Expected and observed deaths in France from 2020 to 2022: accurately assessing the excess mortality during the COVID-19 pandemic period.

Paul Moulaire1*, Gilles Hejblum1, Nathanaël Lapidus2; on behalf of the COVID HOSP working group

1Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique, F 75012 Paris, France

2Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique, AP HP, Hôpital Saint Antoine, Unité de Santé Publique, Paris, France

*Correspondence:
Paul Moulaire, Inserm / Sorbonne Université UMR S 1136, 27 rue Chaligny, 75012 Paris, France. paul.moulaire@inserm.fr

Keywords: Excess Mortality, COVID-19, Pandemics, France, Life Expectancy.
Abstract

Background: Excess mortality has been used worldwide for summarizing the COVID-19 pandemic-related burden. In France, the reported estimates for years 2020 and 2021 vary by a factor of three, and reported evolving trends for year 2022 are discordant.

Objectives: We aimed at selecting the most appropriate modelling approach enabling an accurate estimation of the excess mortality in France during the 2020–2022 pandemic years.

Method: Based on the 18,646,089 deaths that occurred in France between 1990 and 2023, the natural trend of age-and gender-specific death rates over time was considered according to three models which performances were compared for accurately predicting mortality data in the absence of pandemic perturbations. The best modelling approach was then used for estimating age-and gender-specific excess deaths and corresponding expected years of life lost in the individuals deceased in 2020, 2021, and 2022.

Results: A quadratic model trained with years 2010–2019 estimated that 49,352 [40,257; 58,165] (mean [95% confidence interval]), 43,028 [29,071; 56,381], and 54,373 [34,696; 73,187] excess deaths occurred in France in 2020, 2021 and 2022, respectively. Corresponding years of life lost rose over time with 503,289 [446,347; 561,415], 581,495 [493,911; 671,162], and 667 439 [544,196; 794,225] years of life lost for the individuals deceased in 2020, 2021, and 2022, respectively.

Conclusion: The study proposes a reliable method for accurately estimating excess mortality. Applying this method to the 2020–2022 years of the COVID-19 pandemic in France yielded estimates of excess mortality that peaked in year 2022.

Introduction

The COVID-19 pandemic quickly spread worldwide in 2020. According to the World Health Organization (WHO), the pandemic cumulative direct death toll on January 1, 2023, was 6,701,711 deaths[1]. Excess mortality, defined as the difference between observed and expected mortality, constitutes an attractive feature for summarizing the major impact of the pandemic, for at least two reasons: first, estimating excess mortality only requires all-cause mortality data during a reference period and during the pandemic period of interest. Second, excess mortality is a straightforward estimate of the global burden, including both virus-related direct deaths and indirect deaths related to all perturbations that simultaneously occurred during the pandemic period. Thanks to its relevancy, excess mortality has rapidly become an essential indicator for assessing the impact of the pandemic[2]. As detailed by Vanella et al. in their review article, the concept of excess mortality initially emerged in 1930 and called a particular renewed attention during the COVID-19 pandemic[3].

Actually, the calculation of excess mortality depends on debatable underlying assumptions. Nepomuceno et al. found substantial differences in estimates depending on the mortality index, method, reference period and unit of time used[4]. Kowall et al. explored six sources of variability that contribute to a wide range in reported excess mortality, and they suggested that future studies should objectively present differences in results according to methodological choices[5]. Ioannidis et al. detailed nine sources of flaws and uncertainties, from the estimation to the interpretation of excess deaths[6]. In the end, Levitt et al.[7] illustrated the implications of different methodological choices by detailing the differences between final estimates issued from four major contributions (the COVID-19 Excess Mortality...
Collaborators[8], Karlinsky and Kobak[9], The Economist team[10], WHO[11]: in France, estimates vary almost three-fold, from 57,767 to 155,000 excess deaths in 2020 and 2021. The European Mortality Monitoring Project estimated a lower excess mortality in 2022 than that in 2020, with respectively 375,264 and 399,836 total excess deaths considering the 26 participating countries, including France[12]. In contrast, the French National Institute for Statistic and Economic Studies (Insee) estimated a higher excess mortality in 2022 than that in 2020 [13]. All these studies demonstrate a high variability of estimates depending on methodological choices and raise questions about the real level of excess mortality in France and its evolution during the pandemic period. To address this issue, a rigorous process has been conducted to select the most relevant model estimating excess mortality. A multi-step methodical evaluation of prediction performances was carried out before providing accurate excess mortality estimates with the assumedly best model. Corresponding numbers of years of life lost (YLL) were also estimated from excess deaths in order to provide additional relevant information documenting the burden that occurred during the pandemic period, taking into consideration the age of the deceased.

