Diagnosis and Severity Assessment of COPD using a Novel Fast-Response Capnometer And Interpretable Machine Learning

Leeran Talker MEng¹, Cihan Dogan MSc¹, Dr Daniel Neville MD², Rui Hen Lim MEng¹, Henry Broomfield MSc¹, Dr Gabriel Lambert MD¹, Dr Ahmed B Selim PhD¹, Dr Thomas Brown PhD², Dr Laura Wiffen MD², Dr Julian C Carter PhD¹, Dr Helen F Ashdown MD³, Prof Gail Hayward DPhil³, Dr Elango Vijaykumar MD⁴, Prof Scott T Weiss MD⁵, Prof Anoop Chauhan PhD², Dr Ameera X Patel PhD¹

¹TidalSense Limited, Cambridge, UK
²Portsmouth Hospitals University NHS Trust, Portsmouth, UK
³NIHR Community Healthcare MedTech and IVD Cooperative, Nuffield department of Primary Care Health Sciences, University of Oxford
⁴Modality GP Partnership
⁵Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, MA, US

Corresponding author: ameera.patel@tidalsense.com

Abstract

Introduction: Spirometry is the gold standard for COPD diagnosis and severity determination, but is technique-dependent, non-specific, and requires administration by a trained healthcare professional. There is a need for a fast, reliable, and precise alternative diagnostic test. This study’s aim was to use interpretable machine learning to diagnose COPD and assess severity using 75-second carbon dioxide (CO₂) breath records captured with TidalSense’s N-Tidal™ capnometer.

Methods: For COPD diagnosis, machine learning algorithms were trained and evaluated on 294 COPD (including GOLD stages 1-4) and 705 non-COPD participants. A logistic regression model was also trained to distinguish GOLD 1 from GOLD 4 COPD with the output probability used as an index of severity.

Results: The best diagnostic model achieved an AUROC of 0.890, sensitivity of 0.771, specificity of 0.850 and positive predictive value of 0.834. A potential clinical use for this model is to rule in or rule out a diagnosis in patients where the model is most confident. Performance on test capnograms with probability >80% and <20% was also evaluated, yielding a PPV of 0.930 and NPV of 0.890. The severity determination model yielded an AUROC of 0.980, Sensitivity of 0.958, Specificity of 0.961 and PPV of 0.958 in distinguishing GOLD 1 from GOLD 4. Output probabilities from the severity determination model produced a correlation of 0.71 with percentage predicted FEV₁.

Conclusion: The N-Tidal™ device could be used alongside interpretable machine learning as an accurate, point-of-care diagnostic test for COPD, particularly in primary care, as a rapid rule-in or rule-out test. N-Tidal™ also could be effective in monitoring disease progression, providing a possible alternative to spirometry for disease monitoring.

Trial registration: Please see NCT03615365, NCT02814253, NCT04504838, NCT03356288 and NCT04939558.

Keywords: Chronic Obstructive Pulmonary Disease; Machine Learning; Diagnosis; Capnometry; Severity Assessment

Introduction

According to the World Health Organization in 2020, Chronic Obstructive Pulmonary Disease (COPD) was the third leading cause of mortality, accounting for 6% of global deaths [1]. It is estimated that the prevalence of COPD is growing, with the number of people receiving a COPD diagnosis in the UK alone increasing by 27% in the past 10 years [2]. This trend is only set to increase over the next decade [3].

Currently a cure for COPD does not exist [4]. Therefore, early diagnosis and treatment is key to prevent disease progression, improve quality of life, reduce exacerbations, and limit the economic burden associated with management of the disease [5, 6]. Spirometry is the current gold standard for diagnosis and COPD severity determination, but it relies heavily upon a patient’s ability to exhale forcefully. There is also a widespread shortage of trained healthcare professionals able to perform quality assured spirometry and its use remains limited in some areas due to the associated risk of an aerosol-generating cough. In addition, spirometry has been shown to be ineffective at screening for early cases [7]. It has been estimated that in the UK, only between 9.4% and 22% of those with COPD have been diagnosed [8], in part due to spirometry’s poor precision of only 63% [9]. The global shortage of adequately trained staff and protracted waiting lists for spirometry have resulted in the Lancet Commission recognizing that diagnostics must move beyond spirometry [10].

Capnography is a widely used technique in critical care and anesthesia. A previous study by Talker et. al. [11] showed that features derived from a patient’s high-resolution
capnogram using the TidalSense N-Tidal™ device can be used to diagnose severe COPD with a high degree of accuracy, suggesting the technique could be an appealing alternative to spirometry. The COPD diagnosis element of this study built on previous analysis by adding patients with less severe COPD to the dataset, increasing the resulting model’s real-world applicability.

