
Author names and affiliation

Yukari Okawa¹² and Toshiharu Mitsuhashi³

¹Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
²Department of Public Health and Welfare, Zentsuji City Hall, Zentsuji-city, Kagawa, Japan
³Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan.

Corresponding author

Yukari Okawa

Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan

https://orcid.org/0000-0002-1704-6609

Tel. +81 86 223 7151 (ext. 7176)
Fax. +81 86 235 7178
okw3923@gmail.com

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Hypertension is a risk factor for developing chronic kidney disease (CKD). Studies of adult participants in the USA reported that hypertension increased the risk of developing CKD even in the non-diabetic population. However, studies in non-diabetic populations are limited and additional studies in other races are required. This longitudinal study (1998–2023) aimed to evaluate the relationship between blood pressure (BP) levels and subsequent development of CKD in non-diabetic Japanese adults. CKD was defined as 60 mL/min/1.73 m², and hypertension was classified into four levels according to the guidelines of the American College of Cardiology/American Heart Association. The Weibull accelerated failure time model was selected to estimate the effects of covariates on the survival time because the proportional hazard assumption was violated. Of the 7,363 (men: 40.3%) people in the final cohort, 2,498 (men: 40.1%) developed CKD after a mean follow-up of 7.99 person-years. Participants with elevated BP (systolic blood pressure [SBP] of 120–129 mmHg and diastolic blood pressure [DBP] <80 mmHg) and hypertension stage 2 (SBP ≥140 mmHg or DBP ≥90 mmHg) had a 9% (95% confidence interval [CI]: 1%–16%) and 11% (95% CI: 5%–17%) shorter survival time to CKD onset, respectively, than those with normal BP (SBP <120 mmHg and DBP <80 mmHg). However, hypertension stage 1 (SBP of 130–139 mmHg or DBP of 80–89 mmHg) was not associated with CKD onset. Therefore, in a relatively healthy Asian population, controlling BP to an appropriate range reduces the risk of developing CKD.

Keywords

Hypertension, Chronic Kidney Diseases, Longitudinal Studies, Risk Factors
Introduction

Chronic kidney disease (CKD) is a well-known public health problem that affects 9.1% of the global population\(^1\). CKD is defined as an abnormality in renal structure or function that affects health for longer than 3 months\(^2\). CKD is sometimes referred to as a silent killer because it progresses without symptoms to an irreversible state. Once CKD progresses to end-stage renal disease, treatment options are limited to expensive dialysis and kidney transplantation, with limited access to treatment\(^3\). Therefore, early detection and prevention of CKD are critical.

To date, a variety of risk factors for CKD have been reported, including diabetes, a high body mass index (BMI), hypertension, non-alcoholic fatty liver disease, hepatitis B and C virus infection, a Western-type dietary pattern, and air pollution\(^4\)–\(^9\). Among those, diabetes is the leading cause of developing CKD, accounting for 30.7% of CKD disability-adjusted life-years\(^1\)\(^4\). However, risk factors for the development of CKD in a non-diabetic population have not yet been fully investigated.

According to a meta-analysis that integrated the results of four cohort studies, men with hypertension had a 2.14-fold higher risk (95% confidence interval [CI]: 1.68–2.72) and women with hypertension had a 1.54-fold higher risk (95% CI: 1.37–1.74) of developing CKD than those with normal blood pressure (BP)\(^5\). However, the four cohort studies used multiple definitions of CKD and hypertension and included individuals with and without diabetes, which may have affected the results\(^10\)–\(^13\). Therefore, the relationship between BP levels and the subsequent development of CKD in a non-diabetic population needs to be investigated in more detail.

The Atherosclerosis Risk in Communities study, which followed 10 096 middle-aged non-diabetic American adults for 9 years, reported that after adjustment for age, sex, and race, participants with hypertension were 1.99 times (95% CI: 1.69–2.35) more likely to develop CKD than those with normal BP\(^14\). In this previous study, hypertension was dichotomized into prevalent (systolic blood pressure [SBP]/diastolic blood pressure [DBP] ≥130/≥85 mmHg or the use of BP medications) and non-prevalent (SBP/DBP <130/<85 mmHg) categories\(^14\).