Methods

Data source and availability
All data used in the study are available in open access from the French National Institute for Statistic and Economic Studies (Insee), including daily mortality by age and gender [14], population structure[15] and mortality tables[16].

Population under study
In the above-mentioned databases, population sizes by age and gender each year consider the situation on January 1, and 18,646,089 deaths occurred in France between January 1, 1990, and December 31, 2022. Graphs drawing these raw mortality data already document substantially some mortality patterns in France over time: Figure 1 shows that higher mortality levels are usually observed during winters, reflecting the impact of seasonal-circulating viruses such as flu, but this pattern has been disrupted since the pandemic’s first outbreak, (see for instance the especially high mortality in April 2020).

Data processing
As proposed by Levitt et al.[7], the death rate was used to estimate the age-adjusted excess death. To consider the sudden changes in population size from one year to the next due to World War II and the subsequent baby boom, as well as the substantial differences in life expectancy between males and females, analyses were conducted by exact age, and gender. As the age structure of the French population refers to age on January 1 of each year in the databases used, the age of a deceased person considered in the study was that on January 1 of the year of death. Persons aged 99 years or more were handled in a single age category.
Top panel, daily mortality in France from 2015 to 2022 with the repartition by gender; right panel, cumulative number of deaths by exact age from 30 to 99 years old with the repartition by gender; main panel, daily number of deaths according to exact age, for instance, in April 2020 the colour gradient is red for people between 85 and 90 years old corresponding to a daily number of deaths around 140 and this mortality pick is also visible in the top panel both for males and females.
Outcomes

For each gender i, age j and year k, specific death rate (R_{ijk}) was computed by dividing the observed mortality in this stratum (M_{ijk}) by the corresponding population count (C_{ijk}). $R_{ijk} = M_{ijk} / C_{ijk}$. Considering the log-normal distribution of the death rates, a logarithmic transformation was performed when used in regression models.

Observed death rates over a previous reference period were used, assuming different hypotheses on the trend (investigations comparing different choices for modelling the trend are detailed below) to estimate the expected age-, gender- and year-specific death rate (\hat{R}_{ijk}) and the corresponding expected mortality (\hat{M}_{ijk}). $\hat{R}_{ijk} = R_{ijk} \times C_{ijk}$

The excess deaths (\bar{D}_{ijk}) were estimated for each stratum by subtracting the expected mortality from the observed one. $\bar{D}_{ijk} = M_{ijk} - \hat{M}_{ijk}$.

YLL were estimated by multiplying the estimated excess deaths by the corresponding life expectancy (E_{ijk}), based on the mortality table of 2019 [16]. $YLL_{ijk} = \bar{D}_{ijk} \times E_{ijk}$. For a given year, the total burden is the sum of the age- and gender- specific YLL, e.g.

$$YLL_{2020} = \sum_{i \in \{males, females\}} \sum_{j=0}^{99} YLL_{i,j,2020}$$

Models assessed and selection process

Assessments compared the performances of three models, further referred to as the “average model”, the “linear model”, and the “quadratic model”. Models varied according to the way the reference period was considered for making the prediction. In the “average model” estimate \hat{R}_{ijk} is the average of the R_{ijk} observed during the years composing the reference period. In the “linear model”, \hat{R}_{ijk} estimation is based on a mixed linear model with year as a fixed effect, and time-and age-specific intercepts and slopes as random effects. The “quadratic model” is similar to the second model except that the trend was modelled by a quadratic function instead of a linear function. Figure 2 illustrates the evolution of mortality rates over time, as well as each of the three trends used to predict expected mortality. In order to investigate how the performances of the models varied with the reference period duration, each of the models was trained with three reference period durations: four, nine, or nineteen years preceding the year to predict.

