Molecular Analysis of Non-structural Protein 1 (NSP1) in Children Infected with Rotavirus in Babylon Province, Iraq: A Cross-Sectional Study

Mohammed Mohsen M. a, Zaytoon A Al-khafaji a, Layth Jasim Mohammed b* and Nima Yakhchalian c

a Department of Microbiology, Faculty of Medicine, Babylon University, College of Medicine, Iraq
b Department of Pharmacology, Faculty of Medicine, Babylon University, Hilla City, Babylon Governorate 51002, Iraq
c Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran

Corresponding authors: Layth Jasim Mohammed; Laith.bi@yahoo.com; med996.layth.jasim@uobabylon.edu.iq Tel & Fax: 00964-782-5557384.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract
Globally, a considerable number of infants and children younger than five are falling victim to diarrheal diseases predominantly caused by rotaviruses, which are non-enveloped, double-stranded RNA (dsRNA) viruses able to cause acute gastroenteritis and extragastrointestinal complications. Annually, human rotaviruses cause two million hospitalizations and over 500,000 deaths worldwide. Rotaviral replication, pathogenesis, and immune evasion are propagated by non-structural protein 1 (NSP1), encoded by segment five of their dsRNA genome. We examined 60 urine and stool samples from children aged 2-60 months admitted to an Obstetric and Children Hospital in Babylon over a 60-day time period with the diagnosis of acute group A rotavirus gastroenteritis. This study aimed to check the presence of NSP1 by immunochromatography assay and RT-qPCR. Immunochromatography assay detected NSP1 in 100% of urine and stool samples; however, RT-qPCR only detected it in 66.7% of urine and 50% of stool samples. RT-qPCR found 12 out of 30 urine and stool samples positive, accounting for 40% of participants. No significant correlations between RT-qPCR results and sociodemographic factors were found. Results found 73.3% of acute gastroenteritis cases were in children under two. Additionally, the urinary detection of NSP1 suggests that rotaviruses may cause extra-gastrointestinal infections, e.g., systemic infection or viremia.

Keywords: Extra-intestinal; NSP1; RT-qPCR; Rotavirus; Viremia

1. Introduction
Diarrheal disease is still recognized as the major cause of mortality and morbidity among the children less than 5 years of age globally (Vos et al. 2020). Prior scientific discoveries dating back earlier than 1973 had already found rotavirus causing diarrheal disease in animals, including mice (Adams and Kraft 1963), vervet monkeys (Cercopithecus aethiops pygerythrus) (Malherbe and Ulrich 1963), and cattle (Mebus et al. 1969). After these initial discoveries, rotavirus was later detected infecting members of different mammalian taxa such as the order Chiroptera (Greenberg and Estes 2009; He et al. 2013). In addition, rotaviruses have also been reported to infect avian species (Otto et al. 2012; Kindler et al. 2013). Since 1973, rotavirus has been found responsible for causing life-threatening, acute dehydrating gastroenteritis across the world, not only in infants and young children (Bishop et al. 1973; Flewett et al. 1973) who are particularly susceptible to infection, but also in older individuals in whom the infection is typically mild or even asymptomatic owing to the exposure-
induced immunity developed over time in response to repeated infections (Parashar et al. 1998). Following all aforementioned discoveries, nowadays rotaviruses are recognized as the most predominant diarrheal pathogens (Parashar et al. 1998), and rotavirus-associated diarrhea, also referred to as rotaviral diarrhea, is identified as the primary cause of viral diarrhea in the world (Chen et al. 2022).

Human rotaviruses are the major etiologic agents of infantile acute gastroenteritis, leading to roughly two million hospitalizations and more than 500,000 deaths each year worldwide (Mousavi-Nasab et al. 2020). Presently, human rotaviruses account for approximately 1,600 pediatric deaths per day globally (Angel et al. 2007). Even though much of the disease burden is concentrated in developing countries, in particular African and Asian ones (Troeger et al. 2018), due to the present socioeconomic issues (Angel et al. 2007); developed countries also face considerable impacts (Malek et al. 2006). As a case in point, it has been reported that rotaviruses are responsible for nearly 4-5% of all pediatric hospitalizations in the United States; further estimates indicate that 1 out of 67 to 1 out of 85 children are admitted to hospitals due to rotavirus-associated gastroenteritis by their fifth year of age (Charles et al. 2006). Although rotavirus has conventionally been viewed as a pathogen primarily infecting intestinal mature enterocytes, leading to the destruction of absorptive enterocytes and consequent diarrhea, this interpretation has been called into question in the light of recent evidence gathered from both patients and animal models documenting extra-intestinal rotavirus-associated pathologic impacts.

