Expression of mechano-growth factor (MGF) in refractory overactive bladder.

Spiritosanto E1,2*, Lemmon B3*, Mohamedi-Yousufi F1, Munasinghe HA1, Mahmood A4, Bray R3, McNeice R5, Mackenzie FE4, Hill NJ1,6,#,$ and Cortes E3,#

1 Biomolecular Sciences Department, Kingston University London, Penrhyn Road, Kingston-upon-Thames KT1 2EE, UK
2 Current address: Warwick Medical School, Coventry, CV4 7HL, UK
3 Department of Urogynaecology, Kingston Hospital, Kingston-upon-Thames KT2 7QB, UK
4 Department of Chemical and Pharmaceutical Sciences, Kingston University London, Penrhyn Road, Kingston-upon-Thames, KT1 2EE, UK
5 School of Computer Science and Mathematics, Kingston University London, Penrhyn Road, Kingston-upon-Thames, KT1 2EE, UK
6 School of Biomedical Sciences, Portland Square, Plymouth, Devon PL4 8AA, UK

* Denotes equal contribution as first authors
Equal contribution as senior authors
$ Corresponding author natasha.hill@plymouth.ac.uk

Abstract

Overactive bladder (OAB) is a urological symptom complex defined by urinary urgency. It can have a devastating impact on an individual’s quality of life and leads to significant financial cost. Insulin-like growth factor 1 (IGF-1) is a protein hormone involved in a broad range of processes including cell proliferation and differentiation. IGF-1 is also regulated through alternative splicing. While the primary IGF-1Ea transcript is highly expressed in liver, the alternative IGF-1Ec transcript encodes the proteolytically-derived MGF peptide and has been primarily studied in skeletal muscle. MGF has been shown to stimulate satellite cell proliferation following tissue mechanical stretch or injury, but the role of MGF in smooth muscle, such as the detrusor muscle of the bladder, has been little explored. The aim of this study was to explore the expression of MGF in bladder biopsies from patients with OAB and age-matched controls.

We show using immunohistochemistry that MGF is widely expressed in bladder tissue. Quantification of MGF expression by western blot showed that average MGF expression is more than doubled in OAB biopsies compared to controls (mean MGF in OAB=0.51±0.1, n=23; mean MGF in controls=0.22±0.07, n=9; p=0.05). Furthermore, there is an inverse correlation between MGF protein levels and symptom severity, as determined by the urodynamic parameter maximum cystometric capacity (correlation=0.53, p=0.03 n=16). MGF expression was highest in OAB biopsies with strong expression of the muscle cell marker DES. Combined with our observation that MGF induces cell proliferation in primary bladder cultures, our data suggests that high MGF expression in OAB patients may represent an attempted protective response in the bladder.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Dedicatory
We would like to dedicate this paper to Professor Linda Cardozo MD FRCOG OBE from Kings College Hospital for her support during the length of this project, who passed away unexpectedly before completion of the manuscript.

Funding
This work was conducted with the partial support of the Kingston Hospital Charity.

Conflict of interest statement
The authors declare that no conflicts of interest relating to this study. Neither the authors or their institutions received any payments or services in the past 36 months from a third party that could be perceived to influence, or give the appearance of potentially influencing, the submitted work. Funding bodies were not involved in the preparation of this manuscript.

Statement of contribution
ES designed experiments, carried out the majority of experimental work, analysed data and prepared the manuscript; BL consented patients, collected biopsy samples and clinical data, and wrote clinical sections of the manuscript; FM-Y contributed data to Figure 1; AMu contributed to Figure 4; AMa was involved in assay development; RB consented patients, and collected biopsy samples and clinical data; RM advised on statistical analysis; FEM was involved in project supervision and contributed to discussions on data analysis and interpretation; NJH designed experiments, supervised the project, contributed to data analysis, interpretation and preparation of figures, and edited the manuscript; EC conceived the project, obtained ethical permissions and funding, and edited the manuscript. All authors have read and agreed to publication of this manuscript.

Introduction:

Overactive bladder (OAB) is a urological symptom complex defined by urinary urgency, with or without urgency incontinence, usually accompanied by daytime frequency and nocturia, in the absence of proven urinary infection or other pathology [1]. The prevalence of OAB varies across studies but increases with age and disproportionately affects the female population, with up to 43% of women over forty having symptoms [2]. OAB can have a devastating impact on an individual’s quality of life and leads to significant direct and indirect financial cost [3, 4]. An evaluation of OAB in the United States has shown that the cost of managing patients with OAB has increased from $65.9 billion in 2007 to a projected $82.6 billion in 2020 [5].

OAB is a symptomatic diagnosis based on taking a focused patient history with the aid of validated questionnaires [6]. A urine analysis, a bladder diary, and physical examination are
also required to exclude other pathologies that may cause similar urinary symptoms. First line treatment includes lifestyle modifications such as smoking cessation and weight loss where appropriate, pelvic floor exercises, fluid management, and bladder retraining. Medical therapy is second line treatment, where receptors in the detrusor muscle are targeted to induce smooth muscle relaxation. Meta-analysis has shown that antimuscarinic medications reduce incontinence episodes, urgency, and frequency of voids [7]. However, effectiveness can vary, and some women will experience troublesome side effects such as dry mouth, constipation, blurred vision, and cognitive impairment. There is mounting evidence of the effects of antimuscarinics on the latter, particularly in the elderly population with long-term use [8]. Alternative medical treatment is with beta-3-agonists, such as Mirabegron, which has been found to be equally effective [9]. In the absence of improvement following conservative and medical management, a patient is described as having refractory OAB. Refractory OAB can be treated using techniques that encourage neuromodulation such as Botulinum toxin A injection into the bladder muscle, percutaneous tibial nerve stimulation (PTNS), or sacral nerve stimulation (SNS).

