TwinRCT-GAN Generates Digital Twins of Randomized Control Trials Adapted to Real-world Patients to Enhance their Inference and Application

Phyllis M. Thangaraj*
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
phyllis.thangaraj@yale.edu

Sumukh Vasisht Shankar*
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
sumukh.vasishtshankar@yale.edu

Evangelos K. Oikonomou
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
evangelos.oikonomou@yale.edu

Rohan Khera
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA; Center for Outcomes Research and Evaluation (CORE), Yale New Haven Hospital, New Haven, CT, USA
rohan.khera@yale.edu

Abstract

Background: Randomized clinical trials (RCTs) are designed to produce evidence in selected populations. Assessing their effects in the real-world is essential to change medical practice, however, key populations are historically underrepresented in the RCTs. We define an approach to simulate RCT-based effects in real-world settings using RCT digital twins reflecting the covariate patterns in an electronic health record (EHR).

Methods: We developed a Generative Adversarial Network (GAN) model, TwinRCT-GAN, which generates a digital twin of an RCT (TwinRCT) conditioned on covariate distributions from an EHR cohort. We improved upon a traditional tabular conditional GAN, CTGAN, with a loss function adapted for data distributions and by conditioning on multiple discrete and continuous covariates simultaneously. We assessed the similarity between a Heart Failure with preserved Ejection Fraction (HFpEF) RCT (TOPCAT), a Yale HFpEF EHR cohort, and TwinRCT. We also evaluated cardiovascular event-free survival stratified by Spironolactone (treatment) use.

Results: By applying TwinRCT-GAN to 3445 TOPCAT participants and conditioning on 3445 Yale EHR HFpEF patients, we generated TwinRCT datasets between 1141-3445 patients in size, depending on covariate conditioning and model parameters. TwinRCT randomly allocated spironolactone (S)/ placebo (P) arms like an RCT, was similar to RCT by a multi-dimensional distance metric, and balanced covariates (median absolute standardized mean difference (MASMD) 0.017, IQR 0.0034-0.030). The 5 EHR-conditioned covariates in TwinRCT were closer to the EHR compared with the RCT (MASMD 0.008 vs 0.63, IQR 0.005-0.018 vs 0.59-1.11). TwinRCT reproduced the overall effect size seen in TOPCAT (5-year cardiovascular composite outcome odds ratio (95% confidence interval) of 0.89 (0.75-1.06) in RCT vs 0.85 (0.69-1.04) in TwinRCT).

Conclusions: TwinRCT-GAN simulates RCT-derived effects in real-world patients by translating these effects to the covariate distributions of EHR patients. This key methodological advance may enable the direct translation of RCT-derived effects into real-world patient populations and may enable causal inference in real-world settings.

Keywords: Generative Adversarial Networks, Randomized Control Trials, Electronic Health Records, Synthetic Cohorts

* Both authors contributed equally.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
1. Introduction

Randomized control trials (RCTs) are the gold standard for identifying practice-changing management of disease, but their generalizability to real-world patients remains a challenge. Underrepresentation of key patient demographic and comorbid groups contributes to this gap, resulting in difficulty applying treatment effect results from RCTs to underrepresented patient populations (Patel et al., 2017; Lim et al., 2022). One of several large-scale examples, the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist Trial (TOPCAT), demonstrated heterogeneous treatment effects across participants, questioning the extent to which the trial cohort is representative of the real-world (Pitt et al., 2014; Pfeffer et al., 2015; Cohen et al., 2020). Nevertheless, in addition to the randomization of tested interventions, RCTs enable a comprehensive phenotypic evaluation of the baseline composition of a population. An equivalent cohort more representative of real-world patients is needed to better inform treatment efficacy and identify patients who should be targeted for future RCTs. The electronic health record (EHR) is a promising research resource for extracting clinical and sociodemographic information about real-world patients but is limited by lack of use of novel treatments evaluated in RCTs, nonrandom missingness of data, ascertainment bias, and infrequent follow-up (Dhingra et al., 2023).