Furthermore, racial disparities in the prevalence of hypertension have been reported, with a higher prevalence in blacks and other races (other than whites, blacks, Hispanics, and Asians) than in whites\(^15\)\(^,16\). Therefore, to understand the effect of BP on the development of CKD, examining the relationship between more detailed BP categories and the development of CKD in a single racial population is important. The American College of Cardiology/American Heart Association (ACC/AHA) recommends classifying BP in adults into four levels, which allow more precise categorization than dichotomized BP classification. These levels are as follows: normal (SBP <120 and DBP <80
mmHg), elevated (SBP of 120–129 and DBP <80 mmHg), hypertension stage 1 (SBP of 130–139 or DBP 80–89 mmHg), and hypertension stage 2 (SBP ≥140 or DBP ≥90 mmHg)16. These four levels of ACC/AHA BP classification can be used to study the effect of BP on the development of CKD in more detail.

Therefore, this study aimed to examine the relationship between the ACC/AHA BP classification and new onset of CKD in a non-diabetic Japanese middle-aged and older population.

Methods

Study participants and data source

This ongoing, open cohort study used administrative annual health checkup data from Zentsuji City from 6 April 1998 to 19 April 2023. This city is located around the center of Kagawa Prefecture in Japan, with a population of 30, 431 (male sex: 49.7%, aged ≥60 years: 38.1%) as of 1 April 202317. All data were extracted from the Zentsuji City database on 6 July 2023. The database used was the same as that used in our previous study18.

The checkup was conducted annually for citizens ≥40 years by fiscal year age according to the protocol established by the Ministry of Health, Labour and Welfare19. In addition, to promote the health of young people, the city expanded the age range for checkup to 35–39 years by fiscal year age on a trial basis only in the fiscal years 1998 and 1999. Each year, 30%–40% of the eligible population receives a checkup. The checkup includes anthropometric measurements, a BP test, a blood test, urinalysis, and a self-reported questionnaire asking about participants’ lifestyles, such as drinking and the smoking status. The total number of participants of this checkup who were included in this study was 15, 501 (men: 40.7%).

On the basis of the study aim to investigate the relationship between hypertension and the subsequent development of CKD among non-diabetic Japanese adults, the following participants were excluded from the analysis: non-Japanese and those with missing renal information, missing glycated hemoglobin (HbA1c) values, missing SBP or DBP values, prevalent CKD at study entry, missing information on glycosuria at study entry or prevalent glycosuria ≥+1 at study entry, prevalent diabetes at study entry, or only a single observation (Figure 1). Participants who developed diabetes during the follow-up period were treated as censored. An HbA1c value of ≥6.5% was treated as diabetes according to the American Diabetes Association criteria20.
Variables

Outcome

In the analysis, onset of CKD was the outcome variable. The estimated glomerular filtration rate (eGFR) was used as a measure of renal function. To mitigate the effect due to race, we used the three-variable Japanese equation to calculate the eGFR as follows:

\[
eGFR (mL/min/1.73m^2) = 194 \times \text{serum creatinine (mg/dL)}^{-1.094} \times \text{age (years)}^{-0.287} (\times 0.739 \text{ if female})^{21-23}
\]

Prevalent CKD was defined as an eGFR <60 mL/min/1.73 m² according to the Kidney Disease Improving Global Outcome². Serum creatinine concentrations (mg/dL) were measured to two decimal places using enzymatic methods.

Exposure

The exposure variable was prevalent hypertension. SBP and DBP were used to define normal BP and hypertension by following the ACC/AHA guidelines: normal (SBP <120 and DBP <80 mmHg, reference), elevated (SBP of 120–129 and DBP <80 mmHg), hypertension stage 1 (SBP of 130–139 or DBP 80–89 mmHg), and hypertension stage 2 (SBP ≥140 or DBP ≥90 mmHg)¹⁶.

Other covariates

To reduce potential bias, sociodemographic and modifiable lifestyle factors were adjusted for. Sociodemographic factors included age and the residential district. Age was coded into three groups of 34–59, 60–69, and 70–100 years. The residential districts of the city were as follows: East, West, Central, South, Fudeoka, Tatsukawa, Yogita, and Yoshiwara (Figure 2).