Reliance on symptom analysis alone can lead to misdiagnosis and delays in accessing treatment. A more holistic approach that contemplates the physiological nature of OAB is needed. The most used currently remains urodynamic investigation, with urodynamic detrusor overactivity (DO) remaining the hallmark of OAB. However, multiple international and national guidelines do not recommend the initial universal use of urodynamics for patients with OAB symptoms. Urodynamic DO as a true biomarker of OAB is inadequate. DO is only seen in half of patients with OAB symptoms, and asymptomatic individuals without OAB can also display involuntary detrusor contractions during testing [6].

Insulin-like growth factor 1 (IGF-1) is a protein hormone involved in a broad range of processes including cell growth and survival, proliferation, differentiation, and tissue metabolism [10, 11]. It is known that one of the mechanisms through which circulating IGF-1 is regulated and exerts its function is through alternative splicing, which allows the production of multiple mRNA transcripts encoding distinct proteins dependent on the tissue, developmental stage or external stimuli [12]. Transcript IGF-1Ea represents the canonical and main variant found in the liver [13] and is expressed in muscle with a predominant pro-differentiative function. Transcript IGF-1Ec was also originally identified in the liver but is expressed at much lower levels than the Ea variant [14]. IGF-1Ec (and rat homologue IGF-1Eb) has been studied primarily in skeletal muscle and shown to stimulate extracellular satellite cell proliferation following tissue mechanical stretch or injury [15, 16].

The precursor protein products of the different IGF-1 transcripts are cleaved to generate the mature IGF-1 protein and an E-peptide. The IGF-1 protein encoded by the different transcripts is identical, but the E-peptides generated are distinct. The E-peptide generated by the IGF-1Ec transcript is commonly known as mechano-growth factor, or MGF. MGF is upregulated
following mechanical stretch, injury and/or electrical stimulation of skeletal muscle in vivo [17, 18, 19], and promotes skeletal muscle proliferation in vitro [20, 21, 22]. Reduced MGF expression seen with age is associated with reduced ability to respond to mechanical overload [20, 23, 24, 25]. MGF has also been shown to play a role in other tissues, including the brain, where it promotes hippocampal neurogenesis, neuronal guidance and growth, motor unit and motoneuron survival [26, 27, 28, 29], and in heart [30], tendons [31] and bone-marrow [32]. Li et al showed that Transforming Growth Factor-β (TGF-β) mediated-IGF-1 production and smooth muscle cell hyperplasia is accompanied by MGF upregulation and peptide expression, with consequent hypertrophy of smooth muscle cells [33]. MGF has been shown to be expressed in the myometrium of the normal uterus with upregulated MGF expression in women with leiomyomas, and in the ovary [34]. However, very little is known about MGF in smooth muscle or neuromodulation properties, when it comes to its function or its mechanism of action. In addition, there is also evidence that levels of MGF decrease with aging, conditioning the ability of older skeletal muscle to respond to mechanical overload [35].

As described by Cortes et al, MGF was found to be widely expressed in the wall of the human bladder. MGF was seen in the bladder of asymptomatic individuals as well as in patients with Painful Bladder Syndrome (BPS), recurrent urinary tract infection, and OAB [34]. Smooth muscle in the human bladder is not limited to the detrusor muscle. Studies have shown that smooth muscle exists in the muscularis mucosa between the urothelium, and the detrusor muscle layers, with muscle fibres described as running parallel to large vessels [36]. Histological assessment of normal bladder tissue and OAB bladders has shown that in OAB bladders, there is inflammatory infiltration and fibrosis replacing the detrusor muscle. It has also been shown that when comparing patients with neurogenic OAB who have received treatment with Botulinum toxin A with those that have not, patients who underwent Botox treatment had increased smooth muscle content and reduced fibrosis in the follow up biopsy [37], suggesting a de novo muscle smooth muscle regeneration mechanism.

In the present study we examined the expression of MGF in human bladder biopsies of patients with refractory OAB prior to treatment with Botulinum toxin A. We evaluated correlation of MGF expression with symptom severity at diagnosis, using validated symptom questionnaires and urodynamic parameters.

Materials and Methods

Patient selection

The study was granted ethical approval by the South-East London Research Ethics Committee (A5-2: 10/H0805/51, IRAS number 474470, 8th Feb 2010). The chief investigator (CE) conducted the first phase of the study in collaboration with Kings College London between
The second phase of the study was conducted in collaboration with Kingston University London between 2016-19. All experiments were performed in accordance with the declaration of Helsinki, and written informed consent was obtained from all study participants, and all institutional forms have been stored appropriately.

Patients included in the study group had a clinical diagnosis of refractory OAB (rOAB) and failed symptom improvement with bladder retraining and oral treatment of an anticholinergic drug, a beta-3 agonist (mirabegron), or both. All these women underwent urodynamic investigation as per NICE guidance, and only women with urodynamic detrusor overactivity were included in the study. During urodynamic testing, first desire to void (FDV), normal sensation to void (NS), and Maximum Cystometric Capacity (MCC) were recorded for all our participants. They were then discussed in our local multidisciplinary team (MDT) meeting at Kingston hospital and offered third line treatment for OAB with intra-vesical Botulinum Toxin A injections. Women were consented by our two Urogynaecology Consultants (CE, BR) prior to their procedure and bladder biopsies were taken with rigid cystoscopy using cold cup biopsy forceps. Diathermy to the biopsy site was carried out to ensure haemostasis prior to proceeding with injections of either 100iu or 200iu of Botox.

