FULL TITLE: Females are less likely to receive bystander cardiopulmonary resuscitation in witnessed out-of-hospital cardiac arrest: An Australian perspective.

SHORT TITLE: Sex-related differences in bystander cardiopulmonary resuscitation provision

AUTHORS NAMES AND AFFILIATIONS

Sonali Munot¹, Janet E Bray², Julie Redfern³, Adrian Bauman⁴, Simone Marschner¹, Christopher Semsarian⁵, Alan Robert Denniss⁶, Andrew Coggins¹,⁷, Paul M Middleton⁸, Garry Jennings⁹, Blake Angell¹⁰, Saurabh Kumar¹,⁶, Pramesh Kovoor⁶, Matthew Vukasovic⁷, Jason C Bendall¹¹,¹², Evens T¹¹, Clara K Chow¹,⁶,¹⁰.

1. Westmead Applied Research Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
2. School of Public Health and Preventive Medicine, Monash University, Victoria, Australia.
3. School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
4. School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
5. Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia.
6. Department of Cardiology, Westmead Hospital, Sydney, Australia.
7. Department of Emergency Medicine, Westmead Hospital, Sydney, Australia.
8. South Western Emergency Research Institute, Ingham Institute, SWSLHD, Sydney, Australia.
9. Sydney Health Partners, Charles Perkins Centre, The University of Sydney, Australia.
10. The George Institute for Global Health, University of New South Wales, Newtown, Australia.
12. School of Medicine and Public Health (Anaesthesia and Intensive Care), The University of Newcastle, Australia.
CLINICAL PERSPECTIVE

What is new?

- Female OHCA patients in New South Wales, Australia were less likely to receive bystander CPR, irrespective of arrest location.
- In public locations, recognition of OHCA during the emergency call was lower in women and this partly explained the observed sex difference in bystander CPR provision.

What are the clinical implications?

- Public education campaigns and training programs that address bystander response should consider sex differences as a potential barrier to bystander CPR in OHCA.
- Future research that examines reasons for lower rates of bystander response in women and ways of addressing this barrier could help address sex disparities in the future.
ABSTRACT

Background: Bystander cardiopulmonary resuscitation (CPR) plays a significant role in survival from out-of-hospital cardiac arrest (OHCA). This study aimed to assess whether bystander CPR differed by patient sex among bystander-witnessed arrests.

Methods: Data on all OHCAs attended by New South Wales (NSW) paramedics between January 2017 and December 2019 was obtained from the NSW Public Health Risks and Outcomes Registry (PHROR). This observational study was restricted to bystander-witnessed cases with presumed medical aetiology. OHCA from arrests in aged care, medical facilities, and cases with an advance care directive (do-not-resuscitate) were excluded. Multivariate logistic regression was used to examine the association of patient sex with bystander CPR. Secondary outcomes were OHCA recognition, bystander AED applied, initial shockable rhythm, and survival outcomes.

Results: Among the 4,491 bystander-witnessed cases, females were less likely to receive bystander CPR in both private residential (Adjusted Odds ratio [AOR]: 0.82, 95%CI: 0.70-0.95) and public locations (AOR: 0.58, 95%CI:0.39-0.88). Recognition of OHCA in the emergency call was lower for females, particularly in those who arrested in public locations (84.6% vs 91.6%-males, p=0.002) and it partially explained the association of sex with bystander CPR (~44%). There was no significant difference in OHCA recognition by sex for arrests in private residential locations (p=0.2). Females had lower rates of bystander AED use (4.8% vs 9.6%, p<0.001) however, after adjustment for arrest location and other covariates, this relationship was attenuated and no longer significant (AOR: 0.83, 95%CI: 0.60-1.12). Females were significantly less likely to record an initial shockable rhythm (AOR: 0.52,
95%CI: 0.44-0.61). Although females had greater odds of event survival (AOR: 1.34, 95%CI: 1.15 – 1.56), there was no sex difference in survival to hospital discharge (AOR: 0.96, 95%CI: 0.77-1.19).

Conclusion: OHCA recognition and bystander CPR provision differs by patient sex in NSW. Given their importance to patient outcomes, research is needed to understand why this difference occurs and to raise awareness of this issue to the public.

