Circulating cell-free DNA in oral squamous cell carcinoma patients allows for non-invasive prognosis and identification of structural variants, novel chimeras and oncoviruses

Mahua Bhattacharya1, Dan Yaniv2,3, Sunil Pachakar1, Dylan. P. D'Souza1, Rajesh Detroja1; Gidi Baum1, Aviram Mizrachi2 and Milana Frenkel Morgenstern1,*

1 Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
2 Rabin Medical Research Centre, Tel Aviv, Israel
3 MD Anderson Medical Research Centre, Houston, TX, USA

*Corresponding author

Abstract

Circulating cell-free DNA (cfDNA) has been widely used as a prognostic marker of different cancers. In this study, we used cfDNA from oral squamous cell carcinoma (OSCC) patients to study various correlation factors that could improve early-stage diagnostics and prognosis. We found that OSCC patient cfDNA concentration can serve as an indicator of tumor stage, malignancy, and survival prognosis. Deep genome sequencing of cfDNA revealed genomic alterations, such as copy number variation, fusion gene identification, and viral integration. Copy number variation analysis suggested correlation with amplification and deletions in chromosome 1 at loci 1q, 2q, 3p, 3q and 8q22. Moreover, at these loci, amplification of TP53, PIK3CA and other genes related to keratinization in relapsed OSCC was observed. In addition, we identified a novel fusion gene, TRMO-TRNT1, in seven high-grade tumor samples. The parent genes of this chimera, TRMO and TRNT1, are known to play roles in tRNA modification and DNA repair. Liquid biopsy may thus serve as a sensitive tool to study OSCC patient genomic alterations by addressing cfDNA circulating in the plasma, using an easy-to-use blood test. Finally, we detected integrations of human papilloma virus, simian virus and enterovirus that may point to the origins of OSCC.
Introduction

Oral squamous cell carcinoma (OSCC), considered part of head and neck squamous cell carcinoma (HNSCC) (Sinevici and O’Sullivan, 2016), affects the oral and buccal regions, including the gums, the floor of the mouth, the base of the tongue, the tongue, palate and lips (Montero and Patel, 2015). OSCC is the 16th most malignant form of cancer and the 15th highest contributor to morbidity rates due to cancer (Inchingolo et al., 2020). Oral cancer is mostly associated with lifestyle, being linked to smoking and drinking, although in some cases, pre-disposition to human papilloma virus (HPV) is also linked to OSCC (Hernandez et al., 2019; Inchingolo et al., 2020; Katirachi et al., 2023). While early diagnosis can help prevent metastasis and progression, OSCC often goes undiagnosed until a late stage when symptoms are observed, making radiotherapy and chemotherapy less effective (Nakagaki et al., 2018).

The discovery of non-invasive methods, like liquid biopsy, has led to progress in cancer diagnostics (Lousada-Fernandez et al., 2018), have led to the improved diagnosis of lung, blood, colorectal and cervical cancers, among others. At the same time, liquid biopsy analysis of cell-free DNA (cfDNA) in plasma, saliva and urine has helped with prognosis (Fawzy et al., 2016; Kang et al., 2017; Sumanasuriya, Lambros and de Bono, 2017; Cordeiro Mitchell et al., 2018; Wang et al., 2018). cfDNA fragments appear because of apoptosis or necrosis. The amount of released cfDNA correlates with tumor burden and metastasis (Yu et al., 2011; Grisanti et al., 2014; Krebs et al., 2014; Wang et al., 2015; Alpaugh et al., 2017; Di Meo et al., 2017). cfDNA analysis has also been conducted on HNSCC patients, specifically, on OSCC patients. Human papilloma virus (HPV) is one of the major causes of HNSCC, with a significantly mutated HPV gene being a major cause of HNSCC. The presence of HPV and other pathogens as revealed by cfDNA analysis of OSCC patients has made diagnosis and prognosis at early stages possible (Hamana et al., 2005; Wang et al., 2015; Patel et al., 2016; Sinevici and O’Sullivan, 2016; Arantes et al., 2017; Lin et al., 2018; Chattopadhyay, Verma and Panda, 2019; Saproo et al., 2023).

