Effectiveness of Implementation Interventions in Musculoskeletal Healthcare: A Systematic Review

Authors

Peter Bech Hansen¹, Email: gp1v@kk.dk

Mikkel Bahnsen¹, Email: mikkeleb@hotmail.com

Mikkel Sloth Nørgaard¹, Email: Msn@RygCenterViborg.dk

Jette Frost Jepsen²: jfj@rn.dk

Michael Skovdal Rathleff¹²: misr@hst.aau.dk

Kristian Damgaard Lyng¹²: klyng@dcn.aau.dk

Affiliations

1. Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark

2. Medical Library, Aalborg University Hospital, Denmark

3. Center for General Practice at Aalborg University, Department of Clinical Medicine, Aalborg University, Denmark

No large language models have been used to write this manuscript.

Word Count: 4092; Number of Pages: 31; Number of tables: 1; Number of figures: 2; Number of Additional files: 6

Corresponding Author
Kristian Damgaard Lyng, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfs Vej 249, 9260 Gistrup, Denmark. Telephone: +45 30669439, E-mail: klyng@dcm.aau.dk

Abstract

Background: Implementing new knowledge into clinical practice is a challenge, but nonetheless crucial to improve our healthcare system related to the management of musculoskeletal pain. This systematic review aimed to assess the effectiveness of implementation interventions within musculoskeletal healthcare.

Methods: We searched Medline, Embase, Cochrane Central Register of Controlled Trials, and Scopus. Any type of randomised controlled trials investigating implementation strategies or interventions in relation to musculoskeletal pain conditions were included. Risk of bias were assessed using the Cochrane Risk of Bias 2 tool. Data analysis was done using frameworks from Powell et al. 2015, and Waltz et al. 2015 and outcomes were identified by Thompson et al. 2022 or self-made outcome domains were established.

Results: The literature search yielded 14,265 original studies, of which 38 studies from 31 trials, with 13,203 participating healthcare professionals and 30,320 participating patients were included in the final synthesis. Nineteen studies had a high risk of bias, sixteen had a moderate risk of bias, and three had a low risk of bias. Twenty distinct implementation interventions were identified. A significant heterogeneity in the utilised outcome measurements was observed, thereby rendering a meta-analysis infeasible; consequently, all outcomes were classified into six outcome domains for healthcare professionals, seven for patients and one for cost-effectiveness.

Conclusions: Our findings suggest that some implementation interventions may have a tendency towards a statistically significant positive effect in favour of the intervention group on the outcome domain “Adherence to the implemented interventions” for healthcare professionals in the included studies. The remaining outcome domains yielded varying results; therefore, these findings should be interpreted with caution. Future high-quality trials with clear reporting and rationale of implementation strategies and interventions utilising standardised nomenclature are needed to further advance our understanding of this area.
Trial registration: Open Science Framework, DOI: [10.17605/OSF.IO/SRMP2](https://osf.io/srmp2)

Keywords: Implementation strategy, Implementation intervention, Musculoskeletal pain, Systematic Review

Background

Musculoskeletal pain conditions are a significant burden on societies and healthcare systems worldwide (1,2). In 2019, musculoskeletal conditions affected 1.71 billion people worldwide, and the prevalence is expected to rise owing to aging populations and changing lifestyles (1,3). In addition, the economic and societal impact is severe due to lost productivity, including sick days, lost labour, early retirement and increased healthcare utilisation, and healthcare systems globally spend a significant proportion of their assigned resources on treating musculoskeletal conditions (4–6). Currently, most healthcare services in the western world face a substantial challenge: unnecessary testing and treatment seem to be abundant and lead to wasted economic resources for both patients and the healthcare system (7–12). As patients with musculoskeletal conditions often seek care from healthcare professionals (HCPs), most countries’ health authorities have issued a series of evidence-based guidelines of best practice for the most common conditions; however, adherence to these guidelines seems to be poor (13). In addition, several global and local initiatives have been launched in an effort to reduce unnecessary testing and treatment (14–17). The literature acknowledges the difficulty in implementing evidence-based guidelines (18). Some studies have demonstrated a significant delay between the development of new knowledge and its uptake in clinical practice (19,20). Therefore, the study of implementation science is crucial for developing effective and efficient implementation strategies to ensure that HCPs across various sectors incorporate this knowledge into musculoskeletal healthcare. An implementation strategy consists of a bundle of two or more implementation interventions, which are defined as “a method or technique designed to enhance adoption of a clinical intervention” (21). Several models and
frameworks for implementation have been suggested in the literature that can guide the selection of the most appropriate implementation strategy depending on the task at hand (22,23). However, it remains unclear which implementation strategies and interventions are the most effective in various musculoskeletal healthcare settings. Therefore, the aim of this systematic review was to assess which implementation interventions are effective within musculoskeletal healthcare.

Methods

Protocol and Registration

This study protocol were preregistered in Open Science Framework (DOI: 10.17605/OSF.IO/SRMP2). The reporting of the study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines See the completed PRISMA checklist in Additional file 1.

Deviation from Protocol and Preregistration

Several deviations from the protocol occurred due to various reasons. Firstly, our pre-registration stated that the extracted outcomes would be divided into primary- and secondary outcomes, however, for the sake of simplicity, we categorised outcomes into HCP-related, patient-related, and economic-related outcomes and only extracted primary outcomes for each included study. Secondly, we stated that we intended to have two authors extract data independently, but to ensure feasibility, timeliness, and rigour, one author extracted data which were validated by another author.

Study Inclusion and Exclusion Criteria

Only randomised control trials (RCTs) were included for this study. Studies were included if they were randomised by individuals, clusters or used a stepped-wedge design. Furthermore, all studies
needed to be published in English, include at least one implementation strategy or intervention in relation to musculoskeletal healthcare (defined as a method or technique used to enhance the adoption, implementation, and sustainability of a clinical program or practice), include either authorised healthcare practitioners or adults aged ≥18 years diagnosed with a musculoskeletal pain condition (21). Studies describing an implementation strategy or intervention but only evaluating the different treatments and not different implementation strategies or interventions of the same treatment were excluded. Studies that were non-experimental, involved animals, patients with serious pathology or patient populations below the age of 18 were excluded. No limitation on publication date and time periods were applied.

Searches

The databases Medline via PubMed, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), and Scopus were searched on the 22.02.2023 using the terms, "musculoskeletal Conditions”, “Implementation Strategies”, and “RCT”. Furthermore, relevant search terms were identified through manual searches, and standardised keywords and Medical Subject Headings (MeSH) were applied to ensure specificity for each individual database. An experienced librarian (JFJ) assisted in building the comprehensive literature search. Additionally, to ensure comprehensive coverage of the literature, the reference lists of eligible studies were reviewed to identify any potentially eligible studies using a forward citation search. See the full literature search in Additional file 2.

