheimer’s disease neuroimaging initiative (ADNI) database, subjects with successful BBBO did not exhibit statistically different changes in MMSE over a similar time frame ($p > 0.45$), indicating no cognitive changes due to FUS-induced BBBO (Table S3). Individual MMSE scores are listed in Supplementary Table 4.

Targeting accuracy and precision

Targeting of the FUS transducer during treatment was performed using a manual arm. The distance and angular errors of manual transducer positioning were 5.7±1.4 mm and 11.2±2.5°, respectively. Mean absolute deviation and maximum distance of the subject motion during the 2-min treatment were 0.3±0.1 and 1.2±0.2 mm when using a head and chin rest (subjects 4–6), and 2.3 mm and 9.4 mm
without using the rest (subject 3) (Supplementary Fig. 7, Table 1). Distance between the centroid of the BBBO and the simulated focus was 12.3±6.1 mm, mostly along the FUS trajectory.

Discussion

In this pilot study, we demonstrated the feasibility and safety of the portable FUS system with cavitation monitoring for BBB permeability enhancement at the right frontal lobe in six Alzheimer’s disease patients. Five out of six subjects underwent localized BBBO which resolved within 72 hr. One AE occurred and resolved in 15 days, and no SAE was reported. No clinically significant changes were observed in SUVR or cognitive test scores after FUS; however, the asymmetry SUVR reduced modestly and exhibited a significant correlation with the BBBO volume. The cavitation dose demonstrated a linear correlation with the BBBO size and the asymmetry SUVR, proving the potential benefits of integrated cavitation monitoring to predict treatment outcomes.

Although we aimed to deliver the same acoustic pressure at the brain target, the BBBO size varied among the subjects from 278 mm3 to 2013 mm3. This variability could be attributed to the challenges in estimation of skull-induced attenuation, which determined the FUS transmit power. The attenuation estimates may have been affected by CT-MR registration errors in the acoustic simulation (5–10 mm in distance and 1–16° in angle) that we identified at the conclusion of the trial. Another factor may be from the transducer positioning errors which caused discrepancies between the trajectory used for the simulation and the achieved trajectory during treatment (Table 1). The re-estimated pressure map after correcting the errors and the trajectories showed higher acoustic energy for larger opening cases (Supplementary Fig. 8A), with the most intense energy distribution in subject 1. The re-estimated maximum pressure in the brain (Supplementary Table 6) showed a linear relationship ($R^2 = 0.84$) with the contrast-enhanced volume (Supplementary Fig. 8B), which may explain the variance in BBBO size across the subjects and the AE in subject 1.

Five subjects showed contrast enhancement within an ellipsoidal volume along the FUS beam trajectory (Fig. 3C and 3D and Supplementary Movie 1) consistent with the cigar-shaped focus (Supplementary Figs. 3B and 8A). Although the FUS focal volume included more WM than GM, the opening volume exhibited similar proportions of GM and WM (Supplementary Fig. 9). The higher probability of opening in GM than in WM was reported in our previous non-human primate (NHP) studies 33,36,37, where GM exhibited increased susceptibility to BBBO relative to WM, indicated by increased contrast enhancement on T1-weighted MRI. Additionally, the non-uniformly distributed opening within the focal volume may be explained by the regional difference in vascular density and tissue property, or increased ultrasound attenuation36,38-41.

In subject 4, the contrast enhancement on MRI was found not only along the FUS trajectory from the superior frontal cortex to the cingulate cortex, but also along the cingulate sulcus in the anterior-
posterior direction (indicated with white arrowheads in Figs. 3A, 3C, and Supplementary Fig. 10C). The sulcal enhancement beyond the ellipsoidal focus might not indicate BBBO, because it extended approximately 22 mm posterior from the focus while the focal size is only 6 mm wide. Instead, this vessel-like extravasation of the contrast agent might have occurred through the vessel wall or the perivascular space that extends along the perforating vessels42, indicating a potential increase in permeability of the blood-meningeal barrier. A possible explanation could be that the contrast agent entered the perivascular space through the disrupted BBB within the ellipsoidal focus and then permeated posteriorly along the cingulate sulcus. This finding may be consistent not only with recent preclinical studies on glymphatic clearance effect of microbubble-mediated FUS in rodents but also with clinical studies using MRgFUS. These clinical studies also demonstrated blood-meningeal barrier opening and glymphatic clearance in humans, reporting hyperintense linear enhancement along the hippocampal fissure43 and contrast accumulation in the subarachnoid space at the frontal lobe44 following BBBO.