Out of the 10 species of rotaviruses (A-J) identified until now, only four of them (A, B, C and H) have been observed infecting humans (Matthijnssens et al. 2008a). Once the patient has been infected with rotavirus and the incubation period of 1-3 days has elapsed, varying clinical presentations start to appear (Bernstein 2009), including fever, tachycardia, diminished urination, abdominal cramp, and complications of dehydration (Hoxha et al. 2015).

A multitude of pathologic circumstances in humans have been associated with rotavirus infection, including hepatobiliary disorders such as chronic and acute hepatitis and rotavirus-induced cholestasis (Ramig 2007); neurological deficits and neuropathologic manifestations, e.g. lesions in corpus callosum (Laizane et al. 2019), benign convulsions (Takanashi et al. 2010; Laizane et al. 2019), cerebellitis (Takanashi et al. 2010), encephalitis (Ushijima et al. 1986), encephalopathy (Maureen et al. 2001; Fukuda et al. 2009), and meningitis (WONG et al. 1984); type 1 diabetes mellitus (T1DM);
respiratory disorders (Goldwater et al. 1979) such as pneumonitis (Grech et al. 2001), cardiovascular diseases, e.g. hypertrophic cardiomyopathy and myocarditis (Grech et al. 2001; Cioc and Nuovo 2002), renal failure and thrombocytopenia (Ramig 2007).

Taxonomically, rotaviruses belong to the Rotavirus genus which falls within the Reoviridae family (Brunet et al. 2000). Rotavirus genus comprises at least seven serogroups, consisting of Rotavirus A to G, differentiated on the basis of the electrophoretic mobility of their genomic segments and distinct antigenic properties (Bitton 2002; Bonkoungou et al. 2010). Out of these seven serogroups, the only Groups able to infect humans are Groups A, B, and C, out of which Group G is responsible for the common, life-threatening gastroenteritis among children in the world (Richardson et al. 1998; Kang et al. 2004a). Rotaviruses are non-enveloped, icosahedral viruses, characteristically consisting of an 11-segment dsRNA genome with nearly 18,500 base pairs (Trask et al. 2012; Dian et al. 2021).

Rotavirus particles are complex and of large size (1000 Å), comprising three concentric protein capsid layers surrounding their genome (Crawford et al. 2017). The dsRNA in rotavirus contains instructions for encoding six structural proteins that make up viral proteins (VPs), also known as viral particles, including VP1, VP2, VP3, VP4, VP6, and VP7, and also six nonstructural proteins (NSPs) which are known as NSP1, NSP2, NSP3, NSP4, NSP5, and NSP6 (Matthijnssens et al. 2008b; Trask et al. 2012).

VPs are the chief regulators of host specificity, producing viral transcripts, cell entry, and generation of immune response (Crawford et al. 2017). With regard to NSPs, these are synthesized inside the infected host cells, and among these proteins, NSP1, NSP2, NSP3, NSP5, and NSP6 play a significant role in the replication of viral genome, and NSP4 regulates morphogenesis (Matthijnssens et al. 2008b). NSPs also serve as antagonists to the host’s innate immunity (Crawford et al. 2017). Genomic segments in rotavirus are monocistronic, exhibiting a 1:1 correspondence between each of the segments and every single protein encoded, and the only exception is gene 11 which is bicistronic, encoding both proteins NSP6 and NSP5 (Matthijnssens et al. 2008b).

From a morphological standpoint, electron microscopy of the virion particle in rotaviruses exhibits a morphology closely resembling that of a wheel; therefore, they were given the name rotavirus, where the linguistic morpheme “rota” refers to a wheel-like shape in Latin (Cunliffe et al. 2014). They possess an extremely stable triple-layered particle (TLP) measuring nearly 85
nanometers in diameter (Long and McDonald 2017), coated with short spikes protruding outward and helping the virus attach to the target receptors on the surface of host cells. In general, the structure of rotavirus virion includes an inner layer that primarily consists of VP2 enclosing an RNA-dependent RNA polymerase (RdRp) called VP1; the intermediate layer is composed of VP6 trimers, serving as the molecular characteristic responsible for the identification of rotavirus groups, subgroups, and species; and an outer virion layer (Crawford et al. 2017). The outer layer which is able to trigger immune reponse (Li et al. 2009; Settembre et al. 2011; Papa et al. 2021) is mainly composed of capsid glycoprotein VP7 (Estes and Kapikian 2007) and the protease-sensitive hemagglutinin spike antigen VP4 (Crawford et al. 2001) broken into VP5 and VP8 following proteolysis (Jiang et al. 2023). In rotaviruses, the virion core consists of VP2, VP1, VP3, and the dsRNA genome (Papa et al. 2021). With regard to rotavirus serotypes, the classification is performed on the basis of spike protein VP4, the serotype which is referred to as P-type, and VP7, the serotype known as G-type, representing protease-sensitive VP4 and glycoprotein VP7, respectively (Cunliffe et al. 2014).