Generative Adversarial Networks (GANs) can amalgamate RCT and EHR cohort characteristics by building a synthetic cohort representative of their covariate distributions. Several advances have been made to GANs to address the challenges of EHR data (Ghosheh et al., 2022). We developed TwinRCT-GAN, which builds a synthetic twin RCT dataset reflective of a real-world patient population by conditioning on covariates from an equivalent EHR population. We show more optimal alignment between the digital twin cohort and EHR cohort compared to other models, CTGAN and EHR–M–GAN (Xu et al., 2019; Li et al., 2023). We also show successful random allocation of treatment arms similar to RCT while also improving the representation of key patient populations by incorporating EHR patient covariate distributions. We expect true effect estimates and variance in a disease population to be reflective of all patients evaluated and/or treated for the disease. Our model contributes to the evidence for creating an RCT digital twin more reflective of real-world populations for enhancing inference for real-world patients.

2. Related work

Although there have been deep generative models emulating treatment effects in RCTs, they have not considered the under-enrollment of key patient populations such as women, minorities, the elderly, and patients with many comorbidities (Liu et al., 2021; Ge et al., 2020; Yoon et al., 2018). Other studies have tried to estimate treatment effects in EHR patient populations, which is plagued by confounding due to lack of randomization (Chu et al., 2020). (Averitt et al., 2020) developed the Counterfactual χ-GAN, which used Pearson divergence to balance covariates between two observational study populations. Conditional Tabular GAN (CTGAN) successfully built synthetic datasets of mixed-type tabular data (Xu et al., 2019). They developed advances such as mode-specific normalization to better model the distribution of continuous data, a conditional generator, and training-by-sampling to handle highly imbalanced covariates. We built upon CTGAN to create TwinRCT-GAN that efficiently handles multiple mixed data types to generate a digital twin of an RCT cohort conditioned on EHR covariates. We compare the cohort similarity performance of our model with CTGAN and EHR–M–GAN, which pretrains using a dual-variational autoencoder (VAE) that captures mixed-type time-series EHR data (Xu et al., 2019; Li et al., 2023).

3. Methods

3.1. Study Cohorts and Covariates

We extracted patient-level information from RCT and EHR data sources. The first cohort, TOPCAT, was a multi-center international RCT that recruited 3,445 subjects with Heart Failure with Preserved Ejection Fraction (HFP EF) and studied the effect of spironolactone on the incidence of death from cardiovascular cause, myocardial infarction, stroke, aborted cardiac arrest, and hospitalization for decompensated heart failure. See Appendix A for further details. The second cohort included 10,467 patients admitted with heart failure in the Yale New Haven Health System (YNHHS), and imaging confirmed HFP EF. We extracted baseline demographics, conditions, procedures, vital signs, medications, laboratory values,
and imaging from the TOPCAT participant dataset. We chose 65 variables, 39 with discrete and 24 with continuous data across these categories to map to the EHR. Pre-processing of data is described in Appendix (B). The study was reviewed by Yale IRB and deemed exempt as it uses retrospective data.

3.2. TwinRCT-GAN Model

We modeled TwinRCT-GAN after CTGAN, which uses a mode-specific normalization to overcome covariate non-Gaussian multimodal distribution and a conditional generator and training by sampling approach to handle imbalanced covariates. We train TwinRCT-GAN on the 65 RCT covariates, treatment arm, and outcomes. TwinRCT-GAN updates the cross-entropy loss function used in CTGAN with Mean Absolute Error (MAE) to enable computationally efficient generation of EHR-conditioned RCT with more continuous variables.

As in CTGAN, TwinRCT-GAN used a rectified linear unit (ReLU) activation function and Gumbel Softmax in the generator and a leaky ReLU function and dropout in the discriminator. We trained with an ADAM Optimizer and a learning rate of 10^{-4}. Other modifications included training for 500 epochs and a batch size of 128. For conditional sampling, we used a batch size of 32 with 500 maximum tries per batch to minimize the number of rows that could not be produced. During the runtime analysis, we reduced the batch size to 1 with 200 maximum tries to maximize speed.