The first possible reason for the BBBO failure in subject 3 is the delayed bolus injection of compromised microbubbles due to the malfunction of the syringe/catheter system. The catheter was blocked at the initial injection attempt, resulting in the pressurization inside the syringe and the destruction of the microbubbles. Although the microbubble solution was eventually injected at \(t = 20 \) s after the start of sonication, the increases in CDs were minimal compared to other subjects (Fig. 4A and 4B). The second reason could be attributed to subject movement. The head and chin rest was not used for this subject, resulting in the medial movement of \(~9\) mm during the 2-min sonication, which was approximately 6–10 times larger than those of other subjects (Supplementary Fig. 7 and Table 1). The subject movement (i.e., movement of the focus) might have compromised the localized acoustic energy delivered, as evidenced by the reduced CDs at \(t = 90 \) s coinciding with the sudden movement (gray arrows in both Fig. 4A and Supplementary Fig. 7A).

In this study, statistically significant relationships between the opening size and harmonic, ultraharmonic, and broadband cavitation energies were detected (Fig. 4C), consistent with our preclinical studies with mice and NHPs33,45,46. A recent study with MRgFUS in humans also showed the correlation between the subharmonic acoustic emission and the contrast-enhanced T1-weighted MR signal34. All subjects with BBBO showed overall increases in CD 20–30 s after the microbubble bolus injection (Fig. 4A and 4B), indicating the onset of microbubble cavitation activity in the sonicated region. In some cases, the CD showed a high fluctuation before the major increase (ultraharmonic CD in subject 4 and 6) or did not increase even after the flush (harmonic CD in subject 4). Compared to our preclinical studies with the same FUS transducer34,47 where flat CD was usually observed before the injection in NHPs fixed by a stereotaxic frame, the baseline CD in this study was relatively unstable potentially due to motion. In addition, fluctuations in CD can also result from tissues, small air-bubbles in the coupling gel, or the membrane on the water cone48.

7
The reduction in SUVR was less pronounced in our study than in previous studies using an implantable FUS device27 or using an MRgFUS system17–20. This difference can be attributed to the fact that we conducted a single session of treatment, while the prior studies involved 2–7 treatment sessions with larger treatment volumes. Nevertheless, we found significant decreases in the asymmetry at the 2nd follow-up (Fig. 6E and 6F), indicating a lower Aβ accumulation rate in the treated side compared to the contralateral side. These asymmetry changes after FUS are consistent with findings from the prior studies 17–20,26,27. In addition, this lower Aβ accumulation rate across the treated frontal lobe and the hemisphere demonstrates the potential of FUS to exert holistic therapeutic effects beyond the treated region.

When measured within the BBBO volumes in GM and WM (Fig. 6D), the asymmetry did not show an apparent group-wise reduction possibly due to the small and variable BBBO volumes across the subjects. However, they correlated with the FUS treatment characteristics (i.e., BBBO size and CCDs) (Fig. 6G and 6H). A larger BBBO or a higher harmonic CCD was related to the reduced Aβ accumulation in the treated region relative to the contralateral region.

Preclinical studies have reported improved cognitive function after FUS15,49,50 and a clinical study using MRgFUS has shown a cognitive improvement measured by the caregiver-administered neuropsychiatric inventory (CGA-NPI)18. However, the majority of clinical studies so far have reported non-significant changes in cognitive improvement following FUS-induced BBBO, examined by MMSE and ADAS-cog, evidencing no worsening of cognitive decline due to FUS17,19,20. Our MMSE results are also consistent with these findings.