Study Selection

Covidence Software (Covidence Systematic Review Software, Veritas Health Innovation, Melbourne, Australia) was used in the selection process, and duplicates were removed from the
initial search results. The selection process, which was performed by four independent authors (PBH, MSN, MEB and KDL), was divided into two phases. The first phase involved screening of titles and abstracts, and the second phase involved full-text screening. The screening was carried out by two independent reviewing authors for each study in both phases (PBH, MSN, MEB or KDL). In case of conflicts between the independent authors or insufficient information from the title and abstract, the study was moved to full-text screening. In the second phase, the full text was examined by two authors to determine whether it met the eligibility criteria (PBH, MSN or MEB) (PBH, MSN or MEB). Conflicts in the full-text phase were resolved through a consensus discussion process involving three authors (PBH, MSN and MEB) and senior authors (MSR and KDL).

Data Extraction

A purpose-built Excel sheet was used for data extraction. We collected and extracted data on study characteristics (study title, author, year, study design, country, clinical setting, sample size of HCPs and patients, and implementation strategy for intervention and control groups), and only findings of primary outcomes for HCPs, patients, and cost-effectiveness for each individual study. Three reviewers (PBH, MSN and MEB) performed data extraction from the included studies. For each study, there was a primary data extractor and one who checked for accuracy and completeness.

Study Quality Assessment

To assess the risk of bias in individual studies, the Cochrane Risk of Bias tool 2 (A revised Cochrane risk of bias tool for randomised trials (RoB 2) was used (24). If the included studies were cluster randomised controlled trials, the RoB 2 tool for cluster-randomised trials was applied. Both tools assessed the risk of bias across five different domains, where RoB 2 for cluster-randomised trials divided the first domain into parts A and B. Each study was classified based on RoB 2 into...
three categories: high risk of bias, some concerns of risk of bias, or low risk of bias. Two independent reviewers (PBH, MSN or MEB) assessed the risk of bias, and conflicts were resolved through a consensus discussion process involving three authors (PBH, MSN and MEB) and senior authors (MSR and KDL).

Data Synthesis and Presentation

Findings were presented descriptively. Two authors (PBH, MSN, MEB) independently categorised and mapped the implementation strategies in each study into implementation interventions and clusters using the nomenclature provided by Powell et al. 2015 and Waltz et al. 2015 (25,26). Discrepancies were resolved through a consensus discussion process involving three authors (PBH, MSN and MEB) while senior authors (MSR and KDL) were available if consensus could not be reached. The primary outcomes from each included study were condensed into a set of outcome domains through discussions. Three authors (PBH, MSN and MEB) mapped patient outcome domains using a core outcome set by Thompson et al. 2022 (27). Three authors (PBH, MSN and MEB) pragmatically mapped and formulated HCP outcome domains and outcomes of cost-effectiveness without using a core outcome set because none existed. However, inspiration for the HCP outcome domains was gathered from Proctor et al. 2011 (28). The process of creating the HCP outcome domains and the definitions of all outcome domains are presented in Additional file 3. The findings of the primary outcomes in each study were used to create a tabular view of the effectiveness of different implementation interventions. All results concerning the primary outcomes in the included studies were divided into four categories of significance using probability values (p-values) (29,30). These four categories were defined as:

1. “Statistically significant positive effect in favour of intervention group” (S).
2. “No statistically significant positive effect in favour of intervention group” (NS).
3. “Mixed findings of statistically significant effect” (MS) for studies showing both S and NS classified within the same outcome domain.

4. “Unknown statistically significant effect” (US) for those who did not produce a p-value and showcased the results as descriptive statistics.

A statistically significant positive effect in favour of the intervention group was defined as a p-value of \(\leq 0.05 \). However, due to some studies not presenting p-values, we interpreted odds ratios with 95% confidence intervals not including “1” and cost-effectiveness with 95% confidence intervals not including “0” as statistically significant.

Results

Study Selection

The systematic literature search resulted in 14,255 original results. Ten studies, not captured by the systematic literature search but found through manual searches, were also included (31–40). 14,196 studies were excluded during screening of titles and abstracts and 31 studies were excluded during screening of full texts. After screening 38 studies from 31 trials remained for final inclusion (31–68) (*See Figure 1 for PRISMA Flow chart*).

Study Characteristics
The 38 included studies were published between 2001 and 2022. Of the 38 studies, six used a standard RCT design and 32 used a cluster RCT design, of which three utilised a stepped-wedge design. A full description of study characteristics including author, year, study design, sample size, clinical setting, country of origin, implementation strategies and interventions, primary outcomes and findings of the 38 included studies are summarised in Table 1. Additional file 4 presents Table 1 in further detail including categorization of implementation interventions. Twenty-nine studies focused on measuring outcomes related to HCPs, ten studies on outcomes related to patients, and four studies on outcomes related to cost-effectiveness. A total of 13,203 HCPs were recruited in the 38 included studies. Twenty-one studies recruited general practitioners or physicians including family physicians, emergency physicians or primary care physicians (n=9558), 19 studies recruited physiotherapists (n=2194), one study involved osteopaths (n=598), three studies involved chiropractors (n=584), three studies involved nurses, rheumatologists, and spinal surgeons, respectively, but failed to report on the number of participants. Overall, five studies failed to report the number of recruited HCPs. A total of 30,320 patients were recruited in the 38 included studies. Thirty studies involved patients with LBP (n=26,774), four studies involved patients with neck pain (n=1460), five and four studies involved patients with knee pain and patients with hip pain, respectively, but failed to report the number of participants. Overall, 11 studies did not include patients or failed to report the number of recruited patients. Twelve of the included studies used data from the same RCT as other studies (35,41–44,52,54–56,59,65,66).

Effect of Implementation Interventions

INSERT TABLE 1 HERE - LEGEND: Study Characteristics of all Included Studies
The categorization and mapping of the included studies, by implementation clusters and interventions combined with the outcome domains of primary outcomes for each implementation intervention, are presented in Figure 2. Additional file 5 presents the synthesis of the categorised included studies into implementation interventions and outcome domains with the corresponding references.

The most common intervention utilised in the literature is "Distribute educational materials” and 30 of the included studies utilised this implementation intervention. Among them, six out of ten studies assessing the outcome domain "Adherence to implemented intervention” found a statistically significant positive effect in favour of the intervention group. For the outcome domains "Referral to imaging”, "Referral to secondary care” and "Function” four out of ten studies, two out of six studies and one out of six studies found a statistically significant positive effect in favour of the intervention group, respectively.

Twenty-nine of the included studies utilised the implementation intervention "Conduct educational meetings”. Among them, seven out of nine studies assessing the outcome domain ”Adherence to implemented intervention” found a statistically significant positive effect in favour of the intervention group. For the outcome domains "Uptake of knowledge", and "Function”, three out of ten studies and two out of seven studies found a statistically significant positive effect in favour of the intervention group, respectively.