KEYWORDS: Out-of-hospital Cardiac Arrest, Cardiopulmonary Resuscitation, Sex,
INTRODUCTION

Out-of-hospital cardiac arrest (OHCA) is associated with poor survival [1, 2, 3]. Bystander response, including cardiopulmonary resuscitation (CPR) and the use of an automated external defibrillator (AED), is associated with greater survival and better neurological outcomes [4, 5, 6]. However, rates of AED use are suboptimal, and the provision of bystander CPR varies by physical, social, and attitudinal factors related to the bystander and patient [7, 8]. There is also emerging evidence that bystander response may differ depending on the patient’s sex [9, 10, 11].

Lower rates of bystander CPR have been reported for female OHCA patients across several jurisdictions, for example, in the United States and Asia. However, this difference has been reported to vary depending on arrest location, patient age and other factors (e.g., bystander characteristics) [9, 12, 13]. Witnessed status also varies by sex, with females less likely to have a witnessed arrest than men, and this may explain some of the variation seen in bystander CPR [14]. In Australia, a study examining OHCA outcomes noted lower bystander CPR in females, however these were unadjusted estimates [15]. In contrast, a systematic review of data examining sex and OHCA survival, reported higher rates of bystander CPR in female patients [16]. However, their results were based on a comparison of weighted means of bystander CPR percentages and were not adjusted estimates.

Bystander CPR relies on OHCA recognition in the emergency call, which is needed to receive telephone CPR instructions[17]. It has been suggested that OHCA identification and misperceptions about women being in medical distress as a potential barrier in CPR for female patients [18]. To our knowledge, whether there are sex differences in OHCA recognition has not been examined.
The primary aim of this study was to assess if patients’ sex is associated with bystander CPR. The secondary objectives were to examine whether sex was associated with bystander AED application, shockable rhythm, survival outcomes, and recognition of OHCA by emergency call takers as well as explore whether this mediated the association between patient sex and bystander CPR provision.
METHODS

Study design and setting

This observational study examined data prospectively collected on all OHCAs attended by NSW Ambulance between January 2017 – December 2019. NSW Ambulance provides emergency medical services (EMS) to all of NSW and NSW Ambulance handles over 1.2 million emergency calls annually. NSW has the highest population of any state in Australia (8,153,000 residents as of 30 June 2022), with over three-quarters living in metropolitan areas [19]. NSW Ambulance call-takers are accredited with the International Academies of Emergency Dispatch (IAED) and use the structured call-taking system Medical Priority Dispatch System™ (MPDS) [20]. OHCA calls include instructions for CPR and defibrillator retrieval. Ethics approval for this study was obtained from The University of Sydney Ethics Committee (Ref: 2021/017).

Data source

De-identified data on OHCAs was obtained from the NSW Public Health Risks and Outcomes Registry which is maintained by the NSW Ministry of Health. The registry includes all cases of EMS-attended OHCAs [21, 22], and data is collected, coded, and recorded as per the OHCA Utstein Template [23] [24].

Inclusion and exclusion criteria

Analyses were restricted to bystander-witnessed cases of arrest due to presumed medical causes that were attended by the EMS. Arrests from external causes (drowning, overdose, trauma), paramedic-witnessed, unwitnessed, with an advance care directive (do-not-resuscitate (DNR) order), arrests occurring in nursing homes, medical centres / GP clinics,
police stations, correctional facilities/jails and ambulance stations were excluded from our analysis (Figure 1). Patients with unknown or missing sex data were also excluded.

Definition of variables

Primary and secondary outcome variables

Bystander CPR, defined as “CPR provided by any person who happens to be nearby and is not part of the organised emergency response system”, was categorised as yes or no [21]. A small proportion of responses recorded as unknown/not stated (3.7% females; 2.9% males) were classified as ‘no bystander CPR’ for the purpose of our analyses. Sensitivity analyses were conducted with unknown responses excluded.

Secondary outcomes were: AED application by a bystander (defined as an AED connected to the patient prior to ambulance arrival), initial shockable rhythm, OHCA recognition documented in the emergency call, and, survival outcomes, including event survival (defined as patients with a return of spontaneous circulation on arrival at the hospital emergency department) and survival to hospital discharge.

Recognition of OHCA in the emergency call is documented in the registry as ‘call-taker identified presence of OHCA and is a binary response (yes vs no). Emergency services call-taker assistance is known to influence bystander CPR [7, 25], but requires that the OHCA is recognized in the call. This variable was also assessed as a potential mediator between sex and bystander CPR.

Primary independent variable

The primary independent variable was patients’ biological sex, recorded as male or female.