A previous MRgFUS study reported the significant increases in CSF T-Tau and CSF and plasma neurofilament light chain levels 1 week after MRgFUS and associated the increases with the T2* hypointensity findings in two patients20. In our study, although no group-wise changes in biomarker levels were found, the BBBO volume was significantly correlated with the increased EV levels of GFAP, Tau and pTau-181, 3 days after NgFUS without any abnormalities in MRI. The elevated levels of EV biomarkers indicate the release of proteins to the bloodstream by FUS, consistent with sonobiopsy behavior noted in prior studies51,52. As the BBBO volume also correlated with the reduced SUVR increase in the treated brain region, further investigation is warranted to discover the potential of FUS for clearing Alzheimer’s disease-related proteins from the brain to the blood stream. The overall increased correlation of BBBO volume with the proteins in serum-derived EVs compared to serum levels alone indicates that EVs may be a more sensitive diagnostic tool for biomarker detection as a result of FUS-mediated BBBO.

Limitations of this pilot study include the limited number of subjects, a single treatment at a single target location, lack of consistent BBBO volume, and targeting errors. Despite the variability in BBBO volume across the subjects in this trial, employing the updated simulation pipeline with precise transducer positioning holds promise for achieving more consistent and targeted BBBO in future studies. Another limitation of our study is the size of the treated volume, given that Alzheimer’s disease
impacts broad regions of the brain.18,19 To achieve more effective outcomes, our portable NgFUS system can adopt a larger volume treatment approach by utilizing a robotic arm, similar to a pre-clinical study by Leinenga et al14. In addition, a subject-specific hologram lens could be employed for a constant focal size across the subjects.53 In future studies, multiple sessions of treatment with more subjects may be performed to evaluate the therapeutic benefits of NgFUS in Alzheimer’s disease patients, both with and without a therapeutic agent.

The study presented herein demonstrates the safety and feasibility of transient and non-invasive BBBO in patients with Alzheimer’s disease using a portable NgFUS system. The BBBO volume showed linear correlations with the treatment dose (i.e., CCDs), the elevated level of biomarkers in serum-derived EVs, and the asymmetry SUVR changes. This low-cost and reliable technology may facilitate wider adoption of FUS treatment for not only Alzheimer’s disease but also for many other neurological disorders.

Materials and methods

Study design

This study was a phase 1 clinical trial (NCT04118764) of 6 subjects for evaluating the safety and feasibility of NgFUS-mediated BBBO in patients diagnosed with Alzheimer’s disease. The study was approved by the FDA and the Institutional Review Board (IRB) at Columbia University. After providing informed consent, participant eligibility was determined by the neurologist on the study based on the MRI and 18F-florbetapir PET scans, the participant and family interview, and clinical scales including MMSE, geriatric depression scale (GDS), and modified Hachinski ischemia scale (MHIS) (Supplementary Table 1). Out of the ten subjects screened, 4 subjects were excluded due to low MMSE scores or the need for other medical treatment, and 6 subjects were enrolled in the study. The timeline of the study is presented in Fig. 2. All subjects had baseline MRI and PET-CT scans 1–4 months before the treatment. For treatment planning, acoustic simulations were performed to estimate the skull-induced ultrasound attenuation and determine the FUS transducer output for each patient. On the day of treatment, the patient underwent one session of FUS sonication and post-treatment MRI was obtained approximately 2 hrs after the sonication to assess BBBO and safety. Follow-up MRI scans were acquired 3 days after sonication to confirm BBB reinstatement and safety. Two follow-up PET scans were acquired and a follow-up MMSE was administered on the same day of the 2nd follow-up PET scan (Fig. 2). The time line of the individual subject is listed in Supplementary Table 9.