The control group was recruited from patients undergoing other gynaecological surgery without any lower urinary tract symptoms (LUTS). We asked women to complete two validated self-assessment screening questionnaires for OAB (OAB V-8, BSAQ for mixed incontinence) and we only included women in our control group who scored zero in both questionnaires.

All bladder biopsies were immediately placed into an RNAlater® buffer (Merck Life Sciences). For processing, samples were placed on absorbent paper, weighed and then homogenised using a TissueLyser (Qiagen) with 5 mm beads for 15 minutes at 20 Hz. Equal parts of the homogenate were taken for protein and RNA extraction using the PARIS extraction kit (ThermoFisher) according to the manufacturer’s protocol.

RNA isolation and cDNA synthesis

RNA was quantified using a BioDrop Spectrophotometer (Fisher), and 260/280 ratio used as an indication of sample purity. Total mRNA (40 ng/reaction) was reverse transcribed using a RevertAid First Strand cDNA Synthesis Kit (Fisher) with oligo(dT) primer. ‘No reverse transcriptase’ control (NRT), ‘no template control’ (NTC) were used as negative controls for the cDNA synthesis. The reaction was performed in Applied Biosystems Veriti 96 well thermal cycler, using the following thermal profile: 42° C for 60 ', 70° C for 5 '.

RT-qPCR and sub-group analysis

RT-qPCR was performed using Maxima SYBR Green Master Mix (Fisher), 4.5 ng RNA equivalent cDNA and appropriate forward and reverse primers (see Supplementary Figure 1g for primer sequences) in a final volume of 5µl. Amplification of NRT, NTC and dH2O negative controls was also performed. RT-qPCR amplification was performed in a Techne Prime Pro 48 Real-time qPCR machine, using the following thermal profile: 95° C for 10', 40 cycles of 95° C
for 10”, 55° C for 30” and 72° C for 15”, followed by one cycle of 95° C for 15”, 55° C for 15” and 95° C for 15”. Melt curve analysis and agarose gel electrophoresis were used to confirm amplification of a single PCR product. Three different reference genes were initially tested for stability across control and OAB samples (GAPDH, B2M, ACTB) and B2M was selected as the most stable. The stability of B2M was calculated by comparing the average Cq in OAB samples (Cq=27.85 ± 1.05, n=23) compared to control (Cq=26.98 ± 1.93, n=9). The difference between the two was not statistically significant (p=0.7).

Samples were tested for expression of desmin (DES), vimentin (VIM), uroplakin 2 (UPK2) and β2-microglobulin (B2M). Primer efficiency was determined by amplification of serially diluted templates. Relative quantification was performed using the ΔΔCq method (Livak and Schmittgen, Methods 2001). For the sub-group analysis, relative inverted Cq (RI-Cq) values were first calculated by subtracting each Cq value from 41 (the maximum cycle number + 1) and then calculating as a percentage relative to the total inverted Cq value for all 3 tissue marker genes in that biopsy. This provides a rough estimation of the relative contribution of each cell type within a biopsy. A sample was designated as DEShi where DES was the major component in the biopsy ie if the RI-Cq value for DES was higher than VIM and UPK2 by >3. Similar designations were used for VIMhi and UPK2hi groups. Where two genes were contributing equally to the sample the designation was eg DES&VIMhi, and where the difference between all three genes was <3 the sample was designated as ‘EVEN’.

Immunohistochemistry

Human OAB bladder samples were fixed in 10% neutral buffered formalin for 24 h, embedded in paraffin, and sectioned at 5-μm thickness onto poly-L-lysine coated slides. Antigen retrieval was performed by boiling in 0.01M citrate buffer for 10 mins. Sections were stained using an anti-MGF E-peptide antibody (Merck Life Sciences #07-2108, rabbit polyclonal, 1/50 dilution) and HRP-tagged secondary (Vector Laboratories, BA-1100, 1/200 dilution), or secondary only control staining. Detection was performed using the Vector ABC kit with 3,3'-Diaminobenzidine (DAB) as substrate. Sections were counterstained with haematoxylin and imaged using a Nikon H550L microscope and 20X objective.

Western blot

Total protein concentration was quantified using the Bicinchoninic Acid (BCA) assay (Pierce), and 30 µg protein/well was run for ~1.5 hrs on a Mini-PROTEAN TGX Precast Protein Gel (Biorad) before transfer to nitrocellulose using a Trans-Blot Turbo (Biorad). Membranes were blocked in Odyssey TBS blocking buffer (Li-Cor) for 1 h, washed with Tris-buffered saline with Tween 20 (TBST) and incubated with diluted anti-MGF (Sigma-Aldrich #07-2108, rabbit polyclonal, 1/50 dilution) and anti-β-actin (mouse monoclonal #8224, Abcam, 1/1,000 dilution) primary antibodies at 4°C for 24 h. Blots were washed and incubated with 1/15,000 of near-infrared (NIR)-labelled secondary antibodies for 1hr at RT (anti-mouse-IR680LT (red) and anti-rabbit-IR800CW (green), both from Li-Cor). After washing, blots were visualised using the Li-Cor Odyssey CLx NIR imager and signal quantified.
using Li-Cor Image Studio Lite V.5.2 software. MGF band intensity was normalized to β-actin loading control.