Twenty-two of the included studies utilised the implementation intervention "Conduct local consensus discussion”. Among them, five out of seven studies assessing the outcome domain "Adherence to implemented intervention” found a statistically significant positive effect in favour
of the intervention group. For the outcome domain "Uptake of knowledge" two out of eight studies found a statistically significant positive effect in favour of the intervention group.

Twenty-one of the included studies utilised, the implementation intervention "Make training dynamic". Among them, five out of seven studies assessing the outcome domain "Adherence to implemented intervention" found a statistically significant positive effect in favour of the intervention group. For the outcome domains "Uptake of knowledge", and "Function”, three out of ten studies and one out of five studies found a statistically significant positive effect in favour of the intervention group, respectively.

Eighteen of the included studies utilised the implementation intervention "Conduct ongoing training". Among these, two out of eight studies measuring the outcome domain "Uptake of knowledge" and two out of five studies measuring the outcome domain "Function" found a statistically significant positive effect in favour of the intervention group.

Sixteen of the included studies utilised the implementation intervention "Conduct educational outreach visits”. Two out of six studies measuring the outcome domain "Function” found a statistically significant positive effect in favour of the intervention group.

Four studies examined the cost-effectiveness. These studies produced inconsistent findings and employed varying outcome measures of effectiveness.

Lastly, across all outcome domains, several different outcome measures were utilised in the included studies See Additional file 4 for the specific outcome measures utilised.
Study Quality Assessment

All 38 studies were assessed for risk of bias using RoB 2. Three studies were judged to have a low risk of bias, 16 studies to have some concerns about risk of bias, and 19 studies to have a high risk of bias. The overall results of the risk of bias assessment using RoB 2 is presented in Table 1. Additional file 6 illustrates a detailed version of the results of the risk of bias assessment for each RoB 2 domain.

Discussion

Summary of findings

This systematic review investigated the effectiveness of different implementation interventions in musculoskeletal healthcare and included 38 studies. Our synthesis of the findings from the included studies indicates that implementation interventions have diverse effects on HCP outcomes. Regarding studies measuring patient outcomes, implementation interventions may not lead to significant improvements. Conflicting findings were observed concerning cost-effectiveness outcomes, and we were unable to draw clear conclusions in this regard. Studies measuring the outcome domain “Adherence to the implemented intervention” may indicate a statistically significant positive effect in favour of the intervention group across most implementation interventions.

The most common implementation interventions utilised in the literature were “Distribute educational materials”, “Conduct educational meetings”, “Conduct local consensus discussion” and “Make training dynamic”. The majority of the studies utilising these interventions and measuring the outcome “Adherence to implemented intervention” found a statistically significant positive effect in favour of the intervention group.
Assessment of risk of bias using the RoB 2 tool revealed that most studies had either some concerns or a high risk of bias.

Explanation of findings

The conflicting findings on HCP outcomes might be explained by significant methodological concerns such as the possibility of selection bias. It is likely that the HCPs who agreed to participate in the studies had extensive experience, continued education and were more inclined to be adherent with high quality of treatment and high baseline measurements, leaving less potential for improvement (31,32,38,39,48,49,51,52,59,61,63,66,67). Furthermore, the participating HCPs may have been more motivated with a positive attitude towards the implemented intervention implying a readiness to change (40,43,48–50,58,59). In addition to this, it is also possible that simply participating in a study and being observed may have resulted in greater adherence to the implemented intervention (48,58,59). These factors may have contributed to an increased effect of the implemented intervention in both the intervention and control groups across studies, thus obscuring the possible effect. The conflicting findings on patient outcomes and cost-effectiveness might equally be explained by the potential influence of selection bias, where HCPs in the control group possessed significant experience and interest in management of musculoskeletal conditions. This could potentially result in a higher likelihood of adhering to the implemented intervention with a high quality of treatment, leaving less potential for demonstrating a statistically significant difference between patient groups (32,35,40,44). Additionally, the absence of a significant effect may be attributed to unaccounted mediating confounders among patients, such as fear-avoidance and anxiety, as well as issues related to inclusion and substantial loss to follow-up (33,41,64). It is reasonable to suggest that the lack of effect on patient outcomes might, in part, contribute to the absence of cost-effectiveness (29,69). Only 20 of the 38 included studies provided a rationale for
selecting the specific implementation strategy and interventions they examined (31–33,35–
37,43,44,46,47,49–53,56,58,60,65,66). Despite providing a rationale for the choice of an
implementation strategy and interventions, in many cases the rationale remained vague and not
thoroughly reported. The absence of or vague rationales could potentially explain the conflicting
findings observed in this review. Some literature illustrates the importance of providing a clear and
well-thought rationale including exploring barriers and facilitators for changing practice behaviour,
as this can affect the success of the implementation (26,70–73). In addition, the existing literature
emphasises the importance of utilising implementation interventions targeting relevant mechanisms
of change to address identified barriers and facilitators for behaviour change when selecting and
tailoring of implementation strategies and interventions(74,75). Failing to tailor the implementation
strategies and interventions towards relevant barriers and facilitators for behaviour change could
result in random findings with small to moderate effects as observed in this review. Due to this it is
recommendable that future research thoroughly describes the implementation strategy and provide
an underlying rationale in detail.

Agreements and Disagreements with Existing Literature

All single implementation interventions in this review showed various effects across all outcome
domains, yet there seems to be a tendency towards a statistically significant effect in favour of the
intervention group on the HCP outcome domain “Adherence to implemented intervention” for
several implementation interventions. These findings align with existing literature within
musculoskeletal healthcare indicating no single implementation intervention consistently
outperform others across outcome domains (29,76–80). Similar findings are seen when looking at
implementation interventions in a wider perspective within healthcare with implementation
interventions such as providing audits and feedback, using local opinion leaders, using educational
materials and using educational meetings and workshops potentially contributing to positive outcomes related to HCPs but not patients (81–84). This means that it might be recommendable to consider the following implementation interventions “Conduct local consensus discussions”, “Make training dynamic”, “Distribute educational materials“, “Conduct educational meetings”, “Audit and feedback” and “Using local opinion leaders” when creating an implementation strategy aiming at HCP behaviour change (81–84). Our results indicate a lack of positive outcomes in favour of the intervention group for patient outcome domains, which is consistent with findings from other reviews in musculoskeletal healthcare and broader healthcare implementation studies (29,67,76–78,80–85). This suggests that we currently lack effective implementation interventions to yield better patient outcomes. In addition, it could be speculated that the quality and efficacy of some of the implemented interventions and utilised measurements might be inadequate for changing and measuring patient outcomes. Our results concerning cost-effectiveness from four studies showed conflicting findings across implementation interventions. However, findings from existing literature show similar conflicting results, which could be explained by heterogeneous studies with different types of implementation interventions and outcomes (69,81). Due to this we, as well as other research, suggest that adding a cost-effectiveness analysis to a study concerning implementation interventions to demonstrate feasibility and contribute to more evidence regarding cost-effectiveness (67).