NgFUS system

We used a single-element 250-kHz FUS transducer (H-231, Sonic Concepts) with a central opening, with guidance achieved using a neuronavigation system (Brainsight; Rogue Research) which was first
tested in NHPs32–34. The FUS device was cleared by the FDA through an investigational device exemption (IDE G180140) for a first-in-human study at Columbia University. The -6 dB focal volume of the FUS beam was $6\times6\times49$ mm3 with an axially-elongated ellipsoidal shape. For cavitation monitoring, either a single-element transducer for subject 1–4 (Supplementary Fig. 11A) or a multi-element imaging array transducer for subject 5 and 6 (Supplementary Fig. 11B) was coaxially inserted in the central opening of the FUS transducer. A research ultrasound system (Vantage 256, Verasonics) was used for cavitation map acquisition. The transducer specifications and experimental parameters are listed in Supplementary Table 7.

Treatment planning

The target location was selected at an amyloid positive region in the right frontal lobe based on the PET image. The initial FUS trajectory was determined by considering the focal size and the beam incidence angle relative to the skull (Supplementary Fig. 1A) for more efficient acoustic energy delivery. Patient-specific numerical simulations were employed for estimating the skull insertion loss of the acoustic pressure using the k-wave toolbox54,55 and MATLAB (Supplementary Fig. 1B). Heterogeneous maps of the skull density and sound speed were obtained from the CT image acquired during screening (resolution: $0.6\times0.6\times1$ mm3, Biograph64 mCT, Siemens), where the maximum sound speed and density were assumed to be $c = 4000$ m/s56 and $p = 1850$ kg/m357. Skull absorption was also modelled based on the CT image with a maximum absorption value of 0.68 dB/cm at the working frequency, assuming a linear frequency dependency57,58. A 3-D acoustic pressure map was obtained from the linear acoustic simulation with a grid size of $1\times1\times1$ mm3 (i.e., 6 points per wavelength) and a time step of 52.5 μs. The insertion loss α was determined by $\alpha = 1 - P_{\text{skull}}/P_{\text{freefield}}$, where P_{skull} is the maximum pressure within the brain obtained from a simulated acoustic map with skull insertion and $P_{\text{freefield}}$ is the maximum pressure from a simulated map without the skull. More than 35 simulations were performed per subject considering the transducer positioning deviations (i.e., ±10 mm in distance and $\pm10^\circ$ in angular deviation). The trajectory was also adjusted to avoid a large deviation of the insertion loss based on the simulation, and was used for FUS treatment as the planned trajectory. The estimated insertion loss along the planned trajectory (Table 1) was used for adjusting the sonication power to deliver the derated *in situ* pressure of 200 kPa.

FUS system

The dimensions of the portable FUS system required patients to have partial hair shaving at the right frontal scalp for optimal acoustic coupling (Supplementary Fig. 2A). The subject’s head was supported with the head and chin rest in a sitting position (Supplementary Fig. 1C) and the anatomical registration to the neuronavigation system was performed based on the facial landmarks (i.e., eyes, ears, and nose). The chin and head rest was used for subjects 2, 4, 5, and 6. The FUS transducer was positioned with the neuronavigation guidance to place the acoustic focus at the planned target in the right frontal lobe.
(Supplementary Fig. 1D). The sonication parameters were as follows: derated peak-negative pressure, 200 kPa; mechanical index (MI), 0.4; center frequency, 0.25 MHz; pulse length, 10 ms; pulse repetition frequency, 2 Hz. treatment duration, 2 min. microbubbles (0.1 mL/kg, Definity, Lantheus) were intravenously injected as a bolus starting at 3 s and finishing at 10–20 s after the start of the sonication, and followed with a saline flush. Approximately 50–75% of the microbubble bolus was introduced into circulation at the time of the flush due to the dead space within the catheter tubing. During the sonication, the frequency spectrum and cavitation dose were monitored (N=4), and the cavitation map with ultrasound B-mode image was also employed for the last two subjects (N=2) (Supplementary Fig. 1E).