With respect to the diagnosis of rotavirus infection, clinical examinations cannot distinguish rotavirus-induced diarrheal presentations from gastroenteritis caused by other infectious pathogens infecting gastrointestinal tract, such as Salmonella spp, Escherichia coli, astroviruses, and enteric adenoviruses (Crawford et al. 2017). As regards the laboratory diagnosis of rotavirus infection, a wide variety of techniques have been utilized so far, including ICT (Vontas et al. 2019) and enzyme-linked immunosorbent assay (ELISA) (Hasegawa et al. 2017) for the detection of rotavirus antigen, polyacrylamide gel electrophoresis for the detection of rotavirus dsRNA genome (Herring et al. 1982), electron microscopy (Roingead et al. 2019), and RT-PCR assays due to higher sensitivity and the possibility for genotyping the virus (Pickering et al. 1988; Kang et al. 2004b).

NSP1 is the protein encoded in segment five of the ds-RNA genome in rotaviruses and has been found to be responsible for antagonizing host IFN signaling (Hou et al. 2021). Once NSP1 has been expressed by rotavirus-infected cells, it propagates proteasome-mediated degradation of IFN regulatory factor 3 (IRF3) (Graff et al. 2002; Barro and Patton 2005) and also promotes the degradation of other IFN regulatory factors (IRFs), specifically IFN regulatory factor 9 (IRF9), IFN regulatory factor 7 (IRF7), and IFN regulatory factor 5 (IRF5) (Arnold et al. 2013). IRFs are the transcription factors necessary for the induction of IFN, and the promotion of proteosomal
degradation of them is one of the major strategies adopted by rotaviruses to evade immune response (Barro and Patton 2005).

Since rotavirus-encoded NSP1 is considered a specifically significant protein in pathogenesis and replication of rotaviruses, this study placed its concentration on the percentage of rotavirus-infected patients who tested positive for the NSP1 protein, addressing the question of whether the detection of NSP1 protein in their urine and stool samples can be of any diagnostic value.

2. Materials and Methods

2.1. Sample Collection

A collective of 60 samples, comprising both stool and urine, were obtained from rotavirus-infected children aged 2-60 months who were admitted to an Obstetric and Children Hospital in Babylon. All samples were collected over a 60-day time period. The amount of samples collected from each patient exhibited variation, with urine samples ranging from 1 to 1.5 milliliters, and stool samples ranging from 2 to 20 grams. The samples were collected using disposable containers and were subsequently stored at temperatures of -20°C and -80°C for further analytic tests, including Immunochromatographic test (ICT) to identify Rotavirus antigens in both stool and urine and RT-qPCR to detect the Rotavirus NSP1 in both urine and stool.

2.2. Diagnostic Methods for the Detection of Rotavirus

2.2.1. Quick profile™ Adeno/Rotavirus Combo Test

The Quick profile™ Adeno/Rotavirus Combo test was used as a point-of-care, qualitative immunochromatographic assay, which is commercially available and has widely been employed for the detection of viral enteropathogens, including rotavirus and adenovirus, in human stool samples (Weitzel et al. 2007; Artiran et al. 2017). The immunochromatography assay has a number of advantages since it is neither dependent on trained laboratory technicians nor requires specific equipment (Jiang et al. 2018). However, it lacks high sensitivity (Jiang et al. 2018), which made us use RT-qPCR as another complementary molecular detection method.

2.2.2. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)

RT-qPCR was employed to detect the NSP1 gene in segment five of rotaviral ds-RNA genome. RT-qPCR has been extensively used for the diagnosis of group A rotaviruses (Ward et al. 2013; Anaya-
Molina et al. 2018) due to high sensitivity, possibility for the quantitative analysis of viral load, low risk of cross-contamination, and reduced chances of false-positive results.