Isolation and culture of murine bladder smooth muscle cells

Murine bladder was isolated from adult outbred ICR mice aged 8-12 weeks (Harlan, Huntingdon UK) following cervical dislocation, carried out at Kings College London (establishment licence: X24D82DFF; project licence: PBCFBE464) in accordance with the U.K. Home Office Animals (Scientific Procedures) Act 1986 with 2012 amendments. Tissue was washed thoroughly in D-PBS containing antibiotics (pen/strep) and anti-mycotic agent (Fungizone, Gibco). A single cell solution containing smooth muscle cells was prepared based on a modified version of the protocol by Pokrywczynsja et al. (2016). Briefly, bladders from 3 animals were minced using sterile scalpels and scissors and incubated at 37°C for 1 hr in digestion solution (1 ml Advanced DMEM/F-12 supplemented with antibiotics and anti-mycotic, 2 mg/ml Collagenase D and Dispase II). Enzymes were then blocked by adding an equal amount of medium and the solution was passed through a 100 µm cell strainer to remove undigested tissue. The suspension was then centrifuged for 5 mins at 1500 X g, the supernatant discarded, and the cell pellet resuspended in smooth muscle (SM) culture medium supplemented with 5% smooth muscle growth supplements (SMGS, Gibco). The cells were seeded at 0.01 x 10⁶ cells/well in a 96-well plate and fresh medium added each day.

MGF peptide with the sequence Tyr-Gln-Pro-Pro-Ser-Thr-Asn-Lys-Asn-Thr-Lys-Ser-Gln-D-Arg-D-Arg-Lys-Gly-Ser-Thr-Phe-Glu-Glu-His-Lys (Yang and Goldspink, 2002) was commercially synthesized (Genscript) and used to treat the bladder cell cultures for 72 hours at the indicated concentrations, after allowing the cells to adhere overnight.

EdU staining assay and cell viability assay.

Cell proliferation was assessed by EdU (5-ethynyl-2’-deoxyuridine) incorporation into primary murine bladder cells (EdU-Click 488, Sigma-Aldrich), following the manufacturer’s guidelines, for the last 48 hrs of 72 hr culture. EdU is incorporated into DNA during active DNA synthesis.

Cells were fixed in 4% PFA, permeabilised with 0.4% Triton-X100/PBS, washed and blocked with 0.05M glycine buffer. Cells were then stained with rabbit anti-smooth muscle myosin heavy chain 11 (SMMHC) primary antibody (Abcam, #53219, 1/100) for 1 hr at RT, to identify smooth muscle cells (Nagai, Larson and Periasamy, 1988). Cells were then incubated in secondary antibody for 1 hr at RT (IgG (H+L) Highly Cross-Adsorbed Donkey anti-Rabbit, Alexa Fluor 555, Invitrogen; 1/200), and counterstained with DAPI. Images were taken using an EVOS Imaging Station (4X objective). Quantification of total and proliferating cells, labelled with Alexa 488, was performed using the cell count function and manually, respectively, of ImageJ software [38].

Statistical analysis

Statistical analysis was performed using MS Excel and IBM® SPSS® Statistics. Variables were tested for normality using a Shapiro-Wilk test, and significance levels greater than 0.05 were
assumed to be normally distributed. Non-parametric bivariate (Spearman) correlation was used to determine correlation between variables of interest. χ² test was performed in MS Excel. The nonparametric Mann-Whitney U test was used to compare means of groups not normally distributed. One-way analysis of variance (ANOVA) test, followed by the post hoc Tukey’s test, was used to compare the means of more than two samples; p-values ≤ 0.05 were considered statistically significant.

Results

Study population
Our study population included 23 women with refractory OAB and detrusor overactivity on urodynamic testing, and we included nine women without lower urinary tract symptoms as our controls. Control patients had a mean age of 56.4 and an average parity of two. Our study group had a mean age of 62.4 and an average parity of two (table 1).

Expression of the smooth muscle marker DES is reduced in OAB biopsies.
The bladder consists of three main layers: urothelium, sub-mucosal lamina propria containing myofibroblast-like cells, and detrusor smooth muscle. To examine the composition of biopsy samples we used RT-qPCR to determine the expression of specific gene markers of each layer: Desmin (DES) for smooth muscle, Uroplakin (UPK2) for urothelium, and Vimentin (VIM) for myofibroblast/stromal cells. Primers were validated as shown in Supplementary Figure 1 and detailed in the methods.

As shown in Figure 1A, expression of the smooth muscle marker DES was decreased in OAB biopsies compared to controls, although the difference did not meet statistical significance (p=0.09). A high degree of variation was observed in biopsy composition when using fold change analysis, but it was evident from the relative Cq values of the different markers within each biopsy that some samples predominantly expressed one or two markers, while others expressed equal levels of all three. Samples were therefore grouped into six different subgroups (DES hi, VIM hi, UPK2 hi, DES&VIM hi, VIM&UPK2 hi, and EVEN) based on the relative expression of tissue markers (see Supplementary Table 1). As shown in Figure 1b, while most control samples (67%) were classified as DES hi, only 22% of OAB samples were classified as DES hi. χ²-analysis of the distribution of DES hi vs ‘other’ samples in controls and OAB patients confirmed statistically significant difference between the two (p=0.02, n=32), suggesting that either smooth muscle is significantly reduced in the bladder of OAB patients, or there is an increase of another cell type.