MRI

Baseline (screening), post-FUS (day 0, 2 hr after FUS), and follow-up (day 3) MRI scans were acquired (Fig. 2) using a 3-T MRI system (Signa Premiere, GE). Safety MR scans were obtained during all three MRI sessions without any MR-contrast agent and included T2-weighted, T2-FLAIR, and SWI with parameters shown in Supplementary Table 8. T1-weighted images with the gadolinium contrast agent (0.2 mL/kg, Dotarem®) were acquired for the confirmation of BBB opening and closing on day 0 and day 3, respectively. The post-contrast T1-weighted MRI was obtained 15–20 min after the gadolinium injection for increased sensitivity to detect BBBO. BBBO on day 0 and closing on day 3 were confirmed by a radiologist. The contrast-enhanced volume was quantified by subtracting the day-3 post-contrast T1-weighted MRI from the day-0 post-contrast T1-weighted MRI and thresholding the subtracted image. The threshold was automatically selected so that the mean intensity within the opening volume is significantly greater than that of the surrounding region with a confidence level of 98% assuming the intensity of the subtracted image follows a Gaussian distribution.

Blood Collection and Biomarker Measurement

Blood was collected from patients both prior to BBBO and 3 days post-BBBO to assess blood-based Alzheimer’s disease biomarker detection as a result of FUS from both serum and serum-derived extracellular vesicles (EVs). All patients had blood drawn immediately 1–2 hours prior to the treatment (i.e., baseline) and 3 days after treatment. Serum was isolated after centrifugation of whole blood at 9.4 rcf for 5 min at 4 °C, and serum-derived EVs were isolated using an exosome precipitation solution according to the manufacturer’s published protocol (ExoQuick, Systems Biosciences, Palo Alto, CA). A Luminex multiplex assay was used to quantify proteins in serum and in isolated serum-derived EVs (Luminex Corp., Austin, TX). Single pro-cartaplex kits (ThermoFisher Scientific) were purchased and combined to make a custom multiplex panel for analysis.

PET/CT
PET/CT scans (CT: no contrast, axial plane, 4 mm section thickness, 4mm section interval) were acquired with a clinical PET scanner (Biograph64-mCT; Siemens) and with 18F-Florbetapir tracer at 10mCi (Amyvid®; PETNET Solutions). PET/CT scans were acquired 32 to 107 days prior to treatment, 3 to 29 days after treatment as the 1st follow-up time point, and 82 to 164 days after treatment as the 2nd follow-up time point (Supplementary Table 9). For region-specific amyloid analysis, MRI and PET images were registered to the Montreal Neuroimaging Institute (MNI) space and automatically segmented by tissue types (GM, WM, and perivascular space, as well as into specific brain regions such as the frontal lobe and hemispheres)61–63. Image processing software used included Clinica64, SPM1265, Mango66, and FSL67. PET scans of each participant were registered to the MNI space. To investigate changes in Aβ from a localized region at the site of BBB opening to extended regions, three areas were analyzed: BBBO volumes in the GM and WM (SUVR\textsubscript{BBBO}), the treated right frontal lobe (SUVR\textsubscript{FL}), and the treated right hemisphere (SUVR\textsubscript{H}). The Aβ load was quantified from PET scans as SUVR, using the cerebellar gray matter as the reference region68. The asymmetry was measured by dividing the SUVR in the treated region by the contralateral untreated region to monitor the relative progression of Aβ. Changes in SUVR and asymmetry at the 1st and 2nd follow-ups compared to baseline were quantified (Fig. 6).