We incorporated the Python library from Synthetic Data Vault (SDV) to condition on multiple known columns and sample the remaining required columns using Conditional Parameter Aggregation (CPA) (Patki et al., 2016). We also make use of conditioning on both continuous and discrete covariate distributions from SDV. This is a modification from CTGAN, which used a reject sampling approach to condition on one column at a time and only on discrete data. The generative model for tabular data in this method consists of distributions, which describe a value in a column using a Gaussian or uniform distribution, and covariances, which describe the correlation between values in the same row using the multivariate Gaussian Copula (Patki et al., 2016). This model converts all column distributions to standard normal before finding the covariances. When m columns of a dataset of n columns are passed as conditional columns to the generator, each row of the conditional columns is considered as a vector - thus having a vector size of m. For each such vector, using the covariances and CPA, new $n - m$ columns for the vector are sampled. Once such a row is created, it is appended to the sampled data frame to the corresponding conditional vector. TwinRCT-GAN completes this sampling process by using covariate distributions found in the EHR population. Figure 1 outlines the cohort generation process and training and conditioning of TwinRCT-GAN.

We analyzed the balance, similarity, and cardiovascular outcomes of three different synthetic datasets. First, the RCT twin, in which TwinRCT-GAN is trained on the RCT cohort without any conditioning. The next synthetic dataset was trained on the RCT cohort but conditioned on 5 covariates from the RCT cohort. The final synthetic dataset was also trained on the RCT cohort but conditioned on the same 5 covariates from the EHR cohort. We conditioned with the top 5 covariates correlated with the composite outcome in the RCT cohort placebo treatment arm. These were age, left ventricular ejection fraction (EF), heart rate, the laboratory value creatinine, and whether the patient used the medication class ACE Inhibitors. We chose these covariates as a representative example. Accordingly, any continuous and discrete covariates can be used by the model.

We also completed a runtime and synthetic cohort generation analysis comparing 10 different conditioning parameters. We also changed the synthetic data generation model to create one row at a time rather than a batch at a time to improve speed. First, the RCT twin, in which TwinRCT-GAN is trained on the RCT cohort without any conditioning. The next synthetic dataset was trained on the RCT cohort but conditioned on 1, 3, 5, and 7 continuous covariates from the RCT cohort. The final synthetic dataset was also trained on 3 discrete covariate distributions from the RCT cohort. Similarly, synthetic datasets were trained on the RCT cohort and conditioned on the same 1,3,5, and 7 continuous and three discrete covariates, but this time the distributions were from the EHR cohort. We conditioned with the top covariates correlated with the composite outcome in the RCT cohort placebo treatment arm. The continuous covariates started with just creatinine, and then ejection fraction, heart rate, age, systolic blood pressure, potassium, BMI, gender, whether the patient was on an ACE inhibitor or ARB, and whether the patient had dyslipidemia were added sequentially. The final synthetic dataset was trained on the RCT cohort
Figure 1: Graphical depiction of RCT and EHR cohort generation and development of TwinRCT-GAN. The top depicts the curation of the RCT participants from each treatment arm and their covariates, the curation of the EHR heart failure cohort from the index hospitalization for heart failure, and the mapping of the RCT covariates to EHR variables. The bottom shows the training of the GAN generator with the RCT cohort and conditioning with select equivalent covariates from the EHR cohort, creating the TwinRCT dataset. The discriminator then evaluates the similarity of TwinRCT with the original RCT data and feeds its evaluation back to the generator.
3.3. Statistical Analysis

We quantified the difference between two cohorts by calculating Gower’s dissimilarity distance between individuals within each cohort. We chose the Gower distance because of its ability to handle multi-dimensional and mixed-type data, specifically categorical and continuous. Rather than compare single covariates at a time, this distance is a complex representation of all covariates. The Gower’s distance was calculated as described in (Gower, 1971). Briefly, continuous variable distances were calculated as the absolute value difference divided by range, and binary variable distance was assigned 1 if identical and 0 otherwise. The distance per patient was then calculated as the average across all variables. We calculated the mean of median Gower’s distances between each cohort participant. We also visualized the distances between cohort participants with a dimensionality reduction method called uniform manifold approximation and projection (UMAP) (McInnes et al., 2018).

We evaluated the similarity of covariate distribution of TwinRCT to the RCT cohort and EHR cohort by calculating the median absolute standardized mean difference of covariates between the different cohorts/datasets.