The primary aim was to construct a classifier that could distinguish capnograms of patients with varying severities of COPD (GOLD stage 1-4) from those without COPD. A secondary aim was to develop an alternative severity index to percentage predicted FEV₁ which could be used as an aid by clinicians to quantify COPD severity. The potential advantages of using the N-Tidal™ device in the context of COPD diagnosis include: the capture of CO2 data from tidal breathing for improved ease of use and absence of aerosol-generating cough, the speed of administration of the test (under five minutes); and an automated diagnostic output not reliant on specialist training [11]. These advantages could extend to using the device for severity determination and could be helpful clinically in monitoring disease progression.

Methods

Studies

The capnography data used for this analysis were collected from five different longitudinal observational studies, namely CBRS, CBRS2, GBR, ABRS and CARES. A summary of each of these studies containing their objectives, participant information and inclusion/exclusion criteria can be found in the supplementary material. These studies and therefore the dataset used in this analysis included patients with COPD (GOLD stage 1-4), asthma, heart failure, pneumonia, breathing pattern disorder, motor neuron disease, sleep apnea, bronchiectasis, pulmonary fibrosis, tracheobronchomalacia, anemia, lung cancer, long COVID-19, general upper airway obstruction, extrinsic allergic alveolitis, as well as healthy participants. The heterogeneity of diseases present in the dataset ensured the resultant model’s generalizability to a real-world diagnostic scenario, where patients would be expected to present with a variety of cardiorespiratory and other conditions which have similar initial symptoms.

In patients with COPD, diagnoses were made according to NICE guidelines. COPD severity (GOLD stage 1-4) was determined from the percentage predicted FEV₁ of the subset of COPD patients where spirometry was available. Diagnostic criteria used for other conditions, including asthma, are in the supplementary material. Potential participants were identified in outpatient clinics, inpatient wards, primary care and secondary care clinics according to each study’s protocol before undergoing a screening process with the study team to assess their suitability.

Alongside the five studies noted above, capnography data was collected from 72 volunteers without any respiratory disease between December 2015 and May 2022. These healthy volunteers provided written informed consent and were screened by a doctor to ensure they did not have any confounding cardiorespiratory disease or other comorbidities. All subjects across the five studies gave informed consent, and their data was handled according to all relevant data protection legislation, including the EU/UK General Data Protection Regulation (GDPR).

Ethical approval was obtained from the South Central Berkshire Research Ethics Committee (REC) for GBR and ABRS, the Yorkshire and the Humber REC for CBRS and CARES, and the West Midlands Solihull REC for CBRS2.

Procedure

In all studies, capnography data was collected using the N-Tidal™ device, a CE-marked medical device regulated in the UK and EU. N-Tidal™ has been designed to take accurate, reliable recordings of respired pressure of CO2 (pCO₂) directly from the mouth. It is unique in its ability to accurately measure pCO₂ from ambient/background CO2 to hypercapnic levels in exhaled breath through enforced tidal breathing with a fast response time, meaning that quick changes in the geometry of the pCO₂ waveform are captured. CO2 was sampled at 10kHz and reported at 50Hz providing a level of resolution not possible with alternative capnometers. This resolution was critical to the machine learning models’ ability to use subtle geometric features of the waveform to distinguish capnograms [12].

Study participants were given an N-Tidal™ device to take home after completing training on the correct operation and storage of the device. Capnography data was serially collected twice daily for varying lengths of time ranging from 2 weeks up to 12 months according to each study’s protocol. Patients performed normal tidal breathing through the device for 75 seconds through a mouthpiece in an effort-independent process. A single episode of use (breath recording) produced a single capnogram, with each respiratory cycle (inspiration and expiration) forming a single waveform. In addition to capnometry data, the following data was also collected from the majority of participants on all five studies: basic demographics, spirometry, smoking history, comorbidities and medications. Some of this information was used in conjunction with capnography data in subsequent analysis. Other clinical and questionnaire data varied across studies (see supplementary material). Personal data was pseudonymized in accordance with GDPR.

Feature engineering

Raw pCO₂ data collected in each breath recording was first denoised then separated into breaths, each of which was then segmented into its constituent phases. At this point, breaths which were anomalous and could not be processed were excluded from subsequent processing and analysis.
using a set of proprietary rules built into the N-Tidal cloud platform.