Modifiable lifestyle factors were the self-reported drinking status, the self-reported smoking status, overweight or obesity, dyslipidemia, HbA1c values, proteinuria, and glycosuria. The self-reported drinking status was dichotomized into “non- or seldom-drinker” and “drinker.” The self-reported smoking status was grouped into “non- or ex-smoker” and “smoker”. BMI was calculated as weight (kg) divided by height (m) squared, and classified into “normal weight (BMI <25 kg/m²)” and “overweight or obese (BMI ≥25 kg/m²)”²⁴. The participants were classified as dyslipidemic if they met any of the following conditions: serum low-density lipoprotein cholesterol concentrations ≥140 mg/dL, serum high-density lipoprotein cholesterol concentrations <40 mg/dL, or serum triglyceride concentrations ≥150 mg/dL²⁵. HbA1c was standardized to National Glycohemoglobin Standardization
Program (NGSP) values (%) by the officially certified equation because HbA1c was reported in Japan Diabetes Society (JDS) units (%) from 1998 to 2012: $HbA1c_{NGSP} (%) = 1.02 \times HbA1c_{JDS} (%) + 0.25^{26,27}$. Proteinuria and glycosuria were dichotomized into “non-prevalent (none or ±)” and “prevalent (≥1+)”.

Statistical analysis

The participants’ characteristics are summarized by BP classifications. Continuous variables are expressed as the mean and standard deviation (SD). The person-years at risk were calculated from the date of the first observation to the occurrence of an event or the development of diabetes, or to the end of the last observation during the follow-up if no event or diabetes occurred. The participants’ characteristics during the follow-up are expressed as the number who developed CKD, total person-years, and incidence rate per 1 000 person-years.

The proportions of missing values of variables were 0.02% for overweight or obesity, 29.6% for the self-reported drinking status, 23.9% for the self-reported smoking status, 21.3% for dyslipidemia, and 1.38% for the residential district. The imputed results were selected in this analysis because missing values were assumed to be missing at random. All missing values were complemented by multiple imputation using chained equations with 40 imputations28,29. Binary variables (overweight or obesity, self-reported drinking status, self-reported smoking status, and dyslipidemia) were imputed using logistic regression and categorical variables (residential district) by multinominal logistic regression.

A Kaplan–Meier curve was created (Figure 3). The log-log plots and Schoenfeld residual results showed that the proportional hazards assumption was violated30. The Weibull accelerated failure time model was selected according to the Akaike and Bayesian information criteria because the proportional hazard assumption was violated, and all variables, except for sex, varied by time31,32. The time ratio and 95% CI were indicators of an association between exposure and outcome. A time ratio <1 indicates a shorter survival time to CKD onset than the reference group. An example of this ratio is as follows: a time ratio of 0.8 indicates that participants with hypertension have a 0.8 times longer survival than those with normal BP. To avoid the Table 2 fallacy, only estimates of the primary exposure were presented33.

Covariates were selected on the basis of previous studies5. Model 1 was adjusted for sex and age group. Model 2 was further adjusted for overweight or obesity, the self-reported drinking status, and the self-reported
smoking status. Model 3 was further adjusted for dyslipidemia and HbA1c values. Model 4 was further adjusted for the residential district. A multiplicative term was added to Models 1–4 for stabilizing models when there was an interactive relationship between the BP category and the following variables: sex, age category, overweight or obesity, the self-reported drinking status, the self-reported smoking status, dyslipidemia, and HbA1c values.

We conducted two sensitivity analyses. The first sensitivity analysis used SBP and DBP as exposure variables. SBP was categorized into the following six groups: <100, 100–119 (reference), 120–129, 130–139, 140–149, and ≥150 mmHg. DBP was classified into the following five groups: <70, 70–79 (reference), 80–89, 90–99, and ≥100 mmHg. To reduce potential reverse causation, the second sensitivity analysis excluded participants with proteinuria at study entry. All participants had information on proteinuria at study entry.

A two-tailed p value <0.05 was considered statistically significant. STATA/SE 18.0 (StataCorp, College Station, TX, USA) was used to conduct all statistical analyses and to create a Kaplan–Meier curve. The geographic data were downloaded from the website of the National Statistics Center, Japan34. A flow chart of the participants (Figure 1) and a district map of Zentsuji City (Figure 2) were created in Python 3.11.35–37. This study followed the Strengthening the Reporting of Observational Studies in Epidemiology reporting guidelines38.

Ethics

All data were retrieved from the administrative database of Zentsuji City and anonymized prior to receipt. The Ethics Committee of Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital approved this study and waived the need for informed consent (No. K1708-040). All study procedures were conducted in accordance with the Declaration of Helsinki.