3.3.1. Correlation between Covariates

We assessed the similarity of covariate correlation between the real and synthetic data sets by measuring the mean absolute difference (MAD) of Spearman correlation coefficients (SCCs) between five different cohorts: (1) the RCT cohort, (2) the RCT Twin, (3) the RCT Twin conditioned on RCT cohort, (4) the RCT Twin conditioned on EHR cohort, and (5) the EHR cohort, based on prior work (Li et al., 2023). Spearman correlation rather than Pearson correlation permitted use in mixed-type datasets without presumed normality of covariate distribution. We also measured CorrAcc, in which we discretized the SCCs according to the bins described in (Li et al., 2023) and calculated the percentage of discretized SCCs that are equal between the two cohorts.

We also calculated the 5-year odds ratio of composite cardiovascular death, cardiac arrest, and hospitalization for heart failure to evaluate TwinRCT-GAN’s ability to emulate RCT treatment effects.

4. Results

4.1. Gower’s Dissimilarity and Spearman’s Correlation between cohorts

All real and synthetic datasets were separated by treatment arm (spironolactone (S) or placebo (P)). The median (sem) of the median Gower’s distance between the RCT S. Arm cohort and the other cohorts ranged from 0.189 (0.000686) in the RCT P. Arm to 0.213 (0.000760) in the EHR. (Figure 2(b)). The EHR was furthest from the RCT S. Arm, and out of the synthetic datasets, the TwinRCT dataset conditioned on EHR data was furthest (0.198 (0.000645)). A UMAP of the Gower’s distance between individuals in each cohort showed separation between the original EHR and all other cohorts (Figure 2).

The lowest mean absolute difference (MAD) of Spearman’s Correlation coefficients (SCC), or highest correlation, between covariates of two cohorts resulted from the TwinRCT-GAN model compared to CTGAN and EHR-M–GAN. Within the cohorts, the synthetic data sets were most correlated to each other (MAD 0.0184, 0.0274, and 0.0290). The lowest MAD of SCC with a real dataset included the EHR cohort and RCT Twin conditioned on EHR data, 0.0592. Correspondingly, the synthetic data sets had the highest CorrAcc (98.3%-98.9%) between them, and the RCT Twin conditioned on RCT or EHR data both had the next highest CorrACC with the EHR cohort (82.9%). CTGAN had less similarity between the RCT Twin conditioned on EHR data and EHR (MAD 0.0621, CorrACC 82.4%). The EHR-M–GAN model had high MAD of SCCs (median 0.165, IQR 0.0789-0.190) and low CorrAcc (median 43.0%, IQR 32.0%-63.0%) (Table 1).

4.2. Mean Standardized Difference between cohorts and digital twin

By applying TwinRCT-GAN to 3445 TOPCAT participants and conditioning on 3445 Yale EHR HFpEF patients, we generated a 2173-patient TwinRCT. TwinRCT randomly allocated spironolactone (S)/ Placebo (P) arms like RCT, were similar to RCT by a multi-dimensional distance metric and balanced covariates (median absolute standardized mean difference (MASMD) 0.017, IQR 0.0034-0.030) (Figure 3). The 5 EHR-conditioned covariates in TwinRCT were closer to the EHR compared to RCT (MASMD 0.008 vs 0.63, IQR 0.005-0.018 vs 0.59-1.11) (Figure 3(b)).
TwinRCT-GAN Generates a Real-world Adapted RCT Cohort

(a) UMAP of Gower’s distances between cohorts.

(b) Median of median Gower’s distance difference between individuals of each cohort and the RCT S. Arm cohort with SEM error bars.

Figure 2: The X and Y axes in (a) are UMAP coordinates. Each color represents a cohort. Orange is the RCT Placebo (P.) arm, and Red is the RCT Spironolactone (S.) arm. Yellow is the TwinRCT placebo cohort conditioned on 5 covariates using the RCT data itself (placebo label generated by the model) (TwinRCT-RCT 5m P. Arm), Light Orange is the TwinRCT spironolactone Arm conditioned on the same 5 RCT covariates (spironolactone label generated by the model) (TwinRCT-RCT 5m S. Arm), Blue is the TwinRCT placebo arm conditioned on the same 5 covariates drawn from EHR cohorts (placebo label generated by the model) (TwinRCT-EHR 5m P. Arm), Green is the TwinRCT spironolactone arm conditioned on the same EHR data (spironolactone label generated by the model) (TwinRCT-EHR 5m S. Arm), and Purple is the EHR cohort. (B) The Y axis is the median of median pairwise Gower’s distance between the labeled cohort and RCT spironolactone arm, referenced to the distance between the spironolactone and placebo arms of the RCT.
TwinRCT-GAN Generates a Real-world Adapted RCT Cohort