Covariates

Patients’ age, arrest aetiology (presumed cardiac vs other medical), witnessed status (yes vs no), arrest location (private residential vs public location), arrest site (urban vs nonurban),
Advance directive (Do Not Resuscitate order) and ambulance response time were all considered as factors that could potentially influence the association between bystander CPR and patient sex. This was based on previous studies in this space, data availability, and clinical reasoning. These potentially confounding variables were managed by restriction/exclusion, statistical adjustment or presented as subgroups (arrest location: private residential vs public location). Arrest aetiology was collapsed into binary categories of presumed cardiac v/s other medical cause). Non-cardiac medical causes included cancer (6.7%), respiratory disease (6.5%), terminal illness, other (3.0%), neurological (1.3%), Other medical cause, not specified (23.0%). Arrest site areas’ level of remoteness (urban vs nonurban) was defined using the Accessibility and Remoteness Index of Australia (ARIA) score [26]. ARIA classifies an area as urban/metropolitan or nonurban (regional, rural) based on their relative access to services. Missing data for covariates was excluded from analysis (Table 1 footnote).

Statistical analysis
Analyses were conducted using R, version 4.1.0 [27]. Descriptive statistics were calculated with categorical data reported as counts and proportions, and continuous data as medians and interquartile range (IQR). Pearson’s χ^2 test was used to examine group differences and the Wilcoxon rank sum test was used for continuous data. For both tests, the p-value was considered significant if below 0.05. Missing data was excluded from analysis (see Table 1 footnote). Primary analysis involved the examination of the association between patients’ sex and bystander CPR. Multivariate logistic regression models were adjusted for potentially confounding variables that were retained in the model if clinically relevant and associated with bystander CPR at $p<0.05$ (Table 2). The primary outcome was stratified by arrest location that were grouped into private residential locations (homes) versus public locations.
Public locations included public building/public place (15.1%), street/road/highway (2.7%), sporting/recreation event (2.3%), vehicle (1.4%), workplace/industrial (1.4%), airport (0.7%), school/educational institution (0.4%), public transport (0.3), other-not specified (0.7%). Multivariable models for secondary outcomes use the total sample and were not split by location, given the limited sample size.

Mediation analysis was conducted to test whether the association between the patients’ sex and bystander CPR could be potentially explained by recognition of OHCA during the emergency call, and this was examined using the mediation package in R [28] (Supplementary section 2). This required comparing regression models with and without the proposed mediator variable and involved a bootstrapping approach to arrive at an estimate of the proportion mediated [29, 30]. Mediation was assessed when the following prerequisites were fulfilled: (a) the independent variable (patient sex) affects the mediator (OHCA recognition) (b) the mediating variable affects the outcome (bystander CPR) [31, 32]
Figure 1. Selection of study analytic cohort

- All EMS-attended OHCA in NSW (N=26404)
 - M(65%); F(34%); N/A(1%)

- Bystander-witnessed arrests (N=5517)
 - M(67%); F(33%); N/A(0.2%)

- OHCA attended in neighboring states (32)
- OHCA from non-medical/external cause (4536)
- Not-witnessed (12728)
- Paramedic-witnessed (1735)
- Witnessed status unknown (1856)

- OHCA in locations where bystander is likely to be a health professional/trained personnel (580)
 - Nursing home(8%); Medical centre(1.3%); Hospital(1.1%); Police station/correctional facility(0.2%); Ambulance vehicle/station(0.04%)

- OHCA with a Do-Not-Resuscitate order (438)

- OHCA where patient sex was unknown (8)

Analytic cohort (N=4491)
- M(70%); F(30%)

Note: EMS=Emergency Medical Services; NSW=New South Wales; OHCA: Out-of-hospital Cardiac Arrest
RESULTS

In the three years between January 2017 and December 2019, NSW Ambulance attended 21,836 OHCAs from a medical cause (Figure 1). Of the bystander-witnessed cohort (n=4491), 30% were female (Table 1). Most arrests occurred in private residential locations, although this was significantly higher in females (84.6% females vs 70.7% males, p<0.001) (Table 1). Females were also older (median age: 71 vs 68 years, p<0.001), and less likely to have a presumed cardiac cause than males (54.0% females vs 61.9% males, p<0.001). The majority of bystanders in private residential locations were related to the patient as compared with those in a public location (72.3% vs 6.5%, p<0.001) (Supplementary Table S1). The rate of OHCA recognition documented during the emergency call was significantly lower for females that arrested in a public location (84.6% vs 91.6%, p=0.002), but was not significantly different for arrests in private residential locations (89.2% vs 90.5%, p=0.2) (Supplementary section Table S1). Ambulance response times were similar for male and female patients irrespective of location (p=0.06). Compared with males, bystander CPR was significantly lower for female patients overall (64.6% vs 73.7%, p<0.001), and in both private residential (61.5% vs 67.8%, p<0.001) and public locations (81.5% vs 88.2%, p=0.010) (Supplementary section Table S1).