To generate features for machine learning classification, two categories of information were captured: geometric characteristics of the waveform associated with each breath (referred to as ‘per breath features’); and features of the whole capnogram, such as respiratory rate or maximum end-tidal CO\textsubscript{2} (ETCO\textsubscript{2}), referred to as ‘whole capnogram features’.

Any breaths where the full feature set could not be calculated were also automatically excluded from analysis, and further checks were carried out manually to ensure that all condensation-compromised breaths had been excluded by automated methods.

Machine learning

Following pre-processing and waveform parameterization, a reduced number of capnograms were randomly selected for each participant in the dataset such that the COPD and non-COPD cohorts had the same number of capnograms. Then, each machine learning model was trained and evaluated using a nested cross-validation scheme (see supplementary material for more information).

COPD diagnosis

N-Tidal capnographic features were used to train three different machine learning algorithms: logistic regression (LR); extreme gradient boosted trees (XGBoost); and a support vector machine (SVM). LR and XGBoost were chosen as they are very different in their approach to training yet similarly interpretable, while SVM was chosen as the non-linear shallow-learning algorithm which often maximizes supervised performance.

Model performance was delineated into performance on each of the most commonly presenting diseases in the non-COPD class and each severity in the COPD class. The impact of the most prevalent comorbidities on model performance was assessed for participants with comorbidities in addition to COPD, to investigate the model’s analogy to a real-world use case where testing on patients with COPD and additional comorbidities is likely to be common. The most significant features driving model learning were extracted to understand which areas of the capnogram waveform were most predictive of COPD.

Severity determination

A proposed method for severity determination was to train a machine learning classifier to distinguish between participants with GOLD 1 and GOLD 4 COPD and use the probability of having GOLD 4 outputted by this model as an indication of COPD severity. This ‘severity index’ would indicate where on the spectrum between mild and very severe COPD a patient falls. When testing on unseen patients of all severities, the output probability distribution for GOLD 2 and GOLD 3 patients would be expected to fall between the distributions for GOLD 1 and GOLD 4, and for a patient’s probability output (severity index) to steadily increase as their disease progresses.

Given the small number of patients available for this analysis and the predominance of comorbidities especially among GOLD 1 patients (25/47 patients), this analysis was conducted after removing comorbid patients from the dataset. This was so the machine learning model would be able to more effectively infer the underlying signal of COPD severity without the potential confounder of comorbidities.

Following model training, the distribution of each COPD severity in the model’s probability output was investigated,
Assessment of COPD using Fast-Response Capnometry and Machine Learning

Table 1. Demographic information from the five studies and the separate healthy volunteer cohort. Categorical data are given as a number with its percentage of the total (n (%)). Continuous data given as (median (Q1-Q3)). For the COPD classification dataset, smoking history and pack years were absent for 82 and 281 participants respectively. For the severity determination dataset, smoking history and pack years were absent for 2 and 16 participants respectively.

and random waveforms from adjoining severity classes were inspected to explore the probability output’s efficacy as a tool for severity determination. To investigate the relationship between traditional spirometric methods and the proposed model probability severity indication, each patient’s severity model probability output was plotted against their paired percentage predicted FEV₁ value and a correlation was calculated.

Results

Between 6 December 2015 and 8 December 2022, 115,053 capnograms were collected from 1114 patients. On average, each patient collected 103 capnograms over 57 days. Demographic data for the preprocessed and class-balanced machine learning dataset were collated (Table 1).

COPD diagnosis

All performance statistics were obtained using a decision boundary of 0.5 on the models’ probability outputs. In classifying COPD vs non-COPD participants, the support vector machine (SVM) marginally showed the best performance, with accuracy, AUROC, sensitivity, specificity, NPV and PPV at 0.811, 0.890, 0.771, 0.850, 0.792 and 0.834 respectively (Table 2). Model performance was consistent between iterations (Table 2); all three algorithms had a standard deviation of less than 0.03 in accuracy over the five folds. These metrics were produced from the aggregated predictions on all five unseen outer-loop test sets, while the standard deviation describes the variation of model performance between the five outer-loop test sets and gives an indication of model generalizability. As performance for all models was extremely similar, further analysis is only presented for the LR model, as it is the most explainable.