Previous studies reported the presence of a second virus, herpes simplex virus (HSV), in HNSCC and in other squamous cell carcinomas, like cervical cancer, and correlated the presence of HPV and HSV with oncogenesis of these cancers. Since OSCC is one of the most common head and neck cancers, we were interested in analyzing cfDNA from patients belonging to an Israeli cohort to identify genomic alterations associated with the disease, like copy number variation (CNV), integrated viral sequences, and fusion genes, along with correlation with tumor stage for better disease prognosis. As such, we collected cfDNA from 30 OSCC patients and found significant Pearson correlation between cfDNA concentration and tumor stage, the appearance of a second malignancy and/or lesion size. We further observed that the time to recurrence and survival rate of OSCC patients also correlated with cfDNA concentration. Next, to understand the observed genomic alteration, we performed deep sequencing, revealing genomic alterations previously observed in TCGA/ICGC studies (Lawrence et al., 2015). Moreover, we routinely detected CNV in loci containing the *TP53, TP63, FGFRI* and *MLH1* genes. In addition, we detected the presence of oncogenic virus contigs like HPV, HSV, simian virus (SV) and enterovirus, which could explain oncogenic progression in this cohort. In addition, we observed a novel fusion gene, *TRMO-TRNT1*, corresponding to a fusion of genes encoding tRNA regulators. *TRMO*, located on chr9q22, is...
involved in tRNA processing and methyltransferase activity, while TRNT1, located on chr3p26, helps in adding CCA nucleotides to tRNA. Both TRMO and TRNT1 were expressed in all tissue samples. While TRMO has been identified in thyroid cancer, its association with thyroid cancer remains to be shown (Kulkarni et al., 2021). Mutations and splicing defects in TRNT1 have been associated with sideroblastic anemia (Wedatilake et al., 2016). However, the role of TRNT1 in cancer is unknown. Our findings may thus help future characterization of these genes and their association with cancer, as well as advancing understanding of the genomic markup of OSCC patients for use in early prognosis.
Materials And Methods

Sample collection
Blood samples of 30 OSCC patients were collected in a cfDNA preservation tube at Rabin Medical Center following Helsinki committee approval. Blood samples were centrifuged for 20 min at RT to separate the plasma. The plasma was collected and aliquoted into Eppendorf tubes and stored in -80°C until use.

cfDNA extraction
Aliquots (1 ml) of plasma samples from 30 patients were subjected to cfDNA extraction using a Qiagen QIAamp cfDNA/RNA kit (Cat no. 55184), following the manufacturer’s protocol. cfDNA was eluted in 50 µl elution buffer. Extracted cfDNA concentration was measured in a Qubit dsDNA High Sensitivity assay (ThermoFisher Scientific, Waltham, MA) using a Qubit2.0 fluorometer. A Bioanalyzer 2100 DNA High Sensitivity assay was performed to determine cfDNA fragment size distribution.

Copy number analyses
Extracted cfDNA from all patients was sequenced using Illumina high-throughput whole genome sequencing (at least 50 million reads per sample). Paired-end sequencing was performed. For copy number analysis, the iChorCNA and Gistic2.0 pipelines were used with the default parameters.

Chimera identification and validation
Using the in-house chimera detection pipeline ChiTaH (Detroja et al., 2021), novel fusion genes were identified in sequenced cfDNA samples. To validate the ChiTaH results, primers were designed upstream and downstream of the gene-gene junction sequence of a fusion gene (Forward: CTCCTGAGAACCACCAGACA; Reverse: GCTGCACCCCACTAATGTGT) PCR was performed using Hylab Hy-Taq Ready Mix (2X) (Cat no. EZ3006/7/636). PCR products were purified using a Macherey-Nagel NucleoSpin Gel and PCR Clean-up Kit (Cat no: 12303368), following by the Sanger sequencing using Macrogen.

Identification of coding potential
The coding potential of a chimera was determined using the CPAT (Wang et al., 2013) and CNIT (Guo et al., 2019) webserver tools, using the default parameters.

Virus detection in cfDNA
A VirusFinder2.0 pipeline was used to identify the presence of oncogenic viruses in cfDNA samples, using the default parameters (Wang et al., 2013).

Gene ontology analysis
Gene ontology analyses was performed using PantherDB (Mi et al., 2021).