MGF expression is increased in OAB.
MGF expression has been extensively studied in skeletal muscle tissue and was only previously investigated in the bladder by Cortes et al in 2011 (34). As shown in Figure 2a, MGF protein expression was detected in bladder biopsies by immunohistochemistry, where a
diffuse stain was observed throughout the biopsy tissue. MGF protein expression was confirmed by western blot analysis of biopsy lysates using an antibody specific to the MGF-E peptide that recognizes both pro- and mature MGF, but not IGF-I (Anti-Mechano Growth Factor (MGF) Antibody, Sigma-Aldrich #07-2108). As shown in Figure 2b, bands of around 15 kDa were observed, consistent with previous reports [35, 36] and likely representing the MGF precursor protein. No bands were observed in the 8kDa region where the mature E-peptide would be expected (see uncropped blots in Supplementary Figure 2). Quantification of MGF protein expression by western blot showed that, on average, MGF expression is more than doubled in rOAB biopsies compared to controls (mean MGF in OAB=0.51±0.1, n=23; mean MGF in controls=0.22±0.07, n=9; p=0.05; Figure 2c). Furthermore, analysis of MGF expression in each of the main sub-groups identified in Figure 1 demonstrates that MGF expression is highest in DES hi OAB samples, and mean MGF expression is 3.6-fold higher in rOAB patient biopsies classified as DES hi than in DES hi control samples, as shown in Figure 2d, although this difference did not reach statistical significance (mean control = 0.23± 0.10, n=6; mean OAB=0.84±0.23, n=5, p=0.13). The increased MGF expression is therefore largely occurring in the sub-group of rOAB patients that have high levels of smooth muscle (DES hi). This suggests a potential link between high MGF production and bladder smooth muscle content in OAB patients, perhaps indicative of a regenerative need in bladder smooth muscle.

When we looked at the difference between pre- and post- menopausal women in the three layers studied, there was no statistical difference in MGF expression.

Analysis of correlation between MGF protein expression and clinical parameters of OAB severity

To investigate the relationship between MGF expression and clinical severity of OAB, we looked at the urodynamic parameter maximum cystometric capacity (MCC) and we looked at validated screening questionnaire scores from OAB-V8 and BSAQ.

As shown in Figure 3a, there was a significant positive correlation between MCC score and MGF expression (correlation=0.53, p=0.03 n=16; clinical parameters were not available for all patients). A higher MCC score indicates a greater bladder capacity and less clinically severe OAB, hence higher MGF levels may indicate healthier regenerative capacity of detrusor smooth muscle. It should be noted that one patient with the highest MGF expression did not fit this overall trend.

No correlation was detected between MGF expression and either BSAQ or OABV8 self-assessment scores (BSAQ: correlation=0.25, p=0.35, n=16; OABV8: correlation=0.31, p=0.25, n=16; Figure 3b) in line with recent findings. We therefore tested the correlation between questionnaire scores and MCC however, as shown in Figure 3c, no correlation was observed between MCC score and self-assessments (BSAQ: correlation=-0.02, p=0.95, n=16; OABV8: correlation=-0.12, p=0.66, n=16), suggesting that scores in self-reporting questionnaires may not be reliable as a measurement of OAB severity.
MGF promotes smooth muscle cell proliferation in vitro.
Having shown that high MGF expression in refractory OAB patients is associated with higher smooth muscle content and high MCC, we then wanted to test whether MGF can promote bladder smooth muscle proliferation in vitro. Single cell suspensions from murine bladder were prepared and cultured for 72-hours in the presence of varying concentrations of MGF. Proliferation was determined by EdU assay, co-staining with an antibody to smooth muscle myosin heavy chain (SMMHC) to identify smooth muscle cells within the mixed population. Staining indicated that most cells were SMMHC positive smooth muscle cells (Figure 4a). As shown in Figure 4b, addition of increasing concentrations of MGF induced increasing levels of smooth muscle cell proliferation. At the highest concentration used (100 ng/ml), MGF peptide induced a more than three-fold increase in the percentage of proliferating nuclei compared to untreated controls (4.4% ± 0.02 in control, 14.1% ± 0.03 with 100 ng/ml of MGF, p=0.008). This provides further support for the hypothesis that MGF promotes bladder smooth muscle regeneration and plays a protective role in OAB.

Discussion
The management of OAB is established on treating the symptom complex in a systematic ‘trial and error’ approach. This therapeutic strategy results in relative success and involves patients having to go through trialling multiple medication types and enduring side effects which may limit compliance. There are many contributors to OAB symptoms such as ageing, menopausal status, obesity, and lifestyle including psychological stress. These factors may contribute to the complex pathophysiology of OAB and to the inadequacy of a systematic approach in the management of all individuals with OAB symptoms.