Results

Of 15 501 (men: 40.7%, mean age at study entry: 62.3 years [SD: 12.5]) initial participants, 7 363 (men: 40.3%, mean age at study entry: 60.3 years [SD: 11.5]) remained in the final cohort (Figure 1). After a 25-year follow-up, with a mean follow-up per participant of 7.99 person-years, 2 498 (men: 40.1%) participants developed CKD. Table 1 shows the participants’ characteristic stratified by the ACC/AHA BP classification. Participants with higher BP
categories were more likely to be men, overweight or obese, and/or dyslipidemic. Participants with elevated BP had the shortest follow-up of all BP categories (14.9% of the total).

Table 2 shows the relationships between the ACC/AHA BP classification and the subsequent onset of CKD. In the full model, participants with elevated BP and hypertension stage 2 had a 9% (95% CI: 1%–16%) and 11% (95% CI: 5%–17%) shorter survival, respectively, than those with normal BP. However, hypertension stage 1 showed no clear association with the development of CKD.

In the first sensitivity analysis, we assessed the relationships between SBP and DBP levels and the development of CKD. The results using SBP categories are shown in Supplementary Table 1. In the elevated BP and hypertensive ranges, SBP of 120–129, 130–139, 140–149, and ≥150 mmHg was 19.9%, 17.9%, 12.9%, and 13.9% of the total follow-up period, respectively. Participants with SBP of 120–129 mmHg and 140–149 mmHg had an 8% (95% CI: 1%–14%) and 11% (95% CI: 3%–18%) shorter survival to the development of CKD in the fully adjusted model, respectively, than those with SBP of 100–119 mmHg. However, an association with the onset CKD was not observed with SBP of 130–139 mmHg or SBP ≥150 mmHg.

The relationships between DBP categories and later onset of CKD are shown in Supplementary Table 2. DBP categories of 80–89, 90–99, and ≥100 mmHg accounted for 23.6%, 8.26%, and 1.95% of the total follow-up time, respectively. There was no clear association between DBP categories and subsequent development of CKD in any of the models.

The results of the second sensitivity analysis using the ACC/AHA BP classification, which excluded participants with proteinuria ≥+1 at study entry to mitigate reverse causation, are shown in Supplementary Table 3. Compared with the follow-up times of the main analysis shown in Table 1, the follow-up times of the second sensitivity analysis were reduced by 3.11%, 4.40%, 5.33%, and 6.27% in the order of the ACC/AHA BP classification of normal, elevated, hypertension stage 1, and hypertension stage 2, respectively. The total follow-up time was the shortest in the elevated BP category (14.9% of the total follow-up time). The second sensitivity analysis yielded similar results to those of the main analysis shown in Table 2. Therefore, no clear evidence of reverse causation was observed.
Discussion

This longitudinal study of 7,363 non-diabetic, middle-aged and older Japanese adults (men: 40.3%) living in Zentsuji City with a mean follow-up of 7.99 person-years showed the following. An elevated BP classification and hypertension stage 1 classification resulted in a shorter survival to the onset of CKD than a normal BP classification (Table 2).

A previous study followed 10,096 non-diabetic, middle-aged American participants in the Atherosclerosis Risk in Communities study for 9 years. In this previous study, hypertension, which was defined as SBP/DBP ≥130/≥85 mmHg or BP medication use, was associated with a 1.99-fold risk (95% CI: 1.69–2.35) of developing CKD compared with normal BP. In our study using the ACC/AHA classification, abnormal BP was categorized into three categories of elevated BP, hypertension stage 1, and hypertension stage 2. We found that only elevated BP and hypertension stage 2 were associated with the development of CKD (Table 2). When we used SBP (Supplementary Table 1) and DBP (Supplementary Table 2) as exposure variables in the first sensitivity analysis, only SBP of 120–129 and 140–149 mmHg were associated with new-onset CKD, which is consistent with the results of the main analysis shown in Table 2. These findings suggest that a lower hypertension category of hypertension stage 1 (SBP of 130–139 or DBP of 80–89 mmHg) of the ACC/AHA BP classification is too low to be a risk factor for developing CKD in the Asian adult population without diabetes.