2.3. Ethical Approval and Consent

Prior to sample collection, all participants engaged in this study were provided with detailed information, and verbal consent was obtained from each of them. This research was given ethical approval under the reference number BMS/0231/016, on behalf of the Ethics Committee at the College of Medicine, University of Babylon, Iraq.

2.4. Statistical Analysis

Statistical analysis was conducted using SPSS version 23. Categorical information was presented using frequencies and percentages, whereas continuous variables were presented using means and standard deviations (SD). The relationship between categorical variables was assessed using Fisher's exact test and Pearson's chi-square (X²). A p-value of less than 0.05 was considered to indicate statistical significance.

3. Results

According to ICT results for identification of human rotavirus in urine and stool samples (Figure 1) at a hospital for maternity and children in Babylon, all 30 samples tested positive, indicating a 100% positivity rate (Table 1).

Table 1. The Categorization of Study Participants Based on ICT Results (N = 30).

<table>
<thead>
<tr>
<th>Clinical Samples</th>
<th>Total Samples</th>
<th>ICT Positive Results No. (%)</th>
<th>ICT Negative Results No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stool</td>
<td>30</td>
<td>30 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Urine</td>
<td>30</td>
<td>30 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>60 (100%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

Figure 1. Identification of Human Rotavirus by the ICT in Urine and Stool Samples.
3.1. The Distribution of Study Participants According to RT-qPCR Results (Urine and Stool) Samples

Figures 2 and 3 illustrate the distribution of participants on the basis of RT-qPCR results for urine and stool samples, encompassing both negative and positive cases. According to RT-qPCR analysis for NSP1 detection, 66.7% of the study participants (N = 20) tested positive in urine samples, whereas 50.0% of the study participants (N = 15) tested positive in stool samples.

![Figure 2. Distribution of Study Participants Based on RT-qPCR Results for Urine Samples.](image1)

![Figure 3. Distribution of Study Participants Based on RT-qPCR Results for Stool Samples.](image2)

3.2. The Association between PCR Results and Sociodemographic Variables

Tables 2 and 3 illustrate the relationship between RT-qPCR results for urine and stool samples, respectively, and sociodemographic variables (e.g., age and gender), including both positive and negative cases. The analysis revealed that there was no significant association between RT-qPCR results and sociodemographic variables.

<table>
<thead>
<tr>
<th>Sociodemographic characteristics</th>
<th>PCR (Urine)</th>
<th>Total</th>
<th>P-value</th>
<th>Odds ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 6 months</td>
<td>17 (85.0)</td>
<td>7 (70.0)</td>
<td>24 (80.0)</td>
<td>0.372</td>
<td>2.429</td>
</tr>
<tr>
<td>< 6 months</td>
<td>3 (15.0)</td>
<td>3 (30.0)</td>
<td>6 (20.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20 (100.0)</td>
<td>10 (100.0)</td>
<td>30 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>6 (30.0)</td>
<td>2 (20.0)</td>
<td>8 (26.7)</td>
<td>0.682</td>
<td>1.714</td>
</tr>
<tr>
<td>Male</td>
<td>14 (70.0)</td>
<td>8 (80.0)</td>
<td>22 (73.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20 (100.0)</td>
<td>10 (100.0)</td>
<td>30 (100.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P value ≤ 0.05 was significant (Fisher's exact test).
Table 3. Association between PCR Results from Stool Samples and Sociodemographic Variables.

<table>
<thead>
<tr>
<th>Socio-demographic characteristics</th>
<th>PCR (stool)</th>
<th>Total</th>
<th>P-value</th>
<th>Odds ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (months)</td>
<td></td>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td>0.167-5.985</td>
</tr>
<tr>
<td>≥ 6 months</td>
<td>12 (80.0)</td>
<td>12 (80.0)</td>
<td>24 (80.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6 months</td>
<td>3 (20.0)</td>
<td>3 (20.0)</td>
<td>6 (20.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15 (100.0)</td>
<td>15 (100.0)</td>
<td>30 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td>0.682</td>
<td>2.00</td>
<td>0.381-10.511</td>
</tr>
<tr>
<td>Female</td>
<td>5 (33.3)</td>
<td>3 (20.0)</td>
<td>8 (26.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>10 (66.7)</td>
<td>12 (80.0)</td>
<td>22 (73.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15 (100.0)</td>
<td>15 (100.0)</td>
<td>30 (100.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* P value ≤ 0.05 was significant (Fisher’s exact test).