In sensitivity analysis, excluding cases where bystander CPR status was unknown/not stated did not make a significant difference to the results.
Table 1: Distribution of key arrest/patient characteristics by patient sex in bystander-witnessed OHCA NSW January 2017 – December 2019

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Study sample</th>
<th>Females</th>
<th>Males</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrest location</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Private residential</td>
<td>3366 (75.0)</td>
<td>1158 (84.6)</td>
<td>2208 (70.7)</td>
<td></td>
</tr>
<tr>
<td>Public</td>
<td>1125 (25.0)</td>
<td>211 (15.4)</td>
<td>914 (29.3)</td>
<td></td>
</tr>
<tr>
<td>Arrest Site</td>
<td></td>
<td></td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>Urban/metropolitan</td>
<td>3024 (67.4)</td>
<td>933 (68.2)</td>
<td>2091 (67.1)</td>
<td></td>
</tr>
<tr>
<td>Presumed cardiac aetiology</td>
<td>2675 (59.6%)</td>
<td>744 (54.0%)</td>
<td>1931 (61.9%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (years), Median (IQR)</td>
<td>69 (58 - 80)</td>
<td>71 (59 - 82)</td>
<td>68 (57 - 78)</td>
<td><0.001</td>
</tr>
<tr>
<td>Bystander CPR</td>
<td>3186 (71.0)</td>
<td>884 (64.6)</td>
<td>2302 (73.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Bystander AED used</td>
<td>366 (8.2)</td>
<td>66 (4.8)</td>
<td>300 (9.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>OHCA recognized in call</td>
<td>4001 (90.1)</td>
<td>1191 (88.5)</td>
<td>2810 (90.8)</td>
<td>0.017</td>
</tr>
<tr>
<td>Ambulance response time (minutes), Median (IQR)</td>
<td>9 (7 - 14)</td>
<td>10 (7, 14)</td>
<td>9 (7, 13)</td>
<td>0.06</td>
</tr>
<tr>
<td>Shockable initial rhythm</td>
<td>1565 (35.5)</td>
<td>301 (22.4)</td>
<td>1264 (41.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Survived event</td>
<td>1270 (28.3)</td>
<td>394 (28.8)</td>
<td>876 (28.1)</td>
<td>0.60</td>
</tr>
<tr>
<td>Survived to hospital discharge</td>
<td>602 (13.8)</td>
<td>142 (10.6)</td>
<td>460 (15.1)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Excluded n/a/missing: Arrest site(7); Age(36); EMS call-taker identified OHCA (51); Shockable initial rhythm (80); Survived event (0); Survived to hospital discharge (114). All n/a excluded from analysis except for Bystander CPR (140) or AED use (9) -where n/a were included in the ‘No’ category. Note: CPR: Cardiopulmonary resuscitation; AED: Automated External Defibrillator; IQR: Interquartile range (Q1 – Q3). Differences in characteristics by location subgroup are detailed in Supplementary Table S1.

The likelihood of bystander CPR was significantly lower with increasing age (OR: 0.98 95%CI: 0.97 – 0.98); in arrests presumed to be of a non-cardiac medical aetiology (OR: 0.50 95%CI: 0.44 – 0.58); when OHCA was not recognised during the emergency call (OR: 0.15 95%CI: 0.12 – 0.18) and when the ambulance arrived at the arrest scene in under five minutes (Global p<0.0001) (Table 2).
Table 2: Univariate associations of key patient/arrest characteristics and the likelihood of receiving bystander CPR (OR and 95% CI)