When we evaluated the relationship between the ACC/AHA BP classification and the onset of CKD after minimizing reverse causation in the second sensitivity analysis (excluding participants with proteinuria ≥+1 at study entry), there was no clear evidence of reverse causation. The reason for this finding is that the results were similar to those of the main analysis shown in Table 2 (Supplementary Table 3). Therefore, elevated BP and hypertension stage 2, especially SBP of 120–129 and 140–149 mmHg, had a high risk of a shorter time to the onset of CKD in the non-diabetic Asian adult population.

One of the strengths of our study is its detailed examination of the relationship between BP levels and new onset of CKD in a non-diabetic, middle-aged and older Asian population using data for approximately 25 years. The time frame of our data may be long enough to detect the early stage of CKD.

However, this study has several limitations. First, the results cannot be generalized because the data were health checkup data from a single city in Japan. Second, there may have been selection bias because our participants decided by themselves whether to undergo a checkup, and the following variables, which may have
caused competing risks, were unavailable in this study: death, hospitalization, and the prevalence of other diseases. Our participants are likely to be healthier than the general population because they did not tend to have characteristics, such as having a serious illness that prevented them from going out, did not feel the need for further checkups because they already had a disease and regularly visited a physician, and did not consider a checkup important because they were not interested in improving their health. This situation may have caused an underestimation of the results.

Third, there was measurement error because we estimated renal function using the revised Japanese equation21–23. Furthermore, inulin clearance values, which are considered the gold standard for measuring the GFR, were unavailable in this study owing to the time and cost involved and the nature of the annual health checkup conducted by the local government. Fourth, unobserved variables, such as the use of BP-lowering medications, a family history of CKD, the prevalence of heart disease, and socioeconomic factors, may have influenced the present results. Fifth, there may have been reverse causation. The second sensitivity analysis attempted to minimize reverse causation, but did not provide evidence that it existed (Supplementary Table 2). Finally, we cannot rule out the possibility of having a built-in selection bias in which less susceptible participants remained in the cohort because of the long follow-up of approximately 25 years39. Therefore, all results of this study may have been underestimated.

\section*{Conclusion}

In conclusion, we investigated the relationship between the ACC/AHA BP classification and the development of CKD in a middle-aged and older Japanese population without diabetes. This study showed that elevated BP and hypertension stage 2 were associated with a 9\% and 11\% shorter survival to the onset of CKD, respectively, than normal BP. These findings suggest that controlling BP in the appropriate range reduces the risk of developing CKD in a relatively healthier population than the general population.
Acknowledgments

The authors are grateful to all participants of this study, Ayaka Nakatsu, Masako Matsumoto, RN, PHN, Mayumi Kitadani, and all local government officers of Zentsuji City for their support and contribution. We thank Ellen Knapp, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Conflict of Interest

Employment: YO (Zentsuji City)

Author contributions

Yukari Okawa: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Visualization; Roles/Writing - original draft; and Writing - review & editing. Toshiharu Mitsuhashi: Methodology; Supervision; Writing - review & editing.

Supplementary information

Supplementary information is available at Hypertension Research’s website. Supplementary information (.docx) contains three tables. Supplementary Tables 1–2 present the results of the first sensitivity analysis and Supplementary Table 3 presents the results of the second sensitivity analysis.

References

Figures

Figure 1. Participants’ flow chart of the study cohort.
Figure 2. Map of Zentsuji City district.
Figure 3. Kaplan–Meier survival estimates by the American College of Cardiology/American Heart Association blood pressure classification.
Table 1. Descriptive statistics of all observations of 363 non-diabetic Japanese citizens of Zentsuji City stratified by the ACC/AHA blood pressure classification (1998–2023).

<table>
<thead>
<tr>
<th>SBP (mmHg)</th>
<th>ACC/AHA blood pressure classification</th>
<th>DBP (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal ≤120 or <80</td>
<td>Elevated 120–129 and <80</td>
</tr>
<tr>
<td>Time at risk</td>
<td>Failure</td>
<td>PY</td>
</tr>
<tr>
<td>Total</td>
<td>19 834.1</td>
<td>8 787.8</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.34</td>
<td>0.39</td>
</tr>
<tr>
<td>Maximum</td>
<td>24.4</td>
<td>24.5</td>
</tr>
<tr>
<td>Mean</td>
<td>5.14</td>
<td>2.84</td>
</tr>
<tr>
<td>Median</td>
<td>3.19</td>
<td>1.99</td>
</tr>
<tr>
<td>Failure/IR*</td>
<td>613</td>
<td>30.91</td>
</tr>
</tbody>
</table>