3.3. Rotavirus Detection by RT-qPCR

In order for the ICT results to be evaluated, RT-qPCR was carried out to detect the NSP1 gene in segment five of rotavirus ds-RNA.

According to the RT-qPCR results shown in Table 4, out of the 30 rotavirus-infected patients from Babylon Province, 15 stool samples (50%) and 20 urine samples (66.66%) tested positive for rotavirus NSP1.

Table 4. Detection of Human Rotavirus in Stool and Urine Samples using RT-qPCR.

<table>
<thead>
<tr>
<th>Clinical samples</th>
<th>Total samples</th>
<th>RT-qPCR (NSP1) Positive (%)</th>
<th>RT-qPCR (NSP1) Negative (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stool</td>
<td>30</td>
<td>15 (50%)</td>
<td>15 (50%)</td>
</tr>
<tr>
<td>Urine</td>
<td>30</td>
<td>20 (66.66%)</td>
<td>10 (33.33%)</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>35 (58.33%)</td>
<td>25 (41.66%)</td>
</tr>
</tbody>
</table>

3.4. The Runs of Real-Time PCR

In the first run, a total of 29 samples from both urine and stool, exhibited positive results, as depicted in Figure 4.
Turning to the second run, six samples were detected and exhibited positive results (Figure 5).

3.5. RT-qPCR Efficiency

Figures 6 and 7 show the RT-qPCR standard curve and amplification plot of positive samples in the standard curve for the rotavirus NSP1 gene, respectively. RT-qPCR exhibited an efficiency of 103%.

Figure 4. The First Run of Real-Time PCR for Rotavirus.

Figure 5. The Second Run of Real-Time PCR for Rotavirus.

Figure 6. Real-Time PCR Standard Curve for the Human Rotavirus NSP1 Gene.

Figure 7. Real-Time PCR Amplification Plot of Positive Samples in the Standard Curve for
4. Discussion

Diarrheal diseases are globally recognized to be a major cause of morbidity and mortality, specifically in developing countries where they account for 15–30% of deaths among children under the age of five (Karampatsas et al. 2018). Prior to the introduction of vaccines against rotavirus, they accounted for around 37% of diarrhea-associated deaths, leading to 450,000 fatalities worldwide, and also accounted for up to 50% of diarrhea-associated hospitalizations in developed countries (Nugent and Stewart 2023).

In the current research, the children under the age of five who presented with acute gastroenteritis were subjected to the analysis of their urine and stool samples in order for the presence of the Rotavirus A antigen to be detected.

The research conducted in Basrah city, Iraq by (Yaqoob et al. 2016), showed through the utilization of ICT that out of 300 children admitted to hospitals with gastroenteritis, 93 of them (31%) had been infected with rotavirus. This diagnostic technique has been widely employed in studies due to its simplicity, straightforward interpretation, and minimal equipment required.

Numerous studies (Ahmed et al. 2006; Khoury et al. 2011) carried out in Iraq have demonstrated a correlation between rotavirus infection and diarrhea in children below the age of five, confirming the findings of multiple studies (Ahmad Abdul AL-Kader et al. 2016; Fenjan and Jarullah 2019).

For the first time in Iraq, this research sets out to introduce a novel diagnostic approach to detecting rotavirus in urine samples. The detection of rotavirus antigen in urine proposes that rotavirus antigen can be excreted through urine, a finding that fully occurs with other reports (Vollet III et al. 1981; Zheng et al. 1991); however, urine is not believed to serve as a viral transmission route (Anderson and Weber 2004). We still stand in need of further research to address the inquiry of whether PH and any other chemical compounds found in urine can inactivate rotavirus infectivity or virus excreted in urine can still retain its infectivity under specific circumstances (Crawford et al. 2006).

Urine samples were collected from 30 patients with acute gastroenteritis, and RT-qPCR results tested positive for rotavirus antigen in urine samples of 20 out of 30 patients. Among 12 patients whose urine samples tested positive for rotavirus antigen, the highest levels of antigen had been detected, and this finding was consistent with those of their stool samples. The detection of rotavirus antigen in urine suggests that it is likely for the virus to be transmitted through any routes except the
typical fecal-oral way. Other studies, for example (Yokoyama et al. 2011) show that rotavirus is able to evade gastrointestinal tract and cause extra-gastrointestinal pathologic involvement.