Table 3 outlines LR model performance of the most commonly presenting primary diseases in the non-COPD

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>COPD (N=294)</th>
<th>Non-COPD (N=705)</th>
<th>Overall (N=999)</th>
<th>Mild COPD (N=22)</th>
<th>Very Severe COPD (N=21)</th>
<th>Overall (N=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>67 (60-74)</td>
<td>54 (44-66)</td>
<td>59 (48-69)</td>
<td>68 (59-75)</td>
<td>66 (61-69)</td>
<td>66 (60-74)</td>
</tr>
<tr>
<td>Gender (Female)</td>
<td>138 (47-1%)</td>
<td>395 (62-7%)</td>
<td>533 (57-8%)</td>
<td>8 (36-4%)</td>
<td>9 (40-9%)</td>
<td>17 (39-5%)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.4 (23-0-32-3)</td>
<td>27.6 (23.7-32-8)</td>
<td>27.2 (23.1-32-6)</td>
<td>25.3 (23-0-30-5)</td>
<td>25.4 (22-1-29-5)</td>
<td>25.4 (22-2-29-6)</td>
</tr>
</tbody>
</table>

Smoking History:

- Current smoker: 61 (21-1%) vs 51 (8-1%) vs 112 (12-2%) vs 7 (31-8%) vs 1 (5-3%) vs 8 (19-5%) vs 21 (7-2%) vs 329 (52-4%) vs 350 (38-2%) vs 3 (13-6%) vs 0 (0-0%) vs 3 (7-3%)

Pack Years (all):

- Current smoker: 33-8 (28-9-39-9) vs 15-8 (8-8-30-0) vs 28-5 (12-0-38-1) vs 33-0 (20-6-45-2) vs 45-0 (45-0-45-0) vs 39-0 (26-8-48-1)
- Ex-smoker: 32-3 (18-8-45-0) vs 6-7 (2-0-15-0) vs 15-0 (4-1-31-4) vs 30-0 (17-8-39-4) vs 63-0 (35-0-75-0) vs 36-3 (25-0-64-8)

Table 2. Aggregated machine learning model performance on all 5 unseen outer-loop test sets, for each of the three models built: logistic regression (LR), extreme gradient boosted trees (XGBoost), and support vector machine (SVM) with an RBF kernel. The highest performance (across all models), for each of the metrics reported is highlighted in bold.
Assessment of COPD using Fast-Response Capnometry and Machine Learning Pre-print posted on medRxiv

![Figure 3](image)

Figure 3. (A) Receiver operating characteristic (ROC) curve for the LR model, reported with results of a theoretical ‘random’ classifier with no predictive power. (B) Precision-Recall Curve for the LR model, reported with the results of a theoretical ‘random classifier’ and the average precision (AP).

<table>
<thead>
<tr>
<th>Disease Class</th>
<th>Number of Patients</th>
<th>Number of Capnograms</th>
<th>Diagnostic Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma</td>
<td>257</td>
<td>1538</td>
<td>0.839 ± 0.027</td>
</tr>
<tr>
<td>Healthy</td>
<td>125</td>
<td>607</td>
<td>0.923 ± 0.056</td>
</tr>
<tr>
<td>Heart Failure</td>
<td>65</td>
<td>389</td>
<td>0.661 ± 0.055</td>
</tr>
<tr>
<td>Breathing Pattern Disorder</td>
<td>10</td>
<td>60</td>
<td>0.950 ± 0.075</td>
</tr>
<tr>
<td>GOLD 1 COPD</td>
<td>47</td>
<td>632</td>
<td>0.606 ± 0.152</td>
</tr>
<tr>
<td>GOLD 2 COPD</td>
<td>107</td>
<td>1451</td>
<td>0.815 ± 0.054</td>
</tr>
<tr>
<td>GOLD 3 COPD</td>
<td>53</td>
<td>725</td>
<td>0.898 ± 0.099</td>
</tr>
<tr>
<td>GOLD 4 COPD</td>
<td>24</td>
<td>325</td>
<td>0.985 ± 0.019</td>
</tr>
<tr>
<td>COPD (no severity label)</td>
<td>55</td>
<td>720</td>
<td>0.692 ± 0.067</td>
</tr>
<tr>
<td>Emphysema</td>
<td>8</td>
<td>112</td>
<td>0.804 ± 0.263</td>
</tr>
</tbody>
</table>

Table 3. Accuracy of COPD/non-COPD diagnosis for most commonly presenting disease groups and all COPD severities, over all five outer-loop test sets.

class and each GOLD severity in the COPD class. Comorbid COPD patients have been included in the performance statistics for their respective COPD severity. Notably high performance was seen in classifying healthy, asthma, breathing pattern disorder, and GOLD 2-4 COPD participants, while lower performance was seen in the heart failure and GOLD 1 COPD cohorts.