There are many theories for the pathophysiology of OAB including the myogenic and neurogenic models. And there is emerging evidence that the urothelium [39] and the urethra [40] may have a greater role in OAB than previously though. Other aetiologies include reduced bladder perfusion [41] leading to altered cell metabolism and apoptosis [42, 43], increased expression of inflammatory mediators [44], and undetected bacterial infection [45]. Additionally, there is evidence of bi-directional mechano-transduction signals between the urothelium and lamina propria [46]. In the presence of MGF it is logical to infer that this mechanical signalling could lead to trigger stem cell differentiation [47] mediated by the MGF splice variant. In a similar way as macrophage infiltration is known to result in the upregulation of MGF [48], the increase in inflammatory mediators seen in OAB [44] could also be involved in a pathway with MGF. So we find ourselves in a pathological environment where several promoters known as causative of OAB could be favouring the actions of the MGF protein.
Our data shows that MGF is expressed in the bladder and can be detected at the protein level. Detection of the MGF protein in the bladder wall is consistent with the precursor form of the protein, pro-MGF (mature IGF-1 with MGF attached) as demonstrated by the observation of a 15kDa band on Western blot. The presence of pro-MGF in three different layers of the bladder wall is significant knowing MGF’s regenerative properties in both neuronal and muscle tissue. Its expression in the lamina propria is also of interest as the lamina propria can be thought of as the functional centre of the bladder wall, consisting of extracellular matrix (ECM), progenitor cells, interstitial cells, and efferent nerve endings [49], all upon which MGF may exert its regenerative action.

Increased hypoxic conditions in the bladder have been shown to alter cell metabolism, promoting angiogenesis, and apoptosis. This in turn increases expression of growth factors such as nerve growth factor (NGF), tumour growth factor-B (TGF-B) (which promotes remodelling of the ECM and fibrosis), vascular endothelial growth factor (VEGF), but also MGF as seen in neuronal tissue [50]. This could imply that a reduced bladder perfusion [41] seen as causative factor in OAB could be prevented by a healthy MGF pool provision, due to its anti-apoptotic characteristics [51].

We were unable to detect smaller fragments corresponding to the cleaved MGF peptide (8 kDa), similar to the experience of other research groups [52, 53, 54]. The Ea peptide fragment is only detected with pro-IGF-IA overexpression [55], suggesting that E-peptide fragments can be produced but are present either at low levels or rapidly degrade after cleavage making detection difficult. Our experiments using synthetic MGF peptide suggest that MGF peptides are effective at increasing proliferation in murine bladder cells, consistent with studies in C2C12 myoblast cells [20, 22] and human skeletal muscle cells [25].

Studies have revealed that mechanically stressed bladder smooth muscle cells are acutely receptive to their biomechanical environment and cyclical deformation induces connective tissue synthesis [36,37]. Although the mechanisms underlying these effects have yet to be determined, the basis of mechano-transduction, the process by which muscle cells detect mechanical force and convert this into biochemical signalling, is beginning to be better understood [56]. As described by Comperat et al.[37] bladder histology from patients with OAB show a loss of smooth muscle with replacement by patches of fibrosis and tissue high in collagen. This process seems to revert following treatment with botulinum toxin A injections into the bladder wall which promote further relaxation and hence distension of the bladder wall [37]. In line with this, we have found that on analysis of bladder biopsies, the level of expression of the smooth muscle marker DESβ1 (detecting smooth muscle cells of the detrusor muscle) was reduced in our rOAB study group when compared with our control group. Increased deposition of connective tissue between muscle fascicles is a well-characterised pathological feature of OAB [57]. Decreased expression of DES in OAB women versus our control group did not meet statistical significance and may represent a normal variation in
sampling. The sampling depth is blind and therefore biopsies taken will have varying amounts of detrusor muscle, sometimes none [58].

We did find that MGF protein expression was increased in the refractory OAB study group when compared with our asymptomatic controls. This increased expression was most marked in the DEShi subgroup of bladder biopsies, therefore the tissue samples that contained the most smooth muscle cells (figure 2) which would be expected to facilitate de novo muscle generation. Other studies have shown that MGF expression is upregulated in skeletal muscle following mechanical or electrical stimulation [59]. A positive correlation between MGF expression and smooth muscle regeneration could reflect a possible mechanism of action by which upregulation of MGF leads to smooth muscle cell proliferation and detrusor muscle recovery seen in patients with overactive bladder following Botox injections. On culturing murine bladder cell suspensions with MGF, we have demonstrated that increasing concentrations of MGF induce smooth muscle cell proliferation by increasing amounts, giving some support to the above hypothesis. This is consistent with studies in C2C12 myoblast cells [20, 22] and human skeletal muscle cells where MGF also promoted cell proliferation [25]. However, whether this had a positive correlation with better clinical outcome following Botox injections was not studied by the current paper.

We also found that there was a statistically significant correlation between MGF expression and maximum cystometric capacity (MCC), with greater MGF expression seen with larger MCC volumes. MCC observed during urodynamics is used as a marker of disease severity in this study due to reduced MCC being seen in up to 75.9% of patients with overactive bladder symptoms [60]. Although MCC is an established parameter of OAB severity [61] a relationship between MGF expression and MCC cannot automatically be established. One can however speculate that if MGF favours smooth muscle regeneration in the bladder, its increased expression could also favour a healthier and more compliant bladder. It is also of interest, that although MGF expression has been shown to decrease with age in skeletal muscle and patients with sarcopenia [62], we found no statistically significant differences in MGF expression between pre and post-menopausal women suggesting that age related hormonal changes seen in women not be the aging factor affecting MGF expression.

Our study provides evidence that MGF is expressed widely throughout the bladder; in the urothelium, ECM, and detrusor muscle layers. It is possible that high MGF expression represents an attempt at muscle regeneration, particularly since high MGF expression primarily occurs in DEShi patients. However, other explanations are also possible. Increased MGF expression and high DES composition could reflect disease heterogeneity, with these samples perhaps representing patients with a primarily myogenic rather than neuropathic aetiology, and it would be of interest in future studies to determine whether there is a correlation between MGF expression and treatment responsiveness that could be useful as a
predictor of treatment outcome. Confirmation of our findings in a larger study would be important for validation.