Variables

- **Sex**
 - Female: 377 (17.18), 28.59, 233 (6.52), 41.39, 340 (7.99), 42.54, 547 (9.81), 55.74, 1 497 (36.62), 40.88
 - Male: 236 (6.64), 35.50, 150 (5.18), 47.50, 236 (5.40), 43.70, 379 (7.02), 53.93, 1 001 (22.34), 45.02

- **Age category in years**
 - 34–59: 162 (9.50), 17.04, 61 (2.34), 25.97, 106 (4.36), 24.29, 119 (3.56), 33.35, 448 (9.18), 22.64
 - 60–69: 238 (6.31), 37.68, 127 (3.32), 38.34, 178 (4.68), 38.02, 277 (6.04), 45.83, 820 (20.35), 40.29
 - 70–100: 213 (4.01), 53.09, 195 (3.24), 62.36, 292 (4.34), 67.17, 530 (7.22), 73.32, 1 230 (28.71), 65.73

- **BMI category†**
 - Normal: 503.0 (17.18), 29.27, 280.0 (6.93), 40.40, 410.0 (9.78), 41.93, 613.0 (11.24), 54.50, 1 806.0 (45.13), 40.01
 - Overweight or obesity: 110.0 (2.65), 41.50, 103.0 (18.57), 55.44, 166.0 (3.61), 45.92, 313.0 (5.59), 55.96, 692.0 (13.71), 50.45

- **Self-reported drinking status**
 - Non drinker: 378.5 (12.12), 31.22, 260.9 (5.55), 46.98, 367.1 (8.01), 45.80, 577.6 (9.89), 58.35, 1 584.0 (35.58), 44.51
 - Drinker: 234.5 (7.71), 30.42, 121.1 (2.32), 37.75, 209.0 (5.37), 38.85, 348.5 (6.94), 50.19, 914.0 (23.68), 39.28

- **Self-reported smoking status**
 - Nonsmoker: 524.0 (16.59), 31.59, 340.1 (7.63), 44.54, 505.9 (11.41), 43.31, 816.6 (14.36), 56.76, 2 186.4 (50.02), 43.71
 - Smoker: 89.0 (3.24), 27.44, 43.0 (1.12), 37.26, 70.2 (1.97), 35.47, 109.5 (2.45), 44.57, 311.6 (8.83), 35.29

- **Dyslipidemia‡**
 - No: 290.4 (10.42), 27.86, 272.8 (4.16), 41.48, 225.3 (5.65), 39.81, 374.6 (6.69), 55.94, 1 063.1 (26.94), 39.45
 - Yes: 322.6 (9.41), 34.28, 210.3 (4.62), 45.49, 350.7 (7.73), 45.35, 551.4 (10.14), 54.36, 1 434.9 (31.90), 44.97

- **Residential district**
 - East: 132.3 (4.12), 32.04, 68.8 (1.89), 36.32, 126.7 (2.81), 44.92, 192.2 (3.26), 58.84, 519.9 (12.07), 42.94
 - Tatsukawa: 94.3 (3.56), 26.51, 62.0 (1.49), 41.62, 73.2 (2.18), 33.44, 153.4 (2.90), 52.80, 382.9 (10.13), 37.76
 - South: 83.9 (2.61), 32.05, 49.9 (1.12), 43.38, 79.5 (1.69), 48.48, 143.6 (2.38), 60.11, 356.8 (7.69), 45.93
 - Fudeoka: 62.8 (2.37), 26.39, 41.5 (1.03), 40.01, 80.7 (1.76), 45.70, 106.5 (2.06), 51.63, 291.5 (7.24), 40.23
 - Central: 68.6 (2.23), 30.71, 43.4 (0.97), 44.63, 68.0 (1.49), 45.47, 93.3 (1.91), 48.78, 273.3 (6.63), 41.32
 - Yoshiwara: 68.8 (1.94), 35.37, 50.5 (1.03), 48.70, 58.7 (1.23), 47.30, 100.4 (1.76), 55.90, 278.3 (6.01), 46.26
 - West: 68.0 (1.94), 34.94, 44.7 (7.16), 57.13, 61.7 (1.45), 42.30, 73.1 (1.40), 51.91, 247.5 (5.94), 44.23
 - Yogyita: 34.4 (1.02), 33.44, 22.3 (4.53), 49.25, 27.8 (7.88), 35.19, 63.5 (1.01), 57.67, 148.0 (3.37), 43.89