Modelling approaches were assessed for their ability to accurately predict the mortality that was observed in the absence of a disturbing phenomenon. Models were therefore evaluated during the pre-pandemic years. The difference between observed and predicted deaths was the criterion retained for assessing model performance: the smaller this difference, the better the model.

Year 2019 was an attractive target year for assessing model prediction: as no critical phenomenon like a heat wave or a major epidemic outbreak leading to an exceptional number of deaths occurred, expected and observed mortalities were likely to match. Similar analyses were replicated using 2014 and 2008 as additional target years for model predictions, given that, as in 2019, no major phenomena leading to excess mortality occurred. A simulation study mimicking a perturbation resulting from an outbreak was carried out (Supplementary Material) in order to assess the model's ability to accurately estimate an excess mortality due to a disturbance-comparable to that described in 2020. Finally, since the study objective was
to estimate excess mortality during the pandemic period, and therefore required predicting expected mortality over three consecutive years, the final selection phase consisted in predicting mortality over the three pre-pandemic years. For each element of the evaluation process (predicting 2019 mortality, then 2014 and 2018 mortality, and predicting three subsequent years mortality), only the best scenarios were retained for subsequent stages, to finally select the optimal model and training period.

Estimation of the pandemic toll

Model assessment in the first part of the study allowed the selection of the most appropriate approach for estimating the excess deaths that occurred in France during the COVID-19 pandemic years. Accordingly, the excess deaths in France during years 2020, 2021, and 2022 were estimated as the number of deaths that occurred these years minus the expected number of deaths in the corresponding years according to model prediction. Considering the life expectancy of the persons in excess death, the corresponding YLL were estimated.

Software, packages and estimation of confidence intervals

All analyses were performed with statistical software R 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria), package lme4 was used for the random-effect linear model and 95% confidence intervals (CIs) were estimated over 1000 bootstrap replications.

Results

Models assessment and selection process

The performances of the average, linear and quadratic models are summarized in Figure 3. Predictions with the average model systematically overestimated the number of deaths observed in 2019 (Figure 3A). The number (mean [95% CI]) of overestimated deaths in 2019 ranged from 72,830 [71,842; 73,818] to 153,614 [153,049; 154,164] with a corresponding training period ranging from four to nineteen years, respectively. Both the linear and quadratic models globally yielded much better predictions of 2019 mortality, when contrasted with those of the average model. The most accurate prediction was obtained with the linear model using a training period of four years, with a corresponding overestimation of 46 [-8,107; 7,294] deaths. However, several patterns were favourable to the quadratic model. First, the observed mortality of 2019 was included in the 95% CI estimated with four and nine years of training period, with 11,854 [-7,420; 30,461] underestimated deaths and 2,423 [-11,143; 6,908] overestimated deaths, respectively. Second, the quadratic model was the least sensitive to the training period duration, with a maximum difference in the estimated number of deaths of 14,065 [4,038; 23,955] when comparing training periods of nine and nineteen years. Third, when the methodology developed for predicting deaths in 2019 was applied to predict deaths in 2014 and 2008, the results obtained with prediction of 2019 mortality were confirmed: the quadratic model prediction was closer to the observed mortality than the corresponding prediction of the linear model in five out of the six new scenarios tested (three training durations and two years predicted) (Figures 3B and 3C). Fourth, using a simulated excess number of deaths of 22,763 for females and 26,603 for males in 2019, the quadratic model with a nine-year training period estimated excess mortality of 20,061 [12,025; 27,744] and
Figure 2: Observed and predicted death rates evolution in France, years 2000–2019