Cavitation dose and cavitation map

For cavitation monitoring, a single-element transducer was utilized to obtain CDs for subjects 1–4, while a multi-element imaging array transducer was employed for subjects 5 and 6 to obtain both CDs and cavitation maps (Supplementary Table 7). The CD was obtained from the 3rd to 6th harmonic/ultraharmonic frequencies. We computed the cavitation dose with harmonic (CD\textsubscript{h}), ultraharmonic (CD\textsubscript{u}), and broadband frequencies (CD\textsubscript{b}) as follows33: $\text{CD}_\text{h} = \sqrt{\sum_{n=3}^{6} |P_{h,n}|^2}$, $\text{CD}_\text{u} = \sqrt{\sum_{n=3}^{6} |P_{u,n}|^2}$, and $\text{CD}_\text{b} = \sqrt{\sum_{n=3}^{6} |\bar{A}_n|^2}$, where $P_{h,n}$ and $P_{u,n}$ are the peak amplitude of the n-th harmonic and the n-th ultraharmonic frequency components, respectively, and \bar{A}_n is the averaged amplitude within the bandwidth of 75 kHz between the n-th harmonic and the n-th ultraharmonic frequencies. For the array transducer, the frequency spectrum was obtained by summing the RF channel data across all the elements and obtaining Fourier transform of the summed signal. The frequency spectrum and the cavitation doses were obtained for every burst. The CD was normalized by the electrical noise power that was obtained using the same processing pipeline but with electrical noise data. The electrical noise data were acquired without FUS transmission. The normalized CD was then converted to the logarithmic scale (i.e. dB) and presented in Fig. 4A. The CCD was obtained by summing the normalized CD acquired after the microbubble flush and converting it to the logarithmic scale. We did not subtract the baseline from the CD or CCD due to high fluctuations in the baseline cavitation signals.
The acoustic energy map for each burst was reconstructed in real time from the 64-channel RF data by using the coherence-factor-based passive acoustic mapping implemented on a GPU (RTX A6000, NVIDIA). The final cavitation maps were obtained by averaging the acoustic energy maps for the bursts after the microbubble injection and masking them with the segmented brain volumes obtained from the MR images. More information on passive acoustic mapping implementation can be found in our previous study. The MR image and the quantified BBBO volume were registered with the cavitation map based on the tracked coordinate of the focus by the neuronavigation system and also based on ultrasound B-mode image that delineated the skin and skull; the registered B-mode (or cavitation map) and MRI slice are presented in Supplementary Fig. 12.

Targeting accuracy and precision

The planned target/trajectory of FUS was determined in the planning step before treatment and the treated target/trajectory was sampled during the FUS sonication on the neuronavigation system. Transducer positioning errors were measured by the distance and angle differences between the planned and treated target trajectories to assess the accuracy in the manual placement of the transducer. To evaluate the targeting accuracy of BBBO, the Euclidean distance between the BBBO centroid and the simulated focus was measured for each subject. The subject movement was obtained from the tracked location of the FUS focus which was recorded over time during the sonication by the neuronavigation system.

Post hoc simulation

During the retrospective analysis of data, we found that there was a registration error between CT and MR volumes (1–7 mm). Additionally, there were differences between the treated trajectory for sonication and the planned trajectory for the acoustic simulation before treatment, due to the transducer positioning error. We re-simulated the acoustic pressure fields with the corrected registration and the trajectory. The pressure field (Supplementary Fig. 8), attenuation, and derated peak pressure (Supplementary Table 6) were obtained with the corrected trajectory and registration. The derated peak pressure \hat{P} was calculated by $\hat{P} = P/(1 - \alpha) \cdot (1 - \hat{\alpha})$ where P is 200 kPa and α and $\hat{\alpha}$ are the original and the newly obtained insertion loss values, respectively.

Statistical Analysis

Statistical analysis was performed in MATLAB (Mathworks). Linear regression analysis was used to evaluate the correlations of the CCDs ($N=4$), biomarker levels ($N=5$), asymmetry SUVR increase, and the simulated maximum pressure ($N=5$) with the contrast-enhanced volume, as well as the correlation between the SUVR asymmetry and CCDs ($N=4$). R-squared and p values were obtained from the regression for the statistical analysis. Pixel-wise correlation between the cavitation map and the BBBO was measured by the AUC of ROC curve and the AUC of PR curve after combining data sets from
subject 5 and 6, as described in Bae et al.34 MMSE scores of the subjects were compared with those of ADNI subjects by using unpaired t-test. Changes in SUVR and the asymmetry between different time points were analyzed using paired t-test.

Data availability

Data and materials availability: All study data are included in the main text and/or supplementary materials.

Acknowledgments

The authors wish to thank Maria F. Murillo, Fotis Tsitsos, Alexander Berg, Rebecca L. Noel, and Nancy Kwon for support and insightful discussion.