Statistical analysis
Statistical analysis was performed using GraphPad Prism. A Shapiro-Wilk test was used for various correlation analyses. Survival analysis was done using a Kaplan-Meyer curve, included in Prism GraphPad software.
Results

It is known that high concentrations of cfDNA are observed in tissue injuries, cancer, and various autoimmune diseases. Here, we sought to understand the correlation of increased cfDNA levels with various tumorogenic parameters, like tumor stage, a second malignancy, patient survival and more. In this study, cancers of oral cavity sub-sites samples were considered. These included twenty tongues, eight alveolar ridges, one floor of the mouth, and one retromolar trigone. Eleven patients showed mandibular involvement, nine had undergone segmental mandibulectomy and two marginal mandibulectomy procedures. To check if increased cfDNA levels had direct correlation with tumor stage, we performed Pearson correlation analysis and observed that even though the average cfDNA concentrations in patients with tumor stage 3 or 4 were high, as compared to patients with tumor stages 1 and 2, the distribution of the results showed that most patients had similar cfDNA concentrations, beside a few with stage 3 and 4 tumors that had very high concentrations of cfDNA in their blood (Fig. 1A). This suggests that cfDNA concentration above a certain threshold can indicate the presence of stage 3 or 4 tumors with high probability, although lower levels give no indication of tumor grade. We also observed similar results with secondary vs. primary malignancies (Fig. 1B). In other words, cfDNA concentrations above a certain threshold can indicate a secondary malignancy, while lower concentrations give no indication. High cfDNA concentration also defines the probability of disease recurrence in OSCC patients (Fig. 1C). Using the Kaplan-Meyer survival analysis method on data describing the time of cancer recurrence and death vs. cfDNA concentration, we found that patients with cfDNA concentrations of 27 ng/ml and less had a higher survival probability of 68% (Fig 1D and 1E). Moreover, cfDNA concentrations above a threshold of 27 ng/ml can be used to correlate with high tumor stages 3 and 4, which, furthermore, can be associated with an increased risk of tumorigenicity, thereby decreasing patient survivability. These results thus indicate that the concentration of cfDNA can serve as a biomarker for early diagnosis in clinical studies of OSCC.

Oncogenic viruses were identified when analyzing cfDNA

In the present study, we detected partial contigs of HPV and other oncogenic viruses. Specifically, 9 of 30 OSCC patients showed the presence of viral DNA integration into cfDNA (Fig. 2A). We observed HSV strains 1, 3 and 5, SV, HPV and enterovirus (Fig. 2B). HSV was identified in 6 OSCC patients in our study, while 3 patients presented HSV-1 and HSV-3, along with HSV-5. The relation of enterovirus with cancer has not been completely established, however, some evidence shows a link to malignancy in glioma and progression of cervical cancer. SV has been identified in the serum of lung cancer patients. However, SV and enterovirus have not been recognized as causing OSCC so far.

Our study revealed the presence of more than two viruses in OSCC patient sera (Fig. 3B). However, the status of these viruses cannot be statistically correlated with tumor stage in our cohort. Nonetheless, the presence of viruses may serve some oncogenic role in OSCC.

A novel chimera identified in cfDNA

Occurrences of fusion genes being produced by chromosomal translocations are common in some cancers yet are extremely rare in HNSCC. Using our *in-house* fusion analysis tool ChiTaH, we
identified a novel fusion, *TRMO-TRNT1*, in the cfDNA of two patients. TRMO (tRNA methyl-O-transferase) and TRNT-1 (tRNA nucleotide transferase I) are expressed in all tissue types. To validate this chimera, we designed primers and performed PCR for all 30 samples. We observed a 108 bp fused sequence in seven samples (Fig. 3A). The band containing this fusion was excised from the agarose gel, purified, and assessed by Sanger sequencing, which confirmed the fusion junction of the two genes (Fig. 3B). The fusion was identified in seven patients showing high malignancy and proliferation status. Altered expression of TRMO has been observed in patients with thyroid carcinoma, while altered TRNT1 expression is seen in colorectal cancer patients. These results suggest that fusion genes could be explored in the search for additional OSCC patients that would be identified after deep targeted cfDNA sequencing.

Finally, we checked the coding potential of the chimera to produce a functional protein. For this, we consulted three tools commonly used for analyzing the coding/noncoding potential of a given sequence. The scores obtained by CPAT and CNIT suggested that the fusion has a <0.3% coding probability. Therefore, the fusion does not have coding potential (Fig. 4A, B).