Figure 4 shows the diagnostic performance for the capnograms with a greater than 0.8 and less than 0.2 probability of COPD. These are capnograms which have been classified with high confidence by the model.

To investigate how comorbidities impacted the accuracy of COPD classification, COPD patients were grouped according to the most prevalent comorbidities and the performance was assessed for each of these groups (Table 4).

An evaluation of the predictive model was conducted to identify which capnogram features best distinguished patients with and without COPD. The relative feature
Assessment of COPD using Fast-Response Capnometry and Machine Learning

<table>
<thead>
<tr>
<th>Comorbidity</th>
<th>Num. patients</th>
<th>Accuracy ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD and Asthma</td>
<td>51</td>
<td>0.771 ± 0.095</td>
</tr>
<tr>
<td>COPD, Asthma and Other(s)</td>
<td>29</td>
<td>0.663 ± 0.127</td>
</tr>
<tr>
<td>COPD and Bronchiectasis</td>
<td>10</td>
<td>0.679 ± 0.464</td>
</tr>
<tr>
<td>COPD and Long COVID</td>
<td>8</td>
<td>0.830 ± 0.208</td>
</tr>
<tr>
<td>COPD and Heart Failure</td>
<td>5</td>
<td>0.971 ± 0.025</td>
</tr>
<tr>
<td>COPD and Pneumonia</td>
<td>3</td>
<td>0.865 ± 0.393</td>
</tr>
<tr>
<td>COPD and Other(s)</td>
<td>13</td>
<td>0.626 ± 0.416</td>
</tr>
<tr>
<td>All Comorbid COPD</td>
<td>119</td>
<td>0.736 ± 0.092</td>
</tr>
</tbody>
</table>

Table 4. Diagnostic accuracy and standard deviation across test-sets for the most prevalent COPD comorbidities. Comorbid COPD patients who had Bronchiectasis/HF/Long COVID/Pneumonia and other lung conditions were placed in the COPD and Other(s) category.

Importances for driving learning in the LR model were determined and the region of the capnogram waveform from which the features were extracted was used to construct the importance map for non-COPD and COPD waveforms in Figure 5. Features associated with the alpha region of the capnogram waveform as well as phase 4a (the inspiratory downstroke) were found to be the most important drivers of learning.

Severity determination

Classification was performed using only logistic regression in this analysis due to its simplicity, explainability and since logistic regression was shown in the COPD diagnostic task to be as accurate as non-linear models.

All performance statistics were obtained using a decision boundary of 0.5 on the models’ probability outputs. The classification model trained to distinguishing GOLD 1 from GOLD 4 participants achieved an accuracy of 0.959 ± 0.039, an AUROC of 0.980 ± 0.013, a sensitivity of 0.958 ± 0.051, a specificity of 0.961 ± 0.045, PPV of 0.958 ± 0.039 in, where the standard deviation describes the variability of performance on the unseen outer-loop test sets across the five folds.

Manual inspection of the average capnogram waveform of each GOLD severity (Figure 6) demonstrates that greatest visual difference between severities is seen in the transition between the expiratory upstroke and expiratory plateau, along with marked differences in the beta region and in the phase 2/4a regions. In addition, it can be seen that the difference in the average waveform between the GOLD 1 and GOLD 2 waveforms is slight compared to the difference between GOLD 2 and GOLD 3.

The model which gave the median accuracy on the unseen outer-loop test set out of the five folds was chosen for further analysis. It was used to output prediction probability for all GOLD 2 and GOLD 3 patients’ capnograms, the remainder of GOLD 1 and GOLD 4 capnograms belonging to patients who were unseen for this particular model, as
Assessment of COPD using Fast-Response Capnometry and Machine Learning

For each severity, one capnogram with probability below the lower quartile was chosen and one capnogram with probability above the upper quartile was randomly chosen.

To understand the relationship between the standard spirometric indication for COPD severity and the severity index developed in this paper, the percentage predicted FEV$_1$ for each participant was correlated with the severity model output probability for all 224 patients with paired spirometry (spirometry taken on the same day as a capnogram), unless the paired capnogram was used for training. This data was plotted in Figure 8, where the linear relationship gave a Pearson’s product moment correlation coefficient (PPMCC) of -0.71.

Figure 9 shows the distribution of each GOLD severity in the severity model’s probability output, including capnograms which were unpaired with spirometry. These unpaired capnograms were designated the severity given by the patient’s median percentage predicted FEV$_1$ measurement.