(a) MASMD between TwinRCT conditioned on EHR data spironolactone Arm and TwinRCT conditioned on EHR data placebo Arm

(b) MASMD between TwinRCT conditioned on EHR data and EHR (red square) and between RCT and EHR (purple triangle)

Figure 3: Median absolute standardized mean difference (MASMD) between (Left) TwinRCT conditioned on EHR data Spironolactone Arm (TwinRCT-S) and TwinRCT conditioned on EHR data Placebo Arm (TwinRCT-P) and (Right) EHR cohort and TwinRCT conditioned on EHR data (red square) and EHR and RCT (purple triangle). Conditioning columns were age, EF, heart rate, creatinine, and an ACE-inhibitor. The dotted line represents an MASMD of 0.1.

Table 1: Mean absolute difference (MAD) and CorAcc of Spearman Correlation Coefficients between cohorts. RCT-T refers to RCT Twin cohort, RCT-T-RCT refers to the RCT Twin conditioned on RCT data cohort, and RCT-T-EHR refers to the RCT Twin conditioned on EHR data cohort.

<table>
<thead>
<tr>
<th>Cohort</th>
<th>CorAcc (%)</th>
<th>MAD</th>
<th>1</th>
<th>2</th>
<th>Twin-RCT-GAN</th>
<th>CF-T-RCT-GAN</th>
<th>EHR-M Twin-RCT-GAN</th>
<th>MAD</th>
<th>CF-T-GAN</th>
<th>EHR-M GAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCT</td>
<td>78.7</td>
<td>0.0672</td>
<td>0.0675</td>
<td>0.150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>79.2</td>
<td>0.0668</td>
<td>0.0679</td>
<td>0.192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>78.8</td>
<td>0.0659</td>
<td>0.0666</td>
<td>0.180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>78.8</td>
<td>0.0638</td>
<td>0.0638</td>
<td>0.180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>78.8</td>
<td>0.0636</td>
<td>0.0633</td>
<td>0.186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>82.4</td>
<td>0.0636</td>
<td>0.0633</td>
<td>0.186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>98.3</td>
<td>0.0290</td>
<td>0.0256</td>
<td>0.0580</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>98.6</td>
<td>0.0274</td>
<td>0.0200</td>
<td>0.0787</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHR</td>
<td>82.9</td>
<td>0.0592</td>
<td>0.0621</td>
<td>0.206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3. Survival Analysis Comparison between TwinRCT and original RCT

The TwinRCT dataset had similar outcomes to the RCT cohort in that there was no difference in survival across treatment arms. RCT 5-year odds ratio of cardiovascular death, cardiac arrest, or hospitalization for heart failure was 0.89, 95% confidence interval (CI) 0.75-1.06 while TwinRCT 5-year odds ratio of the same outcome was 0.85, 95% CI 0.69-1.04.

4.4. Run time of models

We conditioned Twin-RCT-GAN on 5 discrete columns due to increased run time and memory usage with continuous columns. Generating 500 rows of synthetic data took 947 seconds when conditioning with 5 discrete columns, 8,023 seconds when conditioning with 10 discrete columns, 10,730 seconds when conditioning with 5 continuous columns, and 25,610 seconds when conditioning with 10 continuous columns. Table 2 shows our runtime analysis across 10 different combinations of covariate distribution and data conditioning. The more covariates conditioned on, the longer the run time and fewer rows generated. Conditioning on EHR data took a longer time than RCT data.