<table>
<thead>
<tr>
<th>Arrest location</th>
<th>All arrests</th>
<th>Private residential location</th>
<th>Public location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public place</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private residential</td>
<td>0.29 (0.24 - 0.34)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arrest site:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Regional/Rural</td>
<td>0.86 (0.75 - 0.99)</td>
<td>0.90 (0.77 - 1.04)</td>
<td>0.73 (0.51 - 1.05)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient sex</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Female</td>
<td>0.65 (0.57 - 0.74)</td>
<td>0.76 (0.66 - 0.88)</td>
<td>0.59 (0.40 - 0.89)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient age</th>
<th>(per one-year increase in age)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><55 years</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>55-75 years</td>
<td>0.65 (0.53 - 0.78)</td>
<td>0.71 (0.55 - 0.88)</td>
<td>0.52 (0.32 - 0.83)</td>
</tr>
<tr>
<td>>75 years</td>
<td>0.35 (0.29 - 0.43)</td>
<td>0.39 (0.32 - 0.49)</td>
<td>0.56 (0.32 - 0.96)</td>
</tr>
</tbody>
</table>

Arrest aetiology			
Presumed cardiac	Reference	Reference	Reference
Other medical	0.50 (0.44 - 0.58)	0.52 (0.45 - 0.60)	0.73 (0.51 - 1.05)

<table>
<thead>
<tr>
<th>OHCA recognized in call</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>No</td>
<td>0.15 (0.12 - 0.18)</td>
<td>0.13 (0.10 - 0.17)</td>
<td>0.11 (0.07 - 0.18)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ambulance response time (minutes)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>5-7</td>
<td>1.64 (1.25 - 2.14)</td>
<td>1.55 (1.13 - 2.14)</td>
<td>3.65 (1.98 - 6.99)</td>
</tr>
<tr>
<td>7-10</td>
<td>1.50 (1.18 - 1.91)</td>
<td>1.52 (1.13 - 2.03)</td>
<td>2.86 (1.71 - 4.80)</td>
</tr>
<tr>
<td>10-14</td>
<td>1.32 (1.03 - 1.68)</td>
<td>1.38 (1.03 - 1.85)</td>
<td>2.69 (1.56 - 4.71)</td>
</tr>
<tr>
<td>>14</td>
<td>1.10 (0.86 - 1.39)</td>
<td>1.19 (0.89 - 1.58)</td>
<td>1.84 (1.10 - 3.07)</td>
</tr>
</tbody>
</table>

Note: OR: Odds ratio; CI: Confidence interval; Arrest site (Urban vs nonurban); OHCA: Out-of-hospital cardiac arrest
After adjusting for covariates, females had significantly lower odds of receiving bystander CPR (Private location: AOR 0.82, 95%CI: 0.70 - 0.95; Public location: AOR 0.58, 95%CI: 0.39 - 0.88) (Figure 2). The association between patient sex and bystander CPR in public locations was partially mediated (estimate ~44%) by recognition of OHCA in the call – with the inclusion of this variable in the adjusted model attenuating the association (between patient sex and bystander CPR) (AOR: 0.67 95%CI: 0.43 – 1.06).

Secondary outcomes

OHCA recognition documented by the emergency call taker was lower for females arresting in public locations (AOR: 0.52 95%CI: 0.33 – 0.83). Bystander AED use was significantly lower among females (4.8% vs 9.6% p<0.001) (Table 1). Most of AED application reflects use in public locations compared with private residential locations (28.3% vs 1.4%, p<0.001) (Supplement Table S1). After adjusting for location there was no significant difference in AED application by patient sex (AOR 0.83 95%CI: 0.60-1.12) (Figure 2). Females had lower odds of presenting with a shockable initial rhythm compared with male patients (AOR 0.51, 95%CI: 0.43 - 0.60) (Figure 2). Females had a greater likelihood of surviving the event to reach the emergency department (AOR: 1.34, 95%CI: 1.15 - 1.56), but this survival advantage was not sustained to hospital discharge (AOR: 0.96 95%CI: 0.77 - 1.19).
Figure 2: Crude and Adjusted odds ratios explaining the association between patient sex with primary and secondary outcomes