Solid lines, evolution of the observed death rates in France between 2020 and 2019 for people between 70 and 80 years old; dashed lines, visual representation of model predicted death rates according to different methodological choices: left panel, the average of previously observed death rates; central panel, a linear trend is used; right panel, a quadratic trend.
Figure 3: Differences between observed and predicted deaths according to different models for years 2019, 2014, and 2008

Panel A, difference between observed and predicted number of deaths for year 2019 with three different models and three different training periods. The average model prediction error was 153,614 [154,164; 153,049] with a training period of nineteen years, 88,736 [89,446; 88,018] with a training period of nine years, and 72,830 [73,818; 71,842] with a training period of four years. The linear model prediction error was 40,874 [36,700; 43,445] with nineteen years of training period, 7,019 [2,638; 10,977] with nine years of training period, and 46 [-8,107; 7,294] with four years of training period. The quadratic model prediction error was 11,642 [6,384; 16,619] with a training period of nineteen years, -2,423 [-11,143; 6,908] with a training period of nine years, and 11,854 [-7,420; 30,461] with a training period of four years.

Panel B, the prediction error on predicting 2014 mortality with the linear model was 23,213 [18,260; 25,652], -2,957 [-6,234; 607], and -12,650 [-19,346; -5,995], with respectively nineteen, nine, and four years of training period. The quadratic model prediction error was -1,996 [-7,153; 1,021], -13,480 [-21,312; -6,303], and -10,899 [-28,686; 5,181] with respectively nineteen, nine, and four years of training period.

Panel C, the prediction error on predicting 2008 mortality with the linear model was 21,959 [19,838; 23,995], 30,904 [27,898; 33,799], and 12,841 [68,98; 18,692], with respectively nineteen, nine, and four years of training period. The quadratic model prediction error was 6,276 [-1,587; 9,914], 10,238 [3,721; 16,420], and 6,543 [-7,874; 19,250], with respectively nineteen, nine, and four years of training period.
26,883 [21,907; 32,629] respectively, confirming the model's ability to correctly assess an impact of the order of magnitude of the pandemic (Supplementary Analysis). Finally, the predictions of the quadratic model over three consecutive years was far more accurate than that of the linear model: the cumulative prediction error over three years was almost three times lower, 20,400 [-19,611; 68,209] vs. 73,060 [59,357; 86,468] (Figure 4A), and the error evolved stably over time whereas that of the linear model increased (Figure 4B). Moreover, with the quadratic model, 0 was within the 95% CI of the overall prediction for all three years, as well as for each of the predicted years, whereas the linear model systematically underestimated mortality observed in 2017, 2018 and 2019.

Predicted mortality in 2019, 2014, 2008 and from 2017 to 2019, according to training period duration, was the closest to observed mortality with the quadratic model. Therefore, this model was deemed as the most relevant for estimating the expected mortality in years 2020 to 2022, assuming no external perturbation would have occurred, and a training period of nine years was chosen as it minimized the difference between observed and predicted mortality.

Estimation of the pandemic toll

Estimates of excess mortality and corresponding YLL are shown in Figure 5. The estimated excess mortality in year 2020 was 49,352 [40,257; 58,165] additional deaths, dropped to 43,028 [29,071; 56,381] deaths in 2021, and rebounded to 54,373 [34,696; 73,187] deaths in 2022. Therefore, a total of 146,753 [103,940; 187,459] excess deaths were estimated from 2020 to 2022 with 96,692 [74,572; 116,937] excess deaths occurring in males (66% of the excess deaths).