Strength and Limitations

To our knowledge, this systematic review is the largest focusing on RCTs concerning implementation interventions in musculoskeletal healthcare, which is a considerable strength of this systematic review. Furthermore, the wide search strategy, which was developed in collaboration with an experienced librarian, yielded a much more comprehensive result than previous reviews on
the subject (29,67,76–78,80). Despite this, we identified further 10 studies by manually searching, which showcase the substantial heterogeneity in both methodology and nomenclature in the field of implementation science. Our study has several limitations; we utilised the definition and nomenclature of implementation interventions as described in Powell et al. 2015 (25). However, a substantial amount of the definitions remain vague, and as such the classification is based on an individual assessment. This is equally in part to the poor description of implementation strategies and interventions in most of the included studies, and as such we were forced to make assumptions and individual interpretations in many cases. These challenges will undeniably result in discrepancies between reviews, as for instance in Goorts et al. 2021 there is a discordance in identifying and classifying interventions compared to ours (29). Therefore, future research should utilise standardised methodology and nomenclature to ensure consensus.

To our knowledge, this is the first review seeking to clarify which implementation interventions are effective within musculoskeletal healthcare. To do that, we decided to dissect the included studies' implementation strategies into implementation interventions and classify these. However, in most studies, more than one implementation intervention could be identified, and it could be speculated that the effect sizes are due to multiple specific implementation interventions being used in conjunction with each other, which is a factor this review has not accounted for. Substantial heterogeneity was observed in the included studies. For example, when measuring adherence to the implemented intervention or patient functioning, there was hardly ever the same outcome measure appearing twice. To overcome this heterogeneity all primary outcomes were condensed into three sets of outcome domains. For patient outcomes we attempted to utilise a core outcome set for exercise and physical activity interventions for musculoskeletal disorders (27). However, not all patient outcomes were a core outcome according to Thompson et al. 2022, despite this, we chose to include these as domains regardless. This core outcome set was not in complete agreement with this
study as we were not investigating treatments specifically consisting of exercise and physical activity, but to our knowledge nothing better existed. A limitation of this study was that to our knowledge no core outcome sets exist for HCP outcomes and cost-effectiveness. Therefore, to invent our own outcome domains will not be as generalizable to other studies as utilising an existing core outcome set. However, this domainisation of outcomes had the advantages that it made it possible to homogenise and synthesise the various heterogeneous outcomes of the included studies. Furthermore, we highlighted some implementation interventions to be more effective than others. These findings were based solely on observations of our synthesis, and as such it is important to note that these findings are not based on sample size, power or statistical effect sizes. Equally, no risk of bias comparisons of the studies could suggest a pattern. Despite this, our findings are in line with pre-existing literature (81–84).

Conclusion

This systematic review offers an extensive overview of which individual implementation interventions that may be effective in musculoskeletal healthcare. Our data suggests that the implementation interventions “Conduct local consensus discussions”, “Make training dynamic”, “Distribute educational materials” and “Conduct educational meetings” may have a tendency towards a statistically significant positive effect in favour of the intervention group amongst HCPs concerning the outcome domain “Adherence to implemented intervention”. For the remaining HCP outcome domains and the cost-effectiveness outcome domain the effects are unknown across all implementation interventions due to discrepancies between studies. For patient outcome domains, it appears that no implementation interventions yields a statistically significant positive effect in favour of the intervention group. Most of the included studies were determined to have either some concerns or high risk of bias and had a high methodological heterogeneity. These results should
therefore be interpreted with caution. For the field of implementation science to draw stronger conclusions and advance our knowledge about implementation strategies and interventions, it is important to conduct high-quality studies with detailed reporting of the methodology, including a comprehensive description of implementation strategies and interventions as well, as a well-defined rationale while utilising a standardised nomenclature. Additionally, it is important to allow for the investigation of behaviour change mechanisms to draw stronger conclusions and contribute to the advancement of knowledge in the field.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All data generated during this study are included either within the text or as an additional file.

Competing interests

The authors declare that they have no competing interests.

Funding

None of the authors received any funding for this project.

Authors’ Contributions

All authors drafted the first protocol. PBH, MB, MSN, JFJ and KDL drafted the literature searches. PBH, MB, MSN, and KDL conducted the screening of all studies. PBH, MB, and MSN extracted all data. PBH, MB, MSN, MSR, and KDL participated in the data analysis. PBH, MB, and MSN,
drafted the first draft and first review was made by MSR and KDL. Finally, all authors have thoroughly reviewed and approved the final submitted version of the manuscript.

Acknowledgements

Not applicable.

Contributions to the literature:

- This systematic review provides an overview of implementation interventions and the statistically significant positive effect in favour of the intervention groups within musculoskeletal healthcare.

- The effect of implementation interventions on most outcome domains varies substantially, however, there seem to be a potential positive statistically significant effect of some implementation interventions for outcomes measuring the HCP outcome domain “Adherence to implemented intervention”.

- This systematic review highlights the poor quality of trials found in the literature and advise future authors to extensively describe the implementation strategies and interventions and the rationale hereof in detail and utilising a standardised nomenclature to ensure consensus.
References

back pain: is clinical use consistent with guidelines? A systematic review and meta-analysis.

56. Mortimer D, French SD, McKenzie JE, O'Connor DA, Green SE. Economic Evaluation of Active Implementation versus Guideline Dissemination for Evidence-Based Care

62. Scheel IB, Hagen KB, Herrin J, Oxman AD. A Randomized Controlled Trial of Two Strategies to Implement Active Sick Leave for Patients With Low Back Pain.

stepped cluster randomized controlled trial within a hybrid type 2 trial. Physiotherapy Theory and Practice. 2022 Mar 1;1–15.

79. Suman A, Dikkers MF, Schaafsma FG, van Tulder MW, Anema JR. Effectiveness of

Figure 1. PRISMA FLOWCHART

Studies from databases/registers (n = 19943)
- EmBase (n = 10000)
- PubMed (n = 5698)
- Scopus (n = 2035)
- CENTRAL (n = 1210)

References from other sources (n = 10)
- Citation searching (n = 10)
- Grey literature (n = 0)

References removed (n = 5688)
- Duplicates identified manually (n ≥ 1)
- Duplicates identified by Covidence (n ≥ 1)
- Marked as ineligible by automation tools (n ≥ 1)
- Other reasons (n ≥ 1)

Studies screened (n = 34205)

Studies excluded (n = 14195)

Studies sought for retrieval (n = 69)

Studies not retrieved (n = 0)

Studies assessed for eligibility (n = 69)

Studies excluded (n = 31)
- No full text (n = 9)
- Wrong outcomes (n = 1)
- Wrong population (n = 1)
- Trial registration (n = 1)
- Wrong intervention (n = 11)
- Wrong study design (n = 3)
- Wrong patient population (n = 1)

Studies included in review (n = 38)

Included studies ongoing (n = 0)
Studies awaiting classification (n = 0)
Figures

FIGURE 1. PRISMA FLOWCHART – INSERTED IN SEPARATE FILE.
Figure 2

Mapping Implementation Interventions for Musculoskeletal Healthcare. Map of significance illuminating the effect of implementation interventions for musculoskeletal healthcare. Types of implementation interventions are listed within the rows, and outcome domains are listed in the columns. The size of the circles and the number in the circles indicates the number of RCTs identified. A lack of RCTs results in missing circles in the corresponding fields.