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate OR (95% CI)</th>
<th>Adjusted OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bystander CPR: all locations</td>
<td>0.65 (0.57, 0.74)</td>
<td>0.72 (0.62, 0.83)</td>
</tr>
<tr>
<td>Private residential</td>
<td>0.76 (0.66, 0.88)</td>
<td>0.82 (0.70, 0.95)</td>
</tr>
<tr>
<td>Public</td>
<td>0.59 (0.40, 0.89)</td>
<td>0.58 (0.39, 0.88)</td>
</tr>
<tr>
<td>OHCA recognition in call (private residential)</td>
<td>0.87 (0.69, 1.10)</td>
<td>0.88 (0.69, 1.12)</td>
</tr>
<tr>
<td>OHCA recognition in call (public)</td>
<td>0.50 (0.33, 0.79)</td>
<td>0.52 (0.33, 0.83)</td>
</tr>
<tr>
<td>Bystander AED use</td>
<td>0.48 (0.36, 0.62)</td>
<td>0.83 (0.60, 1.12)</td>
</tr>
<tr>
<td>Shockable initial rhythm</td>
<td>0.41 (0.36, 0.48)</td>
<td>0.52 (0.44, 0.61)</td>
</tr>
<tr>
<td>Survived event</td>
<td>1.04 (0.90, 1.19)</td>
<td>1.34 (1.15, 1.56)</td>
</tr>
<tr>
<td>Survived to hospital discharge</td>
<td>0.66 (0.54, 0.81)</td>
<td>0.96 (0.77, 1.19)</td>
</tr>
</tbody>
</table>

OR: Odds Ratio; CI: Confidence interval; CPR: Cardiopulmonary resuscitation; AED: Automated external defibrillator. All multivariate models were adjusted for patient age, presumed aetiology, and ambulance response time. Furthermore, Bystander AED use model additionally adjusted for arrest location, while shockable initial rhythm and survival outcomes models additionally adjusted for arrest location, arrest site, bystander CPR and bystander AED use.
DISCUSSION

Female OHCA patients are less likely to receive bystander CPR compared with male patients and this association was significant after accounting for covariates including age, presumed aetiology, and ambulance response time. This relationship was consistent for both public locations and private residential locations. Emergency call takers were less likely to document recognition of OHCA in females, and mediation analysis demonstrated that this partially explained the lower rates of bystander CPR in females. Rates of bystander AED use were low overall and while females were less likely to have an AED applied, they were also less likely to present in shockable rhythm, however the association of sex with AED use became non-significant after adjusting for covariates. Survival to hospital discharge was similar by sex.

Several studies have found differences in provision of bystander CPR by sex with most indicating lower rates in females and some suggesting the observed differences vary by arrest location or patient age [9, 11, 12, 14]. For example in the United States, males had higher odds of receiving bystander CPR in public locations, but not in private residential locations[9]. Similar observations were made across Asian countries where an analysis of 56,192 OHCA cases found females had lower rates of bystander CPR in public locations, but in private locations there were higher rates of CPR for females compared to males[11]. Such observations have been explained as potentially due to the bystander knowing or being related to the patient in private locations versus a discomfort of touching the chest of an unknown female in public locations [9, 13, 18]. Indeed, one study form the U.S. suggests it may be less socially acceptable to perform CPR in women with hesitancy in touching females suggested as a factor in a public survey conducted in the United States [18]. In our cohort, majority of bystanders were related with patients in private residential locations, less so in
public locations. Despite this we observed a disadvantage in CPR provision for females in private residences.

A variety of factors have been hypothesized to explain lower rates of bystander CPR in women including concerns around modesty, fear of causing harm or legal liability and perceptions of fragility[18, 33]. OHCA may present differently in females compared to males. The current study demonstrating the contributing role of recognition of OHCA by the call taker is also consistent with a mixed methods investigation in which audio recordings of emergency calls were analysed to examine factors associated with emergency call-takers sensitivity in OHCA recognition finding a lower recognition in females [34]. Call-takers generally apply standard algorithms in triage and identification of OHCA [35] which depend on the caller’s description of the patient’s condition. The lower sensitivity in OHCA identification for female could be related to callers’ description of symptoms or the seriousness of patients’ condition. Blom et al (2019) examined if there were delays in OHCA recognition by assessing the time from emergency call to ambulance dispatch but found no difference by patient sex [14]. They noted that they could not factor in delays from OHCA onset to recognition by bystanders. Researchers have pointed to sex-related differences in warning symptoms prior to cardiac arrest noting that while chest pain was more commonly experienced by men, women more typically had shortness of breath [36, 37]. Linguistic factors were also found to be important in influencing whether the emergency call will progress to bystander CPR provision [38, 39]. Future investigations that involve listening to emergency call recordings and analysing the interaction between caller and call-taker may be able to specifically identify barriers unique to women.
Our findings noted that while rates of bystander AED use were lower among females, the difference was not significant after accounting for covariates. Women were significantly more likely to arrest in residential locations compared with males and use of AEDs in private residential locations was very low. Studies from larger populations in the United States and Japan have found that men were significantly more likely to have public AEDs applied by a bystander [10, 40]. They speculated that the differences observed could relate to embarrassment or fear of sexual assault [10, 40].