As shown in Figure 6, excess mortality in years 2020 to 2022 mainly concerned people aged 60 years old and older. In 2020, the median [IQR] corresponding age of people in excess death was 83 [72; 90], with a dramatic toll between 85 and 95 years old; in 2021, it was 75 [68; 86] with a high burden between 65 and 75 years old; in 2022 it was 79 [70; 90], with one cluster around 70 years old and another around 90 years old (Figure 6).

From 2020 to 2022, the total number of expected YLL related to excess deaths was 1,752,223 [1,483,843; 2,026,859] among which 1,097,420 [898,195; 1,241,614] (62.5%) concerned males. The overall level steadily rose over time, from 503,289 deaths [446,347; 561,415] in 2020 to 581,495 [493,911; 671,162] in 2021, peaking at 667,439 [544,196; 794,225] in 2022. (Figure 5).

Discussion

Main findings

In this study, several models devoted to estimating excess mortality were evaluated. Predicting models based on average, linear and quadratic trends with training periods from four to nineteen years were compared for their accuracy in predicting the observed mortality in pre-pandemic years, during which no major external perturbation occurred (2019, 2008, 2004, and 2017 to 2019).

The average model systematically overestimated the observed mortality. Indeed, the mortality rate is constantly decreasing in France, every year and in every age class for both
Figure 4: Global and annual differences between observed and predicted deaths for years 2017 to 2019, training period 2008–2016

Panel A, difference between observed predicted number of deaths from 2017 to 2019, with nine years of training period. The model prediction error was 73,060 [59,357; 86,468] with the linear model and 20,400 [19,611; 68,209] with the quadratic model.

Panel B, annual difference between observed and predicted number of deaths with nine years of training period. The linear model prediction error was 21,385 [17,600; 25,136], 24,757 [20,186; 29,222], and 26,918 [21,575; 32,177] for respectively 2017, 2018 and 2019. The quadratic model prediction error was 7,857 [-140; 17,447], 7,346 [-5,565; 22,896], and 5,197 [-14,252; 27,743] for respectively 2017, 2018 and 2019.
Figure 5: Excess deaths and years of life lost as a function of year and gender, training period 2011–2019, quadratic model

Barplots, cumulative excess deaths by gender and in total for years 2020 to 2022 estimated by a quadratic model with nine years of training period; solid lines, the corresponding number of years of life lost by gender and in total.
Figure 6: Differences between observed and predicted deaths in France from 2011 to 2022, training period 2011–2019, quadratic model

Top panel, annual cumulative difference between observed and predicted deaths by the quadratic model with a training period of nine years with the repartition by gender; right panel, cumulative difference between observed and predicted deaths by exact age (from 0 to 99 years old) and according to gender; main panel, annual difference between observed and predicted deaths by exact age, for instance, in 2020, the colour gradient is red for people aged 90 years old, corresponding to a difference between observed and predicted number of deaths at about 1250; this difference was considered as excess mortality as the baseline is estimated in pre-pandemic period and corresponds to mortality level in the absence of pandemic.

*Observed minus predicted number of deaths
genders. Therefore, the average of the previous mortality rates overestimates the observations for the current year, resulting in an underestimation of excess mortality. The linear method was not robust to the training period: the longer the training period, the greater the discrepancy between predicted and observed mortality, reflecting the global non-linearity of the decreases in the mortality rates in France over time. The quadratic model was robust to the training period duration, and was able to predict the 1,815,323 deaths that occurred between 2017 and 2019, i.e., the baseline mortality in the absence of COVID-19, with a difference of only -1.1% [-3.8%; 1.1%]. Examining the performances of the models in the various elements composing the assessments investigated, the quadratic model with nine years of training was selected as the most appropriate for predicting the expected mortality from 2020 to 2022, assuming no external perturbation such as the COVID-19 pandemic would have occurred during this period. Therefore, this approach was selected for estimating the excess deaths occurring during these three pandemic years together with the corresponding expected YLL.