Discussion

Model robustness

For the diagnostic task, the best performing model over the five unseen outer-loop test sets was the support vector machine (SVM), with a class-balanced AUROC of 0.811 ± 0.022 and positive predictive value (PPV) of 0.834 ± 0.015. The robustness of the diagnostic models was demonstrated through the similar performances of all three algorithms, showing a strong signal in the data itself; the small difference between training set and testing set diagnostic accuracy (0.819 vs 0.809 for logistic regression, for example); and the low variability of performance across different test sets, showing the model’s generalizability to a true clinical scenario. See supplementary material for more details.

Interpretability and waveform features driving learning

The identified features (Figure 5) contributing most to the logistic regression model’s decision were from the α angle region, which characterizes the rate at which gas...
from the upper airways (CO₂-poor) gives way to mixed alveolar gas from the lower airways (CO₂-rich). A larger α angle corresponds to greater airway resistance, likely due to an obstructed bronchospastic airway or alveolar damage associated with emphysema.

For severity determination, the high correlation of 0.71 between the model’s probability output and the current standard for spirometric severity determination, percentage predicted FEV₁, indicates the physiological plausibility of the severity index in describing the progression of COPD pathology.

Figure 6 shows the average waveforms for each COPD severity. We observe that the more severe forms of COPD exhibit a more extreme "shark-fin" like shape, characterized by a large α angle and more slanted expiratory plateau. The shark-fin type waveform is known to arise from differences in time constants of gas movement from different alveoli to the sensor, as a result of differing compliance and resistance of alveoli. The changes in compliance and resistance arise as a result of the airway remodeling that occurs in COPD. This changes the rate of transition of gas from alveoli to anatomical dead space (i.e. the expiratory upstroke). Notably, the average waveforms of GOLD 1 and GOLD 2 waveforms are extremely similar, with greater distinction between GOLD 2/GOLD 3, and GOLD 3/GOLD 4 waveforms. This similarity is reflected in the probability distributions of the mild and moderate severity groups (Figure 9), which overlap more than severe and very severe patients do. One possible cause for the conflation of the two severities in our dataset is that GOLD 1 COPD in particular is heavily underdiagnosed using the current standard [7], and rates of misdiagnosis are also high. Therefore, misdiagnosed GOLD 1 patients in the dataset who actually had a different obstructive lung condition could have distorted the resultant average waveform, and the patients who do truly have GOLD 1 COPD were likely to be on the more severe end of their severity.

There is a subset of mild COPD patients who exhibit a "shark-fin" like waveform which resembles more severe COPD - such as example B in Figure 7. It is becoming more widely accepted that percentage predicted FEV₁ alone does not effectively represent the functional impairment experienced by individual patients [13], a fact which catalyzed the introduction of GOLD’s ABCD and ABE systems of severity classification. It is therefore possible that high-resolution capnography is able to identify a severity signal in COPD which correlates more closely to clinical outcomes. This hypothesis would explain why GOLD 1 waveforms with "shark-fin" shapes, such as example B in Figure 7, were given a capnographic severity index which was higher than most GOLD 2 and many GOLD 3 participants. To verify this hypothesis, further analysis would be required to examine the clinical outcomes of patients who are given a higher severity index than their GOLD status would suggest.

Diagnostic performance and model bias
The classification performance for the most commonly presenting disease groups and all COPD severities on the diagnostic task can be found in Table 3 and the performance of various categories of comorbid COPD patients can be found in Table 4. A previous study by Talker et. al [11] found that the highest performing cohorts had capnograms at the extremities of a square-shaped healthy waveform with smaller α angle and flatter expiratory plateau, or highly shark-fin-like waveforms with larger α angle and steeper expiratory plateau for COPD. These cohorts perform similarly well in this analysis, with the Healthy, GOLD 3 and GOLD 4 groups all scoring at or above approximately 90% in classification accuracy. While GOLD 2 COPD also performed well (0.815), the GOLD 1 COPD cohort performed significantly worse (0.616). Mean pack years for the misclassified and correctly classified GOLD 1 patients were 14.4 and 27.3 years respectively (Mann-Whitney U=16152, P = 1 x 10-13, two-tailed) which could suggest that the rate of mislabeling in the misclassified cohort was much higher.