5. Discussion

Participants of RCTs do not always represent real-world patients, making the generalizability of gold standard evidence a challenge. In this study, we developed Twin-RCT-GAN, a conditional generative adversarial model that creates a synthetic RCT cohort reflective of a real-world patient population. Using the heart failure RCT TOPCAT as an example, we create a synthetic cohort more similar to an EHR cohort than TOPCAT when conditioning with EHR data. We showed this by demonstrating a similar distribution of TwinRCT to the EHR in the EHR-conditioned covariates. We also show that TwinRCT randomly allocates treatment arms as seen in an RCT cohort and similarly showed no survival benefit in the spironolactone treatment arm as seen in the original TOPCAT trial. We also show a higher covariate correlation between the synthetic cohort and EHR cohort compared to two other models. We have introduced a new application of GANs to build synthetic cohorts by creating an RCT digital twin reflective of real-world patients found in the EHR. Our study demonstrates a way to evaluate the generalizability of an RCT to the general population by embedding covariate distributions that are more representative of real-world populations. This amplifies the effects for those who are more frequently seen in clinical practice.

There are limitations to consider. First, there is no perfect representation of real-world patients. The EHR patients seeking hospital care likely represent a sicker subset of the HFpEF population compared to the TOPCAT cohort, highlighting an important cross-section of eligible patients. Second, we only conditioned on five out of a possible 65 variables due to run time length. Conditioning on a higher number of continuous variables could improve model performance, but run-time efficiency will need to be addressed. In addition, the Gower distances of the TwinRCT dataset from the EHR and RCT cohorts were higher than those datasets conditioned on covariates, which we attribute to a sampling variation. RCTs enroll from the disease population; therefore, they represent samples from the overall population.

We introduce Twin-RCT-GAN as a key methodological advance to enable the direct translation of RCT-derived effects into real-world patient populations.

6. Acknowledgements

This study will be presented at ML4H 2023.

Funding: The study is supported by grants from the National Heart, Lung, and Blood Institute (NHLBI) to RK (K23HL155000-03), PMT (5T32HL155000-03), and EKO (1F32HL170592-01).

Disclosures: The authors are coinventors of a provisional patent related to the current work (63/606,203). EKO is a co-inventor of the U.S. Patent Application 63/508,315 63/177,117, a cofounder of Evidence2Health (with RK), and has previously served as a consultant to Caristo Diagnostics Ltd (outside the present work). RK is an Associate Editor of JAMA. He receives support from the Doris Duke Charitable Foundation (under award, 2022060). He also receives research support, through Yale, from Bristol-Myers Squibb, Novo Nordisk, and BridgeBio. He is a coinventor of U.S. Provisional Patent Applications 63/177,117, 63/428,569, 63/346,610, 63/484,426, 63/508,315, and 63/606,203 and is a co-founder of Ensight-AI and Evidence2Health, health platforms to improve cardiovascular diagnosis and evidence-based cardiovascular care.
Table 2: Comparison of Run times and number of synthetic rows generated. The first column describes the conditioning data, the second column describes the number (No.) of continuous (cont.) columns (col) on which TwinRCT-GAN was conditioned, the third column describes the number of discrete (disc.) columns on which TwinRCT-GAN was conditioned, the fourth column is the run time in seconds, and the fifth column is the number of synthetic rows generated by TwinRCT-GAN.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RCT</td>
<td>1</td>
<td>0</td>
<td>324.6</td>
<td>3445</td>
</tr>
<tr>
<td>EHR</td>
<td>1</td>
<td>0</td>
<td>726.4</td>
<td>3445</td>
</tr>
<tr>
<td>RCT</td>
<td>3</td>
<td>0</td>
<td>575.2</td>
<td>3444</td>
</tr>
<tr>
<td>EHR</td>
<td>3</td>
<td>0</td>
<td>2061</td>
<td>3339</td>
</tr>
<tr>
<td>RCT</td>
<td>5</td>
<td>0</td>
<td>957.3</td>
<td>3433</td>
</tr>
<tr>
<td>EHR</td>
<td>5</td>
<td>0</td>
<td>4680</td>
<td>3008</td>
</tr>
<tr>
<td>RCT</td>
<td>7</td>
<td>3</td>
<td>5584</td>
<td>3078</td>
</tr>
<tr>
<td>EHR</td>
<td>7</td>
<td>3</td>
<td>17660</td>
<td>2279</td>
</tr>
<tr>
<td>EHR</td>
<td>0</td>
<td>10</td>
<td>3256</td>
<td>2960</td>
</tr>
</tbody>
</table>

7. Data Availability

The TOPCAT data are available online (https://biolincc.nhlbi.nih.gov/studies/topcat/), and the EHR data is not available to maintain patient privacy.