Although preliminary, our study demonstrates that MGF expression is increased in OAB bladder biopsy samples with high DES expression, and that there is an inverse correlation between MGF expression and OAB severity. Combined with the observation that MGF induces bladder cell proliferation in vitro, our data suggests that high MGF expression in OAB patients may represent an attempted protective response in the bladder, but the exact mechanisms of action of MGF in overactive bladder remain unknown. The widespread expression of this protein enhances the original description by Goldspink et al [20] which focused its repair capacity to skeletal muscle function and opens instead the avenue to a broader understanding of the tissue regenerating potential of MGF.

References:

2) **Milsom I**, Abrams P, Cardozo L, et al. How Widespread are the symptoms of overactive bladder and how are they managed? A population-based prevalence study. BJU Int 2001; 87: 760-766
6) **Hashim H** and Abrams P. Is the bladder a reliable witness for predicting detrusor overactivity?. J Urol 2006; 175: 191-194

47) **Grinnell, F.** Fibroblasts, myofibroblasts, and wound con- traction. J. Cell Biol. 124, 401, 1994, 35,36,37

62) **Ailin Bian, Yue Ma, Xinzi Zhou, Ying Guo, Wenyi Wang, Yiran Zhang & Xiaofei Wang.** Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Muskuloskeletal Disorders 21, 214 (2020)

Figure legends

Figure 1. Analysis of cellular composition in control and OAB biopsies. Expression of markers for smooth muscle (DES), stroma (VIM) and urothelium (UPK2) was quantified by RT-qPCR to determine the relative contribution of each cell type to biopsy composition. In (a) fold change gene expression was determined using the ΔΔCq method and β2-microglobulin (B2M) as a reference gene, calculating fold change relative to the mean control value for each gene. Statistical analysis was carried out using the Mann-Whitney U test (n=9 control and n=23 OAB samples). In (b), samples were categorised into the indicated subgroups based on predominant marker/s expression. A χ2 test was performed to determine statistical significance of the difference in the distribution of DES hi/other sub-groups between control and OAB samples. The categorisation is described fully in the methods, and the allocation of individual samples is shown in Supplementary Table 1.

Figure 2. MGF expression is increased in OAB tissue. An antibody specific to the MGF E-peptide was used to detect expression of MGF protein by immunohistochemistry staining (a) and western blot (b-d) analysis of biopsy sections. In (a) 5µm sections of formalin-fixed OAB bladder biopsies were stained with anti-MGF (i) or secondary antibody only control (ii) and counterstained with haematoxylin. In (b-d) 30µg biopsy lysates were analysed by western blot for detection of MGF (~15 kDa) and β-actin (42 kDa) as a loading control. L=size ladder. A representative blot is shown in (b) and a scatter plot showing quantification of MGF band intensity is shown in (c). The bar indicates mean relative MGF expression in control and OAB biopsies (0.22 and 0.51, respectively). In (d), the graph shows mean relative MGF expression +/- SEM in control/OAB biopsies in the three main sub-groups identified in Figure 1: DES hi (n=6/5), VIM hi (n=1/6), DES&VIM hi (n=2/6). Statistical analysis in (c) and (d) was performed using the Mann-Whitney U test.

Figure 3. Analysis of correlation between MGF protein expression and clinical parameters of OAB severity. Spearman’s bivariate correlation followed by post-hoc Student’s t-test was used to determine the correlation between biopsy MGF expression and (a) the maximum cystometric capacity (MCC) in OAB patients (correlation=0.53, p=0.03, n=16), and (b) patient self-assessment scores for two-types of questionnaire: BSAQ (correlation=0.25, p=0.35, n=16) and OAB-V8 (correlation=0.31, p=0.25, n=16). In (c) correlation was tested between MCC and patients’ scores from BSAQ (correlation= -0.02, p=0.95, n=16) and OAB-V8 (correlation= -0.12, p=0.66, n=16) questionnaires.
Figure 4. Effect of MGF on primary murine bladder cells proliferation. The indicated concentration of synthetic MGF peptide was added to primary cultures of murine bladder cells for 72 hours, with EdU added for the final 48 hours. Cells were stained with an anti-SMMHC antibody (red) to identify smooth muscle cells, and EdU was visualised by Click-iT® detection (green); all cells were labelled using DAPI nuclear stain (blue). Images were taken at 4X magnification using an EVOS-imaging station, with additional digital zoom. Representative images are shown in (a), and the graph in (b) shows mean %EdU+ proliferating cells/image +/- SEM (n=11-18 images, from 3-5 wells). Statistical analysis was performed using one-way ANOVA test followed by post-hoc t-test.

Table legends

Table 1. Clinical characteristics of patient cohort. Clinical OAB parameters obtained with the urodynamic test i.e ‘1st’ and ‘2nd’ sensation and Maximum Cystometric Capacity (MCC). Self-assessment questionnaire scores (BSAQ and OABV8) were also recorded, although this information was only available for 16/23 OAB patients.

Supplementary Figure legends

Supplementary Figure 1: Primer validation for RT-qPCR. The amplification efficiency of **UPKN** (a), **B2M** (b), **VIM** (c) and **DES** (d) primers used for RT-qPCR biopsy analysis was determined by serial template dilution and plotting Cq values against log (sample quantity). The slope of the linear best fit was used to calculate primer efficiency (e). In (f), RT-PCR products amplified using the indicated primers on a biopsy sample were analysed by agarose gel electrophoresis. Single bands of the expected size were observed with all primers used (**DES**, **VIM**, **UPK2**, **GAPDH**, **B2M** and **ACTB**). The expected PCR product sizes in addition to primer sequences are shown in (g).