Funding

National Institutes of Health grant R01AG038961 (EEK)
National Institutes of Health grant R01EB009041 (EEK)
Focused Ultrasound Foundation (EEK)

Competing interests

Some of the work presented herein is supported by patents optioned to Delsona Therapeutics, Inc where EEK serves as co-founder and scientific adviser. SB, ANP, R.J., KL, SJG, OY, DK, AKS, AB, and LSH declare no conflict of interest.

Supplementary material

Supplementary material is available at Brain online

References

Figures

Fig. 1. Illustration of focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. Systemically administered microbubbles oscillate under localized FUS and transiently open the BBB for drug delivery or immune-stimulation at the targeted brain tissue. Oscillating microbubbles emit acoustic cavitation signals which can be used for treatment monitoring.

Fig. 2. Timeline of the clinical study
Fig. 3. Blood-brain barrier (BBB) opening and closure confirmed by contrast-enhanced T1-weighted MRI. (A) Contrast enhancement indicating BBB opening in T1-weighted MRI 2 hours after focused ultrasound (FUS) sonication. (B) Lack of contrast enhancement detected on follow-up T1-weighted MRI confirmed BBB reinstatement on day 3. (C, D) The 3-dimensional (3-D) reconstruction of the FUS beam trajectory (blue line) and segmented contrast-enhanced volume (green) overlaid on the CT skull image (gray) in (C) the sagittal and (D) the coronal view. The maximum pressure point of the focus is denoted as a blue sphere on the blue line. The contrast-enhanced volume was well aligned with the FUS beam trajectory for subjects 4–6. For subjects 1 and 2, the opening was aligned with the trajectory in the sagittal plane (C) but approximately 10 mm off from the trajectory in the coronal plane (D). A video for 360° view of 3-D volumes is available online as Supplementary Movie 1.
Fig. 4. Real-time cavitation monitoring during focused ultrasound (FUS) treatment. (A) Harmonic, ultraharmonic, broadband cavitation doses (CDs) during the sonication. The CDs of subjects 1, 2, and 4 increased after the microbubble injection and flush and were sustained until the end of sonication. In contrast, the CDs of subject 3, who did not exhibit successful BBBO, were unstable and exhibited a sudden reduction at t = 90 s. The gray arrow indicates the moment of a sudden subject movement detected (Supplementary Fig. 4A). (B) Spectrograms displayed during the sonication showed the increased cavitation signal in subjects 1, 2, and 4. Vertical dotted and dashed lines in (A) and (B) indicate the time of the microbubble bolus injection and the subsequent saline flush, respectively. The amplitude in (B) was normalized by the baseline broadband cavitation dose to better represent harmonic and ultraharmonic components. (C) Positive correlation between the BBBO volume (i.e., contrast-enhanced volume) and the cumulative CDs (CCDs) over time. (D) Cavitation map (color), which presents the distribution of acoustic cavitation energy, is overlaid on the corresponding ultrasound B-mode image (gray) that shows the scalp and the skull profiles. The brain region obtained from the registered MRI is marked as a blue line. (E) Projected contrast-enhanced volume (color) overlaid on the MRI slice that is registered to the cavitation map/B-mode image in (D). White dashed lines and ellipsoids in (D) and (E) show the focus of the FUS beam.
Fig. 5. Correlation of blood-brain barrier opening (BBBO) volume and blood biomarker levels on day 3 after neuronavigation-guided FUS (NgFUS). A larger BBBO volume is associated with an increased log-fold change in biomarker concentration three days after treatment for (A) S100β in serum, (B) Aβ42, (C) Aβ42/Aβ40, (D) GFAP, (E) Tau, and (F) pT181 in extracellular vesicles.
Fig. 6. Percent changes in the standard uptake value ratio (SUVR) and asymmetry SUVR of 18F-Florbetapir and the correlation between the change in the asymmetry SUVR and the cumulative cavitation dose (CCD). (A–C) Percent changes in SUVR within the blood-brain barrier opening (BBBO) volume in the gray and white matter (ΔSUVR$_{BBBO}$), the right frontal lobe (ΔSUVR$_{FL}$), and the right hemisphere (ΔSUVR$_{H}$), at the 1st and the 2nd follow-ups compared to the baseline. (D–F) Percent changes in Asym.SUVR within the BBBO volume in the gray and white matter (ΔAsym.SUVR$_{BBBO}$), the right frontal lobe (ΔAsym.SUVR$_{FL}$), and the right hemisphere (ΔAsym.SUVR$_{H}$) compared to the contralateral regions. Significant reduction in asymmetry values were found when measured within the (E) frontal lobe and (F) hemisphere regions. *$p<0.05$, **$p<0.01$. (G) Linear correlation between the ΔAsym.SUVR$_{BBBO}$ and the BBBO volume in the gray and white matter. (H) Linear correlations of ΔAsym.SUVR$_{BBBO}$ with harmonic, ultraharmonic, broadband CCDs.
Tables