HbA1c values

| Mean (SD) | 5.48 (0.38) | 5.52 (0.39) | 5.47 (0.41) | 5.47 (0.41) | 5.48 (0.40) |

Abbreviations: ACC, American College of Cardiology; AHA, American Heart Association; BMI, body mass index; DBP, diastolic blood pressure; HbA1c, glycated hemoglobin; IR, incidence rate; PY, person-years; SBP, systolic blood pressure; SD, standard deviation.

Results for multiple imputed variables (overweight or obesity, self-reported drinking status, self-reported smoking status, dyslipidemia, and residential district) are averaged over 40 imputations.

*Incidence rate is reported per 1 000 person-years.

†Overweight or obesity is defined as a BMI ≥25 kg/m².

‡Dyslipidemia is defined as serum low-density lipoprotein cholesterol ≥140 mg/dL, serum high-density lipoprotein cholesterol <40 mg/dL, and/or serum triglycerides ≥150 mg/dL.
Table 2. New onset of chronic kidney disease according to the ACC/AHA blood pressure classification among 7,363 non-diabetic Japanese citizens of Zentsuji City (total time at risk: 58,856.5 person-years, 1998–2023).

<table>
<thead>
<tr>
<th>Variable</th>
<th>SBP (mmHg)</th>
<th>DBP (mmHg)</th>
<th>PY</th>
<th>Crude TR (95% CI)</th>
<th>Model 1 aTR (95% CI)</th>
<th>Model 2 aTR (95% CI)</th>
<th>Model 3 aTR (95% CI)</th>
<th>Model 4 aTR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC/AHA blood pressure classification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal (reference)</td>
<td><120</td>
<td>and</td>
<td><80</td>
<td>19,834.1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Elevated</td>
<td>120–129</td>
<td>and</td>
<td><80</td>
<td>8,787.8</td>
<td>0.97 (0.93–1.00)</td>
<td>0.91 (0.84–0.98)</td>
<td>0.91 (0.84–0.98)</td>
<td>0.91 (0.84–0.99)</td>
</tr>
<tr>
<td>Hypertension stage 1</td>
<td>130–139</td>
<td>or</td>
<td>80–89</td>
<td>13,393.1</td>
<td>0.96 (0.93–0.99)</td>
<td>0.94 (0.88–1.00)</td>
<td>0.94 (0.88–1.01)</td>
<td>0.95 (0.89–1.01)</td>
</tr>
<tr>
<td>Hypertension stage 2</td>
<td>≥140</td>
<td>or</td>
<td>≥90</td>
<td>16,841.6</td>
<td>0.93 (0.90–0.96)</td>
<td>0.87 (0.81–0.93)</td>
<td>0.88 (0.83–0.95)</td>
<td>0.89 (0.83–0.95)</td>
</tr>
</tbody>
</table>

Abbreviations: ACC, American College of Cardiology; AHA, American Heart Association; aTR, adjusted time ratio; BMI, body mass index; CI, confidence interval; DBP, diastolic blood pressure; HbA1c, glycated hemoglobin; PY, person-years; SBP, systolic blood pressure; TR, time ratio.

*Overweight or obesity is defined as a BMI ≥25 kg/m².
†Dyslipidemia is defined as serum low-density lipoprotein cholesterol ≥140 mg/dL, serum high-density lipoprotein cholesterol <40 mg/dL, and/or serum triglycerides ≥150 mg/dL.

Model 2: Adjusted for both variables of Model 1, overweight or obesity* (yes/no[reference]), self-reported drinking status (drinker/non- or seldom-drinker[reference]), and self-reported smoking status (smoker/non- or ex-smoker[reference]). Added a multiplicative term (ACC/AHA blood pressure classification × age category).

Model 3: Adjusted for all variables of Model 2, dyslipidemia† (yes/no[reference]), and HbA1c values. Added a multiplicative term (ACC/AHA blood pressure classification × age category).

Model 4: Adjusted for all variables of Model 3 and residential district (East[reference]/West/Central/South/Fudeoka/Tatsukawa/Yogita/Yoshiwara). Added a multiplicative term (ACC/AHA blood pressure classification × age category).