<table>
<thead>
<tr>
<th>Waltz's Classification Clusters (no. studies)</th>
<th>Implementation Intervention (no. studies)</th>
<th>Adherence to implemented intervention (12)</th>
<th>Uptake of knowledge (10)</th>
<th>Referral to imaging (10)</th>
<th>Referral to secondary care (6)</th>
<th>Prescription of analgesics (3)</th>
<th>HCP satisfaction (1)</th>
<th>Function (7)</th>
<th>Pain (2)</th>
<th>Workability (1)</th>
<th>Physical activity (1)</th>
<th>Patient satisfaction (1)</th>
<th>Patient adherence (1)</th>
<th>Quality of life (1)</th>
<th>Cost-effectiveness (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use evaluative and iterative strategies (13)</td>
<td>Assess for readiness and identify barriers and facilitators (9)</td>
<td>1 1 1</td>
<td>1 4 1</td>
<td>1 1</td>
<td>1 1 1</td>
<td>1</td>
<td>1</td>
<td>1 1 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Audit and provide feedback (5)</td>
<td>1</td>
<td>1 2 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Provide interactive assistance (18)</td>
<td>Facilitation (5)</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Provide clinical supervision (13)</td>
<td>3</td>
<td>2 2 1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Adapt and tailor to context (5)</td>
<td>Tailor strategies (5)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Develop stakeholder interrelationships (26)</td>
<td>Identity and prepare champions (3)</td>
<td>1</td>
<td>1 1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inform local opinion leaders (7)</td>
<td>3</td>
<td>1 1 1</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conduct local consensus discussions (22)</td>
<td>5 2</td>
<td>2 4 1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use an implementation advisor (1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Train and educate stakeholders (38)</td>
<td>Conduct ongoing training (18)</td>
<td>2</td>
<td>1 2 3 2</td>
<td>1 2</td>
<td>1 2</td>
<td>1</td>
<td>1</td>
<td>1 2 3 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Provide ongoing consultation (11)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Develop educational materials (10)</td>
<td>1</td>
<td>1 1</td>
<td>2 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Make training dynamic (21)</td>
<td>5</td>
<td>2 3 4</td>
<td>1 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 2 3</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distribute educational materials (30)</td>
<td>6</td>
<td>3 2</td>
<td>2 2</td>
<td>4 5</td>
<td>1</td>
<td>2 4</td>
<td>2</td>
<td>1 5 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Conduct educational meetings (29)</td>
<td>7</td>
<td>2 3 4</td>
<td>1 2</td>
<td>1 3</td>
<td>1</td>
<td>1</td>
<td>1 2 5</td>
<td>2</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conduct educational outreach visits (16)</td>
<td>2</td>
<td>1</td>
<td>1 1</td>
<td>1 3</td>
<td>2 1</td>
<td>1 1</td>
<td>2 4</td>
<td>2</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Support clinicians (12)</td>
<td>Remind clinicians (12)</td>
<td>2</td>
<td>1 1</td>
<td>1</td>
<td>2 1 2 1</td>
<td>1</td>
<td>1</td>
<td>1 2 1</td>
<td>1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Engage consumers (4)</td>
<td>Involve patients/consumers and family members (1)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use mass media (3)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Change infrastructure (3)</td>
<td>Change record systems (5)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- = Statistically significant positive effect in favour of intervention group; ○ = No statistically significant positive effect in favour of intervention group; □ = Mixed findings of statistically significant effect; ■ = Unknown statistically significant effect
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Study Design</th>
<th>Country of Origin</th>
<th>HCP’s (n)</th>
<th>Patient condition (n)</th>
<th>Clinical setting (n)</th>
<th>Study Implementation Interventions</th>
<th>Comparator</th>
<th>Primary Outcomes</th>
<th>Findings</th>
<th>Overall risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Becker et al. 2008</td>
<td>Cluster RCT</td>
<td>Germany</td>
<td>GP’s (126)</td>
<td>Patients with LBP (1378)</td>
<td>Primary care (118 practices)</td>
<td>Guideline Implementation group, Three interactive seminars + Individual educational visits by study nurses Develop stakeholder interrelationships + Train and educate stakeholders</td>
<td>Received guidelines via mail.</td>
<td>Patients: Function</td>
<td>No statistically significant difference in guideline implementation group versus comparator on functional capacity (p=0.120) Statistically significant difference in guideline implementation + motivational counselling group versus comparator on functional capacity (p=0.032)</td>
<td></td>
</tr>
<tr>
<td>Becker et al. 2012</td>
<td>Cost-effectiveness analysis of a cluster RCT</td>
<td>Germany</td>
<td>GP’s (126)</td>
<td>Patients with LBP (1322)</td>
<td>Primary care (118 practices)</td>
<td>This cost-effectiveness study was performed using data from Becker et al. 2008. For a description of the implementation strategies and Waltz’s Classification, see Becker et al. 2008.</td>
<td>Cost-Effectiveness</td>
<td></td>
<td>For Indirect cost the GI and GI+MC group had lower costs than the control group, with a mean difference of -332.51€ (95% CI: -650 to -44) and -302.83€ (95% CI: -621 to -6). For total cost the GI+MC group had statistically significant lower costs than the control group MD -482.59€ (95% CI: -983 to -54)</td>
<td></td>
</tr>
<tr>
<td>Bekkering et al. 2005 (a)</td>
<td>Cluster RCT</td>
<td>The Netherlands</td>
<td>Physiotherapists (113)</td>
<td>Patients with LBP (500)</td>
<td>Primary care (68 practices)</td>
<td>Guideline by mail + four forms to self-evaluate and facilitate discussion, an article concerning the guidelines + two 2.5-hours training sessions + two 2-hour preparation. Provide interactive assistance + Develop stakeholder interrelationships + Train and educate stakeholders + Support clinicians</td>
<td>As the intervention group, but without the 2.5-hour training sessions and preparation</td>
<td>Healthcare Professionals: Adherence to implemented intervention</td>
<td>Statistically significant effect in favour of intervention group on Correctly limited treatment sessions OR 2.39 (95% CI: 1.12 to 5.12) More frequent functional goalsetting OR 1.99 (95% CI: 1.06 to 3.72) Frequency of active interventions: OR 2.79 (95% CI: 1.19 to 6.55) Gave adequate advice with an OR of 3.59 (95% CI: 1.35 to 9.55) All four recommendations with an OR 2.05 (95% CI: 1.15 to 3.65)</td>
<td></td>
</tr>
<tr>
<td>Bekkering et al. 2005 (b)</td>
<td>Cluster RCT</td>
<td>The Netherlands</td>
<td>Physiotherapists (113)</td>
<td>Patients with LBP (500)</td>
<td>Primary care (68 practices)</td>