Other factors which may have contributed to this result include the high prevalence of confounding comorbidities in this group (25/47 GOLD 1 patients) and that the COPD signal is weaker in GOLD 1 patients and therefore more easily confused with other conditions. A lower performance than expected was also seen in the smaller COPD group that did not have spirometry from which severity could be inferred. Several factors may have contributed to this poorer performance. First, this cohort had the highest prevalence of comorbidities among all of the disease/severity groups (31/55 patients), which could have confounded classification. Second, 95% of these patients were recruited as part of the CARES study, which was designed to specifically target milder COPD patients and therefore could have led to decreased performance. The mean pack year value of 28.9 in this group, less than the mean pack years for Moderate COPD (30.1), corroborates this hypothesis.

Notably, the classification accuracies of the asthma group (0.839) and the COPD & asthma comorbidity group (0.771) were both high, suggesting the model can effectively identify the COPD component in asthma-COPD overlap and distinguish it from pure asthma. While performance in classifying comorbid patients with COPD & Heart Failure was extremely high (0.971), performance in classifying pure Heart Failure as non-COPD was significantly lower (0.661). It is possible that a portion of cases labeled as pure Heart Failure were the result of undiagnosed COPD, which can cause right-sided heart failure by inducing pulmonary hypertension through low blood oxygen levels [14]. The mean pack years of 16.2 in the pure Heart Failure group, significantly higher than the mean of 6.3 in the non-COPD cohort overall, corroborates this.

Reassuringly, there was no significant association between prediction accuracy and demographic features (including age, birth sex, and BMI) through non-parametric
When presented with the capnogram of a new patient, the diagnostic model presented above outputs a probability of COPD. Rather than relying on individual clinicians to interpret what is a novel, AI-derived diagnostic output, it could be clinically useful to create categories of model confidence (Figure 4). For instance, those above a probability threshold of COPD of 0.8 could be said to be in a ‘highly likely’ category since the PPV associated with this group is 0.93 - patients within this group could potentially be immediately diagnosed with COPD and appropriate treatment initiated. Conversely, patients with a probability of under 0.2 could be said to be in a ‘highly unlikely’ category with an NPV of 0.89. Patients in this group could be said to have had COPD ‘ruled out’ and therefore alternative explanations for their presenting symptoms could be sought. Since the N-Tidal™ device relies on 75 seconds of normal tidal breathing this categorization could be achieved at the point of care, in primary care.

Furthermore, the ability to rapidly identify those likely to have severe or very severe disease could ensure these patients receive prompt, intensive support (such as pulmonary rehabilitation or timely escalation of therapy as appropriate). The severity index offered by N-Tidal™ could also offer an alternative method to monitor disease progression. At a time when healthcare services even in high income countries can struggle to provide sufficient quality-assured spirometry to meet primary care needs, N-Tidal™ could alleviate the demand for further lung function testing for COPD for a significant portion of patients. In middle and low income settings where quality-assured spirometry is likely to remain out of reach of the majority of the population, N-Tidal™ could be a potential solution.

Limitations and scope for future work
The analysis presented in this study has a number of limitations. First, simpler machine learning models were used in keeping with the National Health Service Artificial Intelligence recommendations regarding algorithmic explainability [15]. This limitation will likely be exacerbated as the size of high-resolution capnography datasets increase and opportunities to explore more complex fits to the data arise.

Second, ground-truth labels could only be obtained using current diagnostic pathways, known to have their shortcomings and inaccuracies. This is especially true for the less severe COPD patients who were included in this paper, whose rate of misdiagnosis is likely higher than GOLD 3 and 4 COPD patients. In addition, the GOLD severity labels used for this analysis were not provided by clinicians, but were inferred solely from percentage predicted FEV1 readings of patients with a diagnosis of COPD. In reality, other factors such as number of exacerbations per year, general respiratory symptoms and smoking history would likely also be taken into account when determining an overall impression of severity. For example, exacerbation frequency and symptom burden forms an integral part of GOLD’s ABE severity assessment tool. It is therefore possible that a misclassification or anomalous severity model output probability of a participant from one of the models presented in this article could be caused by mislabeling or misdiagnosis, particularly when considering the GOLD 1 COPD cohort.

The small sample size of the severity determination cohort and resultant removal of comorbid patients is another limitation and alongside the probably significant rate of GOLD 1 misclassification, decreases certainty on the model’s practicability. It will be possible to build on this work by collecting capnography data from more COPD patients, alongside severity labels which have been provided by clinicians based on spirometry that has been contextualized by the rest of the patient’s clinical history and CT scans. This will enhance label accuracy.

Finally, it is possible that the variety of disease data collected over the five studies and volunteer healthy cohort may fail to cover the full heterogeneity of lung conditions that would be encountered in a real-world clinical setting, limiting generalizability.