Table 1 Summary of the Treatment

<table>
<thead>
<tr>
<th>Subject #</th>
<th>Contrast-enhanced volume (mm3)</th>
<th>Skull-induced attenuationa</th>
<th>Procedure timeb (min)</th>
<th>Transducer positioning errorsc (mm,$^\circ$)</th>
<th>Subject movementsd (MAD, max)</th>
<th>Distance between the BBBO centroid and the simulated focuse (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2013</td>
<td>0.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23.2</td>
</tr>
<tr>
<td>2</td>
<td>414</td>
<td>0.72</td>
<td>38</td>
<td>4.7, 11.2</td>
<td>-</td>
<td>13.3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.75</td>
<td>47</td>
<td>5.3, 13.0</td>
<td>2.3, 9.4</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>951</td>
<td>0.72</td>
<td>21</td>
<td>4.3, 7.0</td>
<td>0.5, 1.5</td>
<td>8.4</td>
</tr>
<tr>
<td>5</td>
<td>278</td>
<td>0.70</td>
<td>36</td>
<td>8.2, 14.5</td>
<td>0.25, 1.1</td>
<td>5.4</td>
</tr>
<tr>
<td>6</td>
<td>1262</td>
<td>0.75</td>
<td>35</td>
<td>5.8, 10.5</td>
<td>0.28, 0.96</td>
<td>11.3</td>
</tr>
</tbody>
</table>

aObtained by the acoustic simulation based on the planned target prior to the treatment.
bTime duration for the subject sitting on the treatment chair; including anatomical registration for the neuronavigation, targeting, sonication, and patient release.
cDistance (mm) and angle difference ($^\circ$) between the planned trajectory and the actual trajectory during the treatment.
dSubject movement was measured by the mean absolute deviation (MAD) from its centroid and the maximum distance (max) from the initial location.
eDistance between the centroid of the BBBO and the estimated focal position in the simulated pressure map.

Table 2 Changes in SUVR and asymmetry SUVR at the 1st and 2nd follow-up compared to the baseline (mean ± std)

<table>
<thead>
<tr>
<th>Region</th>
<th>SUVR $^{20\text{th}}$ F/U</th>
<th>SUVR $^{20\text{th}}$ F/U</th>
<th>SUVR $^{20\text{th}}$ F/U</th>
<th>SUVR $^{20\text{th}}$ F/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBBO*</td>
<td>-1.17±5.51, p=.66</td>
<td>5.05±7.20, p=.19</td>
<td>-1.67±5.09, p=.50</td>
<td>-0.68±1.05, p=.22</td>
</tr>
<tr>
<td>FL</td>
<td>1.97±5.51, p=.47</td>
<td>6.95±6.51, p=.076</td>
<td>-1.00±1.12, p=.12</td>
<td>-1.47±0.77, p=.013</td>
</tr>
<tr>
<td>H</td>
<td>1.43±5.73, p=.61</td>
<td>6.80±5.88, p=.061</td>
<td>-0.64±0.65, p=.092</td>
<td>-0.90±0.26, p=.001</td>
</tr>
</tbody>
</table>

The 1st F/U and 2nd F/Us were 20±9 days and 103±30 days after focused ultrasound treatment, respectively. Mean and standard deviations were calculated from 5 subjects with BBBO.