<td>This study was performed using data from Bekkering et al. 2005 (a). For a description of the implementation strategies and Waltz’s Classification, see Bekkering et al. 2005 (a).</td>
<td>Patients: Function Pain Workability</td>
<td></td>
<td>No difference between the 2 groups on physical functioning (p>0.05) or on pain (p>0.05) at 12 months.</td>
<td></td>
</tr>
<tr>
<td>Bishop et al. 2006</td>
<td>RCT</td>
<td>Canada</td>
<td>Family physicians (462)</td>
<td>Group 2: Received copy of the guidelines + “guideline reminder letter.” Train and educate stakeholders + Support clinicians</td>
<td>Group 1:</td>
<td>Healthcare Professionals:</td>
<td>Compared to control, no statistical significance in either group in recorded history or physical findings (p=0.89, p=0.90) medication (p=0.14,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country/Region</td>
<td>Intervention</td>
<td>Follow-up</td>
<td>Outcome Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dey et al. 2004</td>
<td>England Cluster RCT</td>
<td>GP’s (2187)</td>
<td>Facilitated structured interactive discussion + Posters developed and distributed. Use evaluative and iterative strategies + Provide interactive assistance + Adapt and tailor to context + Develop stakeholder interrelationships + Train and educate stakeholders</td>
<td>Received no implementation intervention.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruyndonckx et al. 2018 Cluster RCT</td>
<td>Belgium</td>
<td>GP’s (4530)</td>
<td>20 minutes academic detailing. Train and educate stakeholders</td>
<td>Received no implementation intervention.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bussières et al. 2010 RCT</td>
<td>Switzerland</td>
<td>Chiropractors (160)</td>
<td>Intervention group 1 (IG1) 20-minute lecture + 90-minute educational workshop Develop stakeholder interrelationships + Train and educate stakeholders Intervention group 2 (IG2) 20-minute lecture + 90-minute educational workshop + Reminder Develop stakeholder interrelationships + Train and educate stakeholders + Support clinicians Intervention group 3 (IG3) 20-minute lecture + 90-minute educational workshop Develop stakeholder interrelationships + Train and educate stakeholders</td>
<td>20-minute lecture + A chiropractic technique seminar on spinal pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chipchase et al. 2016 RCT</td>
<td>Australia</td>
<td>Physiotherapists (23)</td>
<td>Two-day workshop + five-hour follow-up session one month later Provide interactive assistance + Develop stakeholder interrelationships + Train and educate stakeholders</td>
<td>Same interventions, only without follow-up session.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleland et al. 2009 RCT</td>
<td>The United States of America</td>
<td>Physiotherapists (30)</td>
<td>2-day (4-hours a day) continuous education course + two 1.5-hour educational meetings + 1-hour outreach visit. Provide interactive assistance + Train and educate stakeholders</td>
<td>Comparator attended course, no follow-ups.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coombs et al. 2021 Stepped wedge cluster RCT</td>
<td>Australia</td>
<td>Rheumatologists, physiotherapists and emergency physicians (269)</td>
<td>Education seminars + development and distribution of educational material + provision of non-opioid pain management + access to fast-track referrals to outpatient services + audit and feedback. Use evaluative and iterative strategies + Adapt and tailor to context + Train and educate stakeholders</td>
<td>Received no implementation intervention.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Women with LBP (428) Primary care Group 3: In addition, patients received lay version of guidelines. In addition to Group 2: Engage consumers Received no implementation intervention. *Adherence to implemented intervention p = 0.08* supervised exercise (p = 0.11, p = 0.18) return to work (p = 0.07, p = 0.14) Statistically significant difference in not using extended bed rest in group 2 (p = 0.05) not using continued use of passive therapies (p = 0.04, p = 0.05) and recommended exercise in group 3 (p = 0.05) Statistically significant step change in “Odds of being reimbursed for a recommended NSAID when reimbursed for any NSAID” p = 0.01 No statistically significance on any other measure. Scores for the pre-test and the final test for all four groups were not significantly different (p = 0.348). No significant between-group differences were identified on practice behaviour (p = 0.05). NDI were not statistically significant between groups, (p = 0.11) Statistically significant difference between groups post-test on function (p = 0.013). No statistically significant difference between groups post-test on pain (p = 0.088) The intervention did not significantly reduce the odds of lumbar imaging OR = 0.77 (95% CI of 0.47 to 1.26) No statistical significance on: Referral to X-ray: p = 0.62, Issued a sickness certificate: p = 0.74, Prescribed opioids or muscle relaxants: p = 0.99, Referred to secondary care: p = 0.12
<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Group</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eccles et al. 2001</td>
<td>England and Scotland</td>
<td>GPs (162) Patients with LBP and knee pain (1693) Primary care (48 practices)</td>
<td>Audit & feedback group: Guidelines sent via mail + audit and feedback. Use evaluative and iterative strategies + Train and educate stakeholders Reminder message group: Guidelines sent via mail + reminders attached to reports of radiograph. Train and educate stakeholders + Support clinicians</td>
<td>Comparator only received guidelines via mail.</td>
<td>Healthcare Professionals: Referral to imaging Statistical significant absolute change of educational reminder messages for lumbar spine radiographs (p=0.05) and knee radiograph requests (p=0.05). No statistically significant change in audit and feedback group. There was no statistically significant increased effect of receiving both interventions for both types of radiographs.</td>
</tr>
<tr>
<td>Engers et al. 2005</td>
<td>The Netherlands</td>
<td>GP’s (67) Patients with LBP (531) Primary care</td>
<td>2-hour workshop + Educational material + tool for patient education Train and educate stakeholders + Support clinicians</td>
<td>Received no implementation intervention.</td>
<td>Healthcare Professionals: No implementation intervention. The intervention did not promote statistical significance on any outcomes between groups.</td>
</tr>
<tr>
<td>Evans et al. 2010</td>
<td>United Kingdom</td>
<td>Physiotherapists (824); chiropractors (336); and osteopaths (598) Patients with LBP Primary care</td>
<td>Printed information package posted to the participants with evidence-based management of acute LBP, based on the latest guidelines. Train and educate stakeholders</td>
<td>Received no implementation intervention.</td>