8. Citations and Bibliography

References

Yvonne Mei Fong Lim, Megan Molnar, Ilonca Vaartjes, Gianluigi Savarese, Marinus J C Eijkemans, Alicia Uijl, Elena Vradi, Kiliana Suzarta-Woischnik, Jasper J Brugts, Hans-Peter Brunner-La Rocca, Vanessa Blanc-Guillemaud, Fabrice...
TwinRCT-GAN Generates a Real-world Adapted RCT Cohort

Appendix A. Details of Study Cohorts

Details of TOPCAT (ClinicalTrials.gov identifier: NCT00094302) have been previously published (Pitt et al., 2014). The study enrolled 3445 individuals 50 years globally with left ventricular ejection fraction (LVEF) 45%, one sign and one symptom of heart failure in the last 12 months, and at least one hospitalization for heart failure in the last 12 months. Participants were randomized to receive either spironolactone or placebo.

Appendix B. Imputation of missing variables

We imputed missing values by running the MissForest package from missingpy in Python, which chains random forests to predict imputed values that minimize the root mean square between complete and imputed data. This algorithm is the most effective imputation algorithm in mixed-type categorical and continuous data and high-dimensional data (Stekhoven and Bühlmann, 2012; noa).

Appendix C. Abbreviations

10
TwinRCT-GAN Generates a Real-world Adapted RCT Cohort

<table>
<thead>
<tr>
<th>Variable</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHR</td>
<td>Electronic Health Record</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Clinical Trial</td>
</tr>
<tr>
<td>No.</td>
<td>Number</td>
</tr>
<tr>
<td>Cont.</td>
<td>Continuous</td>
</tr>
<tr>
<td>Col.</td>
<td>Column</td>
</tr>
<tr>
<td>Disc.</td>
<td>Discrete</td>
</tr>
<tr>
<td>S. Arm</td>
<td>Spironolactone Arm</td>
</tr>
<tr>
<td>P. Arm</td>
<td>Placebo Arm</td>
</tr>
<tr>
<td>TwinRCT-RCT 1c</td>
<td>TwinRCT dataset, GAN conditioned on one continuous covariate of RCT</td>
</tr>
<tr>
<td>TwinRCT-RCT 3c</td>
<td>TwinRCT dataset, GAN conditioned on three continuous covariates of RCT</td>
</tr>
<tr>
<td>TwinRCT-RCT 5c</td>
<td>TwinRCT dataset, GAN conditioned on five continuous covariates of RCT</td>
</tr>
<tr>
<td>TwinRCT-RCT 7c3d</td>
<td>TwinRCT dataset, GAN conditioned on seven continuous and three discrete covariates of RCT</td>
</tr>
<tr>
<td>TwinRCT-EHR 1c</td>
<td>TwinRCT dataset, GAN conditioned on one continuous covariate of EHR</td>
</tr>
<tr>
<td>TwinRCT-EHR 3c</td>
<td>TwinRCT dataset, GAN conditioned on three continuous covariates of EHR</td>
</tr>
<tr>
<td>TwinRCT-EHR 5c</td>
<td>TwinRCT dataset, GAN conditioned on five continuous covariates of EHR</td>
</tr>
<tr>
<td>TwinRCT-EHR 7c3d</td>
<td>TwinRCT dataset, GAN conditioned on seven continuous and three discrete covariates of EHR</td>
</tr>
<tr>
<td>TwinRCT-RCT 5m</td>
<td>TwinRCT dataset, GAN conditioned on 5 mixed (4 cont., 1 disc.) covariates of RCT</td>
</tr>
<tr>
<td>TwinRCT-EHR 5m</td>
<td>TwinRCT dataset, GAN conditioned on 5 mixed (4 cont., 1 disc.) covariates of EHR</td>
</tr>
<tr>
<td>HFpEF</td>
<td>Heart Failure with Preserved Ejection Fraction</td>
</tr>
</tbody>
</table>

Table 3: Abbreviations within the Paper