Females also had a lower likelihood of presenting in a shockable initial rhythm irrespective of age and location. This could be related to differences in arrest aetiology and mechanisms of cardiac arrest [15]. However, a lack of or a delay in CPR provision could also play a role, given that over time shockable rhythms degenerate to non-shockable rhythms without chest compressions [41]. As reported in other studies, females were more likely to survive to hospital, but there was no difference in survival to hospital discharge [15, 42]. Several studies have examined the differences in aetiology and comorbidities among women. However, it is uncertain whether a real difference in survival exists after accounting for known patient, prehospital and treatment factors that could explain disparities [42].

Our study has limitations. We were limited in our ability to control for unmeasured confounders that could explain the observed sex-based disparities (e.g., bystander characteristics, perceived frailty, comorbidities) [43, 44]. We controlled for this to some extent by excluding arrests with a DNR order and nursing home/medical facility arrests where females were overrepresented. Additionally, we adjusted for age and arrest aetiology given the higher age at arrest in females and a greater rate of non-cardiac causes (e.g., terminal illness) compared with males. Witness status was missing for several cases and these
cases were excluded from our analysis [14, 45]. The registry data did not distinguish if bystander CPR provision was spontaneous (bystander-initiated) or in-time (telephone guided). Dispatcher assistance has been shown to influence initiation and quality of bystander CPR [46] and rates of recognition by OHCA by emergency call takers were high, suggesting that dispatcher assistance could be high in this cohort [47, 48]. The mediation analysis examining the role of OHCA recognition during the emergency call should only be considered as hypothesis generation of the suggested mechanism rather than definitive evidence of causal processes given that it is based on non-experimental or observational data [32, 49]. Finally, our sample size limited precision and analysis of secondary outcomes and sub-groups.

CONCLUSION

This study provides novel new data demonstrating in Australia’s most populous state which has high rates of CPR training in the general population, females are less likely to receive bystander CPR in OHCA. It also describes a potential mitigating mechanism for the observation of sex differences with demonstrating the potential role of call takers in recognising OHCA over the phone. The findings suggest that public education, campaigns are needed to address these inequalities and possibly the utility of targeting emergency personnel to help with redressing the issue of recognition of possible OHCA over a call. However further research is needed to better understand this issue and to also develop interventions to address them.

AUTHOR CONTRIBUTIONS STATEMENT
SM conceived the study design, submitted the ethics application, analysed the data, interpreted the results, and wrote the first draft of this manuscript. JB and SMarschner assisted with analysis. All authors (SMunot, JB, JR, AB, SMarschner, CS, ARD, AC, PMM, GJ, BA, SK, PK, MV, ET, CC) have reviewed, critiqued, and provided intellectual input on various drafts and approved the submitted draft. CC acquired the data, critiqued the analysis plan, multiple drafts and approved the final draft and is the overall guarantor.

FUNDING AND ACKNOWLEDGEMENTS

This work was supported by the National Health and Medical Research Council (NHMRC) of Australia partnership project grant (#1168950). In addition, and as part of the NHMRC partnership grant, the study received support from the following partner organisations: NSW Ministry of Health, Surf Life Saving NSW, Western Sydney Local Health District, NSW Ambulance, The National Heart Foundation of Australia, Michael Hughes Foundation (now merged with Heart of the Nation), Heart Support Australia, City of Parramatta, Take Heart Australia, and the NSW Data Analytics Centre. SMunot was funded by PhD scholarships from The University of Sydney centres (Westmead Applied Research Centre and Charles Perkins Centre Westmead node), JB is funded by a Heart Foundation of Australia Fellowship (##104751), JR is funded by an NHMRC Investigator Grant (GNT1143538), CS is funded by an NHMRC Practitioner Fellowship (#1154992) and NSW Health, BA is supported by an NHMRC Emerging Leadership Grant (GNT2010055). The authors would like to acknowledge the data custodian NSW Ministry of Health and the statistical assistance of Haeri Min and Desi Quintans.
CONFLICT OF INTEREST

None
REFERENCES

Figure legends

Figure 1. Selection of study analytic cohort

Figure 2: Crude and Adjusted odds ratios explaining the association between patient sex with primary and secondary outcomes