<td>Healthcare Professionals: Adherence to implemented intervention Statistical significant difference between groups in advice about activity (p=0.028) and work (p=0.012) but not on bed rest (p=0.078)</td>
</tr>
<tr>
<td>French et al. 2013</td>
<td>Australia</td>
<td>GPs (112) Patients with LBP Primary care (92 practices)</td>
<td>Two facilitated, interactive, educational 3-hour workshops + a DVD. Use evaluative and iterative strategies + Provide interactive assistance + Adapt and tailor to context + Develop stakeholder interrelationships + Train and educate stakeholders</td>
<td>Comparator received a printed copy of the guideline.</td>
<td>Healthcare Professionals: Uptake of knowledge Referral to secondary care Prescription of analgesics Statistical significance on vignettes on X-ray adherence (p=0.045), imaging adherence (p=0.000) and activity adherence (p=0.001). There was no statistical significance on bed-rest adherence p=0.354 X-ray referrals (p=0.211) or CT-scan referrals (p=0.598) or both (p=0.244)</td>
</tr>
<tr>
<td>French et al. 2022</td>
<td>Australia</td>
<td>Physiotherapists (182); Chiropractors (88) Patients with LBP (1358) Primary care (104 practices)</td>
<td>Full day symposium delivered by opinion leaders + Educational materials were developed and distributed + reminders. Use evaluative and iterative strategies + Adapt and tailor to context + Develop stakeholder interrelationships + Train and educate stakeholders + Support clinicians</td>
<td>Comparator received a printed copy of the guideline.</td>
<td>Healthcare Professionals: Referral to imaging Patients: Function There was no statistically significant difference between groups in the odds of patients being referred for X-ray. There was no important clinical difference in LBP-specific disability between groups.</td>
</tr>
<tr>
<td>Goldberg et al. 2001</td>
<td>The United States of America</td>
<td>Spinal surgeons Primary physicians Patients with LBP Primary care (10 communities inhabited by 245,710 citizens)</td>
<td>Opinion leaders was expected to share information + continued medical education + academic detailing with posters and pamphlets. Use evaluative and iterative strategies + Develop stakeholder interrelationships + Train and educate stakeholders + Change infrastructure</td>
<td>Received no implementation intervention.</td>
<td>Healthcare Professionals: Adherence to implemented intervention Statistical significance in the intervention period, compared to the baseline period observed rate of surgeries (p=0.01)</td>
</tr>
<tr>
<td>Hoeijenbos et al. 2005</td>
<td>The Netherlands</td>
<td>Physiotherapist (113) Patients with LBP (500) Primary care (68 Practices)</td>
<td>This study was performed using data from Bekkering et al. 2005 (a). For a description of the implementation strategies and Waltz’s Classification, see Bekkering et al. 2005 (a).</td>
<td>Patients: Quality of life Cost-Effectiveness No statistically significant difference of quality of life in the intervention group compared to control (p=0.05). Statistically significant lower medical costs at 6 weeks for the intervention group compared to control (p=0.026)</td>
<td></td>
</tr>
<tr>
<td>Study Authors</td>
<td>Year</td>
<td>Location</td>
<td>Study Design</td>
<td>Participants</td>
<td>Intervention</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Jensen et al. 2017</td>
<td>Cluster RCT</td>
<td>Denmark</td>
<td>Patients with LBP (475)</td>
<td>This study was performed using data from French et al. 2013. For a description of the implementation strategies and Waltz’s Classification, see French et al. 2013.</td>
<td>Cost-Effectiveness</td>
</tr>
<tr>
<td>Leonhardt et al. 2008</td>
<td>RCT</td>
<td>Germany</td>
<td>Patients with LBP (1378)</td>
<td>This study was performed using data from Becker et al. 2008. For a description of the implementation strategies and Waltz’s Classification, see Becker et al. 2008.</td>
<td>Patients: Physical activity</td>
</tr>
<tr>
<td>Maas et al. 2015</td>
<td>Cluster RCT</td>
<td>The Netherlands</td>
<td>Physiotherapists (149)</td>
<td>Peer assessment (PA) group: Received link to guidelines + E-mailed program guide + four 3-hour sessions with focus on peer assessment.</td>
<td>Healthcare Professionals: Uptake of knowledge</td>
</tr>
<tr>
<td>Mortimer et al. 2013</td>
<td>Cluster RCT</td>
<td>Australia</td>
<td>GP’s (112)</td>
<td>This study was performed using data from French et al. 2013. For a description of the implementation strategies and Waltz’s Classification, see French et al. 2013.</td>
<td>Cost-Effectiveness</td>
</tr>
<tr>
<td>Moseng et al. 2019</td>
<td>Stepped wedge cluster RCT.</td>
<td>Norway</td>
<td>Physiotherapists (40)</td>
<td>One day seminar Train and educate stakeholders</td>
<td>Patients: Patient adherence</td>
</tr>
<tr>
<td>Murray et al. 2015</td>
<td>Cluster RCT</td>
<td>Ireland</td>
<td>Physiotherapists (24)</td>
<td>1-hour education session + two 4-h sessions of communication skills training + individual emails. Develop stakeholder interrelationships + Train and educate stakeholders</td>
<td>Healthcare Professionals: Adherence to implemented intervention</td>
</tr>
<tr>
<td>O’Connor et al. 2022</td>
<td>Cluster RCT</td>
<td>Australia</td>
<td>GP’s (3819)</td>
<td>Individualized audit and feedback (once, twice, visually enhanced, and normal) Use evaluative and iterative strategies + Train and educate stakeholders</td>
<td>Healthcare Professionals: Referral to imaging</td>
</tr>
<tr>
<td>Peter et al. 2013</td>
<td>RCT</td>
<td>The Netherlands</td>
<td>Physiotherapists (248)</td>
<td>Interactive workshop + two educational + examined real patients + feedback + discussion. Provide interactive assistance + Develop stakeholder interrelationships + Train and educate stakeholders</td>
<td>Healthcare Professionals: Adherence to implemented intervention Uptake of knowledge</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Participants</td>
<td>Intervention</td>
<td>Comparator</td>
<td>Outcome</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Peter et al. 2015</td>
<td>The Netherlands</td>
<td>Physiotherapists (319) Patients with hip and knee OA Primary care</td>
<td>Interactive workshop + two educational + examined real patients + feedback + discussion. Provide interactive assistance + Develop stakeholder interrelationships + Train and educate stakeholders</td>
<td>Comparator received the same educational course 4 months after the first course</td>
<td>Healthcare Professionals: Uptake of knowledge Statistically significant difference between groups on both times points in adherence questionnaire (p=0.001, p=0.004) and knowledge questionnaire (p=0.001, p=0.004)</td>
</tr>
<tr>
<td>Scheel et al. 2002</td>
<td>Denmark</td>
<td>Physiotherapists (27) Patients with whiplash (103) Primary care</td>
<td>8-hour interactive workshop + Local opinion leaders + follow-up 2-hour educational outreach visits Develop stakeholder interrelationships + Train and educate stakeholders</td>