The present study estimated that the total excess deaths in France from January 1, 2020 to December 31, 2022 amounted to 146,753. After a slight drop between 2020 and 2021, an unprecedented level was reached in 2022 with more than 54,000 excess deaths. Moreover, despite the decline in excess mortality in 2021, the number of YLL consistently increased from 2020 to 2022. Individuals in excess mortality in 2021 were younger than those in excess death in 2020 (see Figure 6), but a lower number of deaths of individuals with greater remaining life expectancies globally yielded a greater number of YLL. All in all, the burden of the pandemic apparently increased in France from 2020 to 2022, when considering both the occurrences of excess deaths and corresponding persons' ages.

Implications

Our study sheds light on the level of excess mortality in France between 2020 and 2022. Investigating the causes of the increase over time evidenced in the study is of primary importance. Indeed, the co-occurrence in 2022 of critical features such as the achieved deployment of vaccination should have likely favoured a decreased burden as compared to earlier pandemic sub-periods. Actually, the mortality directly attributed to COVID-19 decreased over time during the pandemic period, with a corresponding number of death certificates mentioning COVID-19 (suspected or confirmed) of 76,800, in 2020, 69,114 in 2021, and 50,211 in 2022[17]. Opposed time trends between excess mortality and COVID-19 directly-related deaths suggest that indirect factors such as the disturbance of the health care system have increased mortality in 2022. Indeed numerous studies documented a significant drop in hospitalizations for causes other than COVID-19[18,19], delay or suspension of chronic disease management[20], or delayed cancer diagnosis[21] leading to a probable increase in long-term mortality[22]. At the opposite, the first part of the pandemic was marked by a massive drop in the circulation of seasonal respiratory viruses such as influenza[23], whereas in 2022, France experienced a particularly high burden with two waves of influenza, one in March-April and one in December[24]. All these factors might have contributed to an indirect pandemic-related increased mortality over time of the pandemic period, and explain the record level of excess deaths in 2022.

In 2020 direct COVID-19 mortality was above excess mortality. The virus killed not only people who would not have died in the absence of a pandemic (amount of excess deaths) but also people who would have died from other causes, resulting in a decrease in all other causes of
death in 2020[25]. Unfortunately causes of death are not yet available in France for the year 2022, but the higher estimated number of excess deaths than that of COVID-19-attributed deaths likely reflects a long-term indirect impact of the pandemic increasing mortality related to modifications of patient management and healthcare system organization. A similar pattern was also reported in Germany[26] and Korea[27], suggesting a similar impact of the pandemic on healthcare systems and mortality not only in France. Further research is needed to better understand the various features contributing to this perturbation of mortality trends.

Strengths and limitations

A major strength of the study is its extensive validation of the model used for accurately estimating expected mortality prior to applying the model to estimate excess mortality. Moreover, the study examples of over- or underestimates depending on methodological choices document potential explanations for the discrepancies in previously reported estimates. Most of all, the proposed approach yields very reliable estimates of excess mortality. Indeed, the model selected was able to accurately predict mortality outside the pandemic period over three consecutive years, and therefore excess mortality from 2020 to 2022. The peak of excess mortality in year 2022 observed in our study confirms the similar pattern previously reported by Insee, while proposing a model more robust to the training period and closer to the natural evolution of mortality.

The study is based on a high level of data precision, with deaths by exact age, a nine-year history and the population structure at the first of January of each year, thus limiting replicability to countries with a lower level of data access. The model used by the European Mortality Monitoring Project calculates expected mortality outside the major mortality episodes that occur in summer and winter, and requires a lower level of data precision. In this sense, it is better suited to inter-country comparisons, but may be less accurate in the case of France.

Predictions assume that in the absence of the COVID-19 pandemic, mortality rates would have followed a trajectory identical to that of the previous nine years, and this cannot be ascertained. Predicting three successive years inherently introduces a pattern of increasing uncertainty: the greater the time between prediction year(s) and training period, the greater the uncertainty. Nevertheless, the similarity of the results based on training periods of nineteen years supports the relevance of a framework assuming a quadratic trend for mortality rates in France.