The detection of rotavirus in 20 out of 30 urine samples obtained from children with rotaviral diarrhea indicates that antigenemia and potentially viremia can occur as a result of rotavirus infection (Crawford et al. 2006), as indicated by other findings (Blutt et al. 2003; Ramig 2004). According to a study (Li and Wang 2003), rotavirus antigen and/or RNA have been detected in multiple organs, including the central nervous system, spleen, heart, kidney, testes, and bladder, of children who have died as a result of rotavirus infection. This finding is in agreement with other postmortem examinations (Lynch et al. 2003) that detected rotavirus RNA in organs outside the gastrointestinal tract, including heart, lymphoid tissues, bladder, kidney, and testes in children who died of rotavirus infection (Lynch et al. 2003). As per another study (Blutt et al. 2003), the presence of rotavirus both antigen and RNA, in sera collected from rotavirus-infected animals has also been confirmed, which suggests the possibility that rotavirus can cause systemic infection.

These reports support the hypothesis that rotavirus can infect organs outside the gastrointestinal tract; nevertheless, the precise sites and occurrence rate of extraintestinal pathologic involvements resulting from rotavirus infection, as well as whether rotavirus can be the etiologic agent of these pathologic involvements, still require further research. In line with the aforementioned studies, there exist a variety of animal studies that have detected rotavirus antigen or RNA in extraintestinal tissues; for instance, some studies (Kraft 1958; Uhnoo et al. 1990) reported the detection of rotavirus antigen and infectious virus in the serum, nasal secretions, lungs, hepatic tissue, renal tissue, and brain of mice.

In this research, the dynamics of viremia and the extraintestinal spread of rotavirus, as well as the cell and tissue tropism of rotaviruses, were examined. In addition, the study intended to determine if rotavirus cause extra intestinal infection because the presence of rotavirus in urine indicate that the virus may escape from gastrointestinal tract and may cause viremia. This was performed subsequent to the detection of rotavirus antigenemia in children as well as in the tissues of both rotavirus-infected children and adults.

In order to confirm the presence of rotavirus infection as a urinary tract infection, urine samples were analyzed in patients with rotavirus-induced gastroenteritis. The findings were in full agreement with those reported by (Yokoyama et al. 2011), which showed that the presence of rotavirus in urine
can infect urinary sediment cells in immunocompetent children with rotavirus gastroenteritis.

5. Conclusion

Rotavirus is still a public health concern and continues to expose the lives of nearly one-third of children in Babylon Province at risk. Children younger than two years of age are more likely to be infected with rotavirus, especially males. There was a correlation between the results of RT-qPCR assay and those of rapid test, but RT-qPCR was found to show a higher diagnostic sensitivity for the detection of rotavirus antigen compared to the rapid test. The analysis of rotavirus infections revealed that an equal number of cases occurred in the autumn and winter seasons. But the prevalence was higher among younger children in Babylon Province. The detection of rotavirus antigen in urine samples from diarrheal children is reported to be a useful diagnostic method and is worth attention for further laboratory applications.

6. Acknowledgments

The authors extend the sincerest appreciation to Minister Naim Abdel Yasser Al-Aboudi from the Ministry of Higher Education and Scientific Research and to Babylon University, for their valuable contributions that remarkably increased the quality of current research paper. The minister’s support and constructive feedback have played a significant role in conducting and improving this research.

7. Conflict of Interest

The authors declare no conflict of interest.
References

Cioc AM, Nuovo GJ (2002) Histologic and in situ viral findings in the myocardium in cases of sudden,
unexpected death. Modern pathology 15:914-922

Goldwater PN, Chrystie IL, Banatvala J (1979) Rotaviruses and the respiratory tract. British medical journal 2:1551

Jiang L, Tang A, Song L, Tong Y, Fan H (2023) Advances in the development of antivirals for rotavirus
In: Proceedings, annual meeting of the United States Animal Health Association, pp 97-99

Otto PH et al. (2012) Detection of avian rotaviruses of groups A, D, F and G in diseased chickens and turkeys from Europe and Bangladesh. Veterinary Microbiology 156:8-15

qPCR assays for the detection of human and bovine group A rotaviruses and characterization by sequences analysis of genes encoding VP4 and VP7 capsid proteins. Journal of Applied Microbiology 114:1435-1448 doi: https://doi.org/10.1111/jam.12165