Supplementary Figure 2: Uncropped blots of westerns shown in Figure 2 stained with antibodies to (a) β-actin and (b) MGF peptide.

Supplementary Table legends

Supplementary Table 1: Scoring of individual biopsy samples according to most highly expressed cell type marker/s. RI-Cq values for **DES**, **VIM** and **UPK2** gene expression were
determined by RT-qPCR as shown in Figure 1. (a) Designation of each biopsy as DES^{hi} (green), VIM^{hi} (blue), $DES\&VIM^{hi}$ (orange), $UKP2^{hi}$ (red), $VIM\&UKP2^{hi}$ (yellow) or EVEN (grey) was performed as described in the methods and indicated by the respective colour. *'Difference’ indicates the difference between 'hi' sample (or mean) and 'low' sample (or mean) which should be greater than or equal to 3, or sample was scored as 'even'. (b) Summary of the numerical distribution of sub-groups in control (CTL) and OAB samples shown visually in Figure 1b.
Figure 1

Panel a: Bar chart showing fold change gene expression for control and OAB groups.
- DES: p=0.09
- VIM
- UPK2

Panel b: Pie charts comparing control and OAB groups.
- Control: 67% DES HI, 33% DES&VIM HI, 22% VIM HI, 18% UPK2 HI, 7% VIM&UPK2 HI, 7% EVEN
- OAB: 67% DES HI, 33% DES&VIM HI, 22% VIM HI, 18% UPK2 HI, 7% VIM&UPK2 HI, 7% EVEN

χ²=0.02
Figure 2

(a) Biopsy samples

(b) 55 kDa

(c) MGF relative protein expression

(d) MGF protein expression
Figure 4

(a) Control vs. 100 ng/ml MGF

(b) Bar graph showing percentage of proliferating cells (EdU+) with MGF concentration. p=0.0008
<table>
<thead>
<tr>
<th>Type</th>
<th>M/F</th>
<th>Ethnicity</th>
<th>Parity</th>
<th>1st</th>
<th>2nd</th>
<th>MCC</th>
<th>DO</th>
<th>Incontinence</th>
<th>BSAQ</th>
<th>OABV8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>F</td>
<td>other</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>23</td>
<td>38</td>
</tr>
<tr>
<td>Control</td>
<td>F</td>
<td>white</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Control</td>
<td>F</td>
<td>white</td>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Control</td>
<td>F</td>
<td>white</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>F</td>
<td>asian</td>
<td>2</td>
<td>600</td>
<td>600</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Control</td>
<td>F</td>
<td>white</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Control</td>
<td>F</td>
<td>white</td>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>1</td>
<td>120</td>
<td>210</td>
<td>410</td>
<td>terminal</td>
<td>Yes</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>asian</td>
<td>3</td>
<td>157</td>
<td>460</td>
<td>480</td>
<td>yes</td>
<td>Yes</td>
<td>22</td>
<td>35</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>arab</td>
<td>4</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>NA</td>
<td>85</td>
<td>340</td>
<td>450</td>
<td>yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>other twins</td>
<td>125</td>
<td>275</td>
<td>518</td>
<td>yes</td>
<td>Yes</td>
<td>22</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white twins + 1</td>
<td>158</td>
<td>300</td>
<td>340</td>
<td>yes</td>
<td>Yes</td>
<td>24</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>1</td>
<td>107</td>
<td>163</td>
<td>403</td>
<td>yes</td>
<td>Yes</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>black</td>
<td>4</td>
<td>95</td>
<td>205</td>
<td>359</td>
<td>yes</td>
<td>Yes</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>NA</td>
<td>100</td>
<td>300</td>
<td>429</td>
<td>no</td>
<td>Yes</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>NA</td>
<td>302</td>
<td>440</td>
<td>469</td>
<td>yes</td>
<td>No</td>
<td>23</td>
<td>35</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>1</td>
<td>56</td>
<td>311</td>
<td>401</td>
<td>yes</td>
<td>Yes</td>
<td>20</td>
<td>33</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>1</td>
<td>120</td>
<td>233</td>
<td>500</td>
<td>yes</td>
<td>No</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>1</td>
<td>206</td>
<td>421</td>
<td>497</td>
<td>yes</td>
<td>Yes</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>2</td>
<td>160</td>
<td>279</td>
<td>388</td>
<td>yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>asian</td>
<td>1</td>
<td>200</td>
<td>311</td>
<td>500</td>
<td>yes</td>
<td>No</td>
<td>18</td>
<td>33</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>2</td>
<td>296</td>
<td>488</td>
<td>511</td>
<td>no</td>
<td>No</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>NA</td>
<td>180</td>
<td>369</td>
<td>417</td>
<td>yes</td>
<td>No</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>NA</td>
<td>200</td>
<td>270</td>
<td>384</td>
<td>yes</td>
<td>Yes</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>NA</td>
<td>136</td>
<td>228</td>
<td>0</td>
<td>yes</td>
<td>Yes</td>
<td>24</td>
<td>37</td>
</tr>
<tr>
<td>OAB</td>
<td>F</td>
<td>white</td>
<td>NA</td>
<td>110</td>
<td>303</td>
<td>387</td>
<td>yes</td>
<td>Yes</td>
<td>15</td>
<td>28</td>
</tr>
</tbody>
</table>