Estimates of YLL were calculated by applying the life expectancy of each person in excess mortality without considering underlying health conditions. the health status of the deceased was not documented at all in the database, but in average, their health condition was likely poorer than the average of the same-age and -gender population, with a resulting lower life expectancy. Indeed, many studies reported that death from COVID-19 was positively associated with the presence of comorbidities[28,29]. In a previous study, Quast et al. decided to reduce the expected life expectancy by 25% to take this point into account[30]. The present study did not adopt any correction, but the reader must be cautious when interpreting the numeric YLL presented here, which may be substantially overestimated. Nevertheless, the main study result on this topic concerns the increasing trend of progression over time, and this trend remains fully reliable.
Conclusion and perspectives
With a validated methodology, we highlight a growing burden on mortality observed in France from 2020 to 2022, along the course of the COVID-19 pandemic. After a drop in excess mortality in 2021, a record level was reached in 2022, likely reflecting sustained consequences of the pandemic long after its beginning. Taking into account the age-related expected YLL of the deceased, the burden of COVID-19 steadily increased over time, impacting not only the elderly but also those aged between 65 and 75. The concomitant decrease in the number of COVID-19 directly-attributed deaths indicates that this increase in excess mortality is due to other causes. Further studies are needed to investigate the reasons of this steady increase in excess mortality.

Competing Interest Statement
The authors have declared no competing interest.

Funding Statement
This work was supported by the Initiative Economie de la Sante of Sorbonne Universite, and by the Ministere de la Solidarite et de la Sante (PREPS 20-0163). The sponsor and the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions
GH, and NL initiated the study. GH and NL supervised the study; GH, NL, and PM designed the experimental plan; PM managed data and performed the analyses; GH, NL, and PM can take responsibility for the integrity of the data and the accuracy of the data analysis, PM is the guarantor; GH, NL, and PM prepared the first draft of the manuscript; All authors (GH, NL, and PM) contributed to interpretation of the data, critically revised the manuscript, and approved the final version.

Acknowledgements
The COVID-HOSP working group: Tristan Delory, Centre Hospitalier Annecy Genevois, Annecy, France; Fanny Duchaine, IRDES, Paris, France; Maude Espagnacq, IRDES, Paris, France; Gilles Hejblum, INSERM, Paris, France; Myriam Khlat, INED, Aubervilliers, France; Nathanaël Lapidus, INSERM, Paris, France; Sophie Le Cœur, INED, Aubervilliers, France; Elhadji Leye, INSERM, Paris, France; Paul Moulaire, INSERM, Paris FRANCE; Jonas Poucineau, INED, Aubervilliers, France.
References

A

- **Average model**
- **Linear model**
- **Quadratic model**

- Training period
 - 2000–2018
 - 2010–2018
 - 2015–2018

B

- **Linear model**
- **Quadratic model**

- Training period
 - 1995–2013
 - 2005–2013
 - 2010–2013

C

- **Linear model**
- **Quadratic model**

- Training period
 - 1991–2007
 - 1999–2007
 - 2004–2007
Gender
- Females
- Males
- Total

Excess deaths

<table>
<thead>
<tr>
<th>Year</th>
<th>Females</th>
<th>Males</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>18641</td>
<td>30711</td>
<td>49352</td>
</tr>
<tr>
<td>2021</td>
<td>11669</td>
<td>31359</td>
<td>43028</td>
</tr>
<tr>
<td>2022</td>
<td>19750</td>
<td>34622</td>
<td>54373</td>
</tr>
</tbody>
</table>

Years of Life Lost

- CC-BY-ND 4.0 International license
- It is made available under a perpetuity.
- The copyright holder for this version posted December 14, 2023.
Gender

- Females
- Males

Observed - Predicted number of deaths

Years

Age

Gender

- Females
- Males

Obs - Pred*

Gender

- Females
- Males

Obs - Pred*

The copyright holder for this version posted December 14, 2023. doi: medRxiv preprint