<td>Comparator received a mail with the guidelines.</td>
<td>Healthcare Professionals: Adherence to implemented intervention Uptake of knowledge HCP satisfaction Patients: Function Patient satisfaction Self-rated guideline understanding (p=0.001) and for advice “Reassure patient” p= 0.05 “Advise to act as usual” p= 0.04 but not for “Prescribe function” p= 0.22 “Prescribe exercise” p= 1.00 “Prescribe medication” p= 0.10 Statistically significant difference, compared to the control, for uptake (p=0.001). No statistically significant effect on function (p=0.87, p=0.85, p=0.95), patient satisfaction (p=0.69, p=0.87, p=0.93) and global perceived effect (p=0.95)</td>
</tr>
<tr>
<td>Riis et al. 2016</td>
<td>Denmark</td>
<td>GP’s (60) Patients with LBP (1101) Primary care</td>
<td>Regional information meeting + outreach visits + follow-up. Develop stakeholder interrelationships + Train and educate stakeholders + Support clinicians + Engage consumers + Change infrastructure</td>
<td>Regional information meeting about the guidelines.</td>
<td>Healthcare Professionals: Referral to secondary care Statistically significant reduced odds in the intervention group, compared to control (p=0.020)</td>
</tr>
<tr>
<td>Sanders et al. 2017</td>
<td>The Netherlands</td>
<td>GP’s (42) Patients with LBP (226) Primary care</td>
<td>Two 2.5-hour training sessions + decision aid + desktop tool + personalized feedback on videotaped consultation. Provide interactive assistance + Develop stakeholder interrelationships + Train and educate stakeholders</td>
<td>Received no implementation intervention.</td>
<td>Healthcare Professionals: Adherence to implemented intervention Statistically significant mean difference between group in favour of intervention on Level of shared decision making (p=0.05) and Level of positive reinforcement (p=0.05)</td>
</tr>
<tr>
<td>Schectman et al. 2003</td>
<td>USA</td>
<td>Clinicians (85) Patients with LBP (2020) Primary care</td>
<td>Guidelines developed and distributed + 90-minute educational outreach by local opinion leaders + audit and feedback + follow-up phone call and visit + reminder. Use evaluative and iterative strategies + Develop stakeholder interrelationships + Train and educate stakeholders + Support clinicians</td>
<td>Received no implementation intervention.</td>
<td>Healthcare Professionals: Referral to imaging Referral to secondary care Guideline-consistent behaviour increased by 5.4% in the intervention group. Declines 2.7% in the control group (p= 0.046). Overall decline in raw utilization of services of 8.5% in the intervention group versus 0.6% in the control group (p = 0.042).</td>
</tr>
<tr>
<td>Scheel et al. 2002</td>
<td>Norway</td>
<td>GP’s. Patients with LBP (6179) Primary care (65 municipalities)</td>
<td>Passive strategy group: Targeted information to GP’s + checkbox in the form for reporting sick leave + reminder + desktop summary clinical guidelines. Use evaluative and iterative strategies +Train and educate stakeholders + Support clinicians Proactive strategy group: In addition, Proactive resource support person. Use evaluative and iterative strategies + Provide interactive assistance + Develop stakeholder interrelationships + Train and educate stakeholders + Support clinicians</td>
<td>Received no implementation intervention.</td>
<td>Healthcare Professionals: Adherence to implemented intervention Statistically significant different net increase usage of Active Sick Leave in the proactive group, compared to the passive and the control group (p= 0.018).</td>
</tr>
<tr>
<td>Schröder et al. 2022</td>
<td>Sweden</td>
<td>Physiotherapists (98) Patients with LBP (500) Primary care</td>
<td>2-day workshop (13.5-hour) Provide interactive assistance + Train and educate stakeholders</td>
<td>Received no implementation intervention.</td>
<td>Healthcare Professionals: Referral to secondary care Referral to imaging Statistically significant decrease in medical imaging (p=0.011) but not in referrals to specialist (p=0.257)</td>
</tr>
<tr>
<td>Simula et al. 2021</td>
<td>Finland</td>
<td>Physiotherapists, nurses and physicians</td>
<td>Booklet was developed and distributed +30 min session on its use. Train and educate stakeholders</td>
<td>Received no implementation intervention.</td>
<td>Healthcare Professioanls: Referral to imaging Patients: Statistically significant decreased odds of referral to imaging (p=0.007) referrals to radiographs (p=0.016) referrals to MRI (p=0.001) referrals to MRI + CT (p=0.014) but not on "Patient Reported Function" p= 0.22 "Prescribe exercise" p= 1.00 “Prescribe medication” p= 0.10 Statistically significant difference, compared to the control, for uptake (p=0.001). No statistically significant effect on function (p=0.87, p=0.85, p=0.95), patient satisfaction (p=0.69, p=0.87, p=0.93) and global perceived effect (p=0.95)</td>
</tr>
<tr>
<td>Study</td>
<td>Design/Facility</td>
<td>Healthcare Professionals</td>
<td>Function</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Stevenson et al. 2004</td>
<td>Cluster RCT, England</td>
<td>Intervention group: Baseline 47% - 6 months: 81% Control group: Baseline 38% - 6 months: 45% Confidence in critical appraisal: Intervention group: Baseline 24% - 6 months: 62% Control group: Baseline: 15% - 6 months: 50%</td>
<td>No statistical significance on any of the primary outcomes.</td>
<td>![1]</td>
<td></td>
</tr>
<tr>
<td>Stevenson et al. 2006</td>
<td>Cluster RCT, England</td>
<td>Healthcare Professionals: Adherence to implemented intervention</td>
<td>Uptake of knowledge</td>
<td>No significant difference between groups over time on the number of total referrals to imaging and medical specialist care (p>0.05).</td>
<td>![1]</td>
</tr>
<tr>
<td>Suman et al. 2018</td>
<td>Cluster RCT, The Netherlands</td>
<td>Healthcare Professionals: Referral to imaging Referral to secondary care</td>
<td>Uptake of knowledge</td>
<td>Statistically significant increase in questionnaire in the peer-assessment group, compared to the case-based discussions group (p=0.001)</td>
<td>![1]</td>
</tr>
<tr>
<td>Van Dulmen et al. 2014</td>
<td>Cluster RCT, The Netherlands</td>
<td>Healthcare Professionals: Uptake of knowledge</td>
<td></td>
<td></td>
<td>![1]</td>
</tr>
</tbody>
</table>

Notes:
- **1st Edition:** No significance between groups over time on the number of referrals to medical specialist care (p>0.05).
- **2nd Edition:** Statistically significant increase in questionnaire in the peer-assessment group, compared to the case-based discussions group (p=0.001).

Abbreviations:
- GP: General practitioners
- LBP: Low back pain
- NSAID: Non-steroidal anti-inflammatory drug
- OR: Odds ratio
- CI: Confidence interval
- MD: Mean difference
- QALY: Quality adjusted life years
- MRI: Magnetic resonance imaging
- CT: Computerized tomography
- EBP: Evidence based practice