Regardless, the proposed methods managed to distinguish on capnography alone (without supplementary data such as smoking history), between participants with COPD and those with a range of plausible differential diagnoses for common symptoms of COPD (including healthy volunteers), demonstrating its potential clinical benefit.

In summary, we demonstrate that the N-Tidal™ fast-response capnometer and cloud analytics pipeline can perform real-time geometric waveform analysis and machine-learning-based classification to diagnose all severities of COPD. In contrast to commonly used ‘black box’ machine learning methodologies, a set of highly explainable methods were used that can provide traceability for machine diagnosis back to individual geometric features of the pCO2 waveform and their associated physiological properties suggestive of obstructive airways disease. In addition, the probability output of a separate machine learning model could be used as an alternative severity index for COPD using the N-Tidal™ device, with the interpretability of the implemented machine learning techniques providing a picture of COPD patients’ capnographic progression from GOLD 1 through GOLD 4.

Acknowledgements
The ABRS study was supported by the National Institute for Health Research Invention for Innovation (NIHR i4i) Programme (Grant Reference Number: II-LA-1117-20002), the GBR study was supported by Innovate UK (Grant Reference Number: 102977), the CBRS study was supported by SBRI Healthcare, and the CBRS2 study was supported by Pfizer OpenAir. The ABRS and GBR re-
search was supported by the Portsmouth Technology Trials Unit (www.pttu.org.uk) and the NIHR Community Healthcare MedTech and In Vitro Diagnostics Co-Operative (MIC). The CARES research was supported by the Modality GP Partnership (www.modalitypartnership.nhs.uk). The authors also acknowledge the work of staff at the Cambridge COPD Centre for Respiratory Research for their role in patient recruitment for CRBS and CRBS2, and staff in Oxford University’s Primary Care Clinical Trials Unit who were responsible for trial management (Julie Allen, Johanna Cook, Joy Rahman, Rebecca Edeson) and nursing (Heather Rutter, Karen Madronal, Bernadette Mundy) in ABRS.

Author contributions

AC, TB, GH, DN, LW, and EV conceived of the individual studies and were responsible for study supervision and study design. DN, LW, and EV collected the data. ABS, LT and AXP conceived of the original models, analyses and experimentation presented in this article. JCC and AXP designed and wrote the algorithms and code for denoising, pre-processing, and feature engineering. LT, ABS, HB, RHL, AXP wrote the code for, and carried out, model training and data analysis. AXP supervised the analyses in the manuscript. STW, AXP, GL, AC, TB, and GH contributed to expert technical review and data interpretation. LT, GL, ABS, HB, RHL drafted the manuscript. All authors participated in review and editing of the manuscript. All authors had access to the results data presented in the manuscript. The decision to submit this manuscript was made by all authors. All authors read and approved the final manuscript.

Funding

The ABRS study was supported by the National Institute for Health Research Invention for Innovation (NIHR i4i) Programme (Grant Reference Number: II-LA-1117-20002), the CRBS study was supported by Innovate UK (Grant Reference Number: 102977), the CBRS study was supported by SBRI Healthcare, the CRBS2 study was supported by Pfizer OpenAir and the CARES study was supported by Innovate UK through two grants (Grant Reference Numbers: 133879 and 74355). The authors had sole responsibility for the study design, data collection, data analysis, data interpretation and report writing.

Declarations

Ethics approval and consent to participate

All participants consented to participate. Further details can be found on the National Library of Medicine’s Clinical Trial website for CRBS (NCT02814253), CRBS (NCT03356288), CRBS2 (NCT03615365), ABRS (NCT04504838) and CARES (NCT04939558).

Consent for publication

Not applicable.

Competing interests

LT, CD, ABS, JCC, HB, RHL, GL, AXP are currently employed, or were employed/funded at the time of the research, by TidalSense Limited. GH and HFA are funded by the National Institute for Health Research (NIHR) Community Healthcare MedTech and In Vitro Diagnostics Co-operative at Oxford Health NHS Foundation Trust. All authors declare no competing interests. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

Author details

1TidalSense Limited, 15a Vinery Rd, Cambridge CB1 3DN, UK. 2Portsmouth Hospitals University NHS Trust, Portsmouth, UK. 3Nuffield Department of Primary Care Health Sciences, NIHR Community Healthcare MedTech and IVD Cooperative, University of Oxford, Oxford, UK. 4Modality GP Partnership. 5Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA.

References

Assessment of COPD using Fast-Response Capnometry and Machine Learning