Copy number variation analysis of OSCC patient cfDNA

CNV is commonly observed in many cancers. Various studies have identified CNV and somatic mutations using cfDNA. Our aim here was to identify significant changes in copy numbers in OSCC patients using cfDNA genomic data. We performed CNV analysis on the sequenced cfDNA of OSCC patients using Gistic2.0, which assesses low pass copy number variations. The Q value was set at 0.01 for level significance. We observed significant amplifications in chromosomes 3q22.2, 7q35, 15q26. Amplifications were also seen in chromosomes 8p21.3, 10q26.2, 2p25 and 1q21.3 (Fig. 5A). Some of our findings correlate with TCGA HNSCC data for CNV and significantly mutated genes. Next, we performed functional enrichment analysis using PantherDB (Mi et al., 2021) and observed that commonly amplified genes in our study are predicted to play a significant role in GPCR pathways, opioid pathways, immune system activation pathways, apoptosis, and angiogenesis activation pathways (Fig. 5C). Particularly, we identified deleterious regions in patient cfDNA samples. In our cohort, we observed that chromosomes 1q23, 2q22, 3p21, 3q26, 7q31, 8p21, 9q34, 13q13 and 14q21 had the greatest number of deletions (Fig. 5B). Significantly mutated genes, like *TP53, TP63, FGFR1, MLH1*, have been shown to present deletions in those regions and were also identified in our study (Lawrence et al., 2015; Rhie et al., 2015; Wang et al., 2019a). Gene ontology analysis of amplification regions associated with deleterious genes in our samples assigned the affected genes as being mostly involved in immune activation pathways, apoptosis signaling pathways, the CCKR gene, cell cycle pathways and various metabolic pathways (Fig. 5D).
Discussion

cfDNA has been used as prognostic and diagnostic biomarker in many cancers (Hamana et al., 2005; Krebs et al., 2014; Alpaugh et al., 2017; Di Meo et al., 2017; Perdomo et al., 2017; Wang et al., 2018). Correlation of cfDNA levels with various tumor parameters has been established in glioblastoma and neuroblastoma, where the concentration of cfDNA correlated with tumor burden. High cfDNA concentrations were observed in samples with cancer, as compared to cfDNA from healthy samples ((Wang et al., 2018; Palande et al., 2022). In our study, we established correlation of cfDNA from 30 OSCC patients with tumor stage. High cfDNA levels were observed in patients with stage 3 and 4 tumors, while comparatively lower cfDNA concentrations were observed in patients with stage 1 and 2 tumors. We also observed a direct correlation between cfDNA concentration and recurrence and a secondary malignancy. High cfDNA concentration could thus provide insight into the probability of recurrence and presence of a secondary malignancy. We also observed that the threshold of maximum cfDNA concentration for survival was <27 ng/ml. Kaplan-Meyer survival analysis showed that the probability of survival is 68% for patients with OSCC. Our study could help in early prognosis of OSCC at the non-invasive cfDNA level. Still, the analysis of more samples could have helped with better statistical analysis of correlation of cfDNA with tumor parameters.

We also addressed various genomic alterations in the cfDNA of OSCC patients. One such alteration was the presence of viral DNA. Deep sequencing of the cfDNA of OSCC patients revealed presence of HPV, SV, HSV and enterovirus. While a high proportion of patients (48%) did not show the presence of any virus, a few patients presented more than one virus. HPV has been studied as a cause of HNSCC, cervical cancer and many other gynecological and urological cancer (Wang et al., 2015; Mazurek et al., 2016; Costa, Boroni and Soares, 2018; Sastre et al., 2021; Katirachi et al., 2023). We identified HPV in 6 out of 30 samples. HSV strains 1 and 5 were identified in 6 of 30 samples. HSV was previously reported in samples of HNSCC and OSCC patients and its association with the progression of cancer was claimed (Mosmann et al., 2010; Wołaçewicz et al., 2020; Brown et al., 2022). Enterovirus has been associated with malignant glioma (Zhang et al., 2020). SV was reported in samples of osteosarcoma and prostate cancer (Shah et al., 1972; Shah et al., 2004; Mazzoni et al., 2015). However, these viruses have not yet been associated with OSCC. Future studies could establish the association of these viruses with OSCC and determine if they are involved in oncogenic progression.

Using the in house ChiTah pipeline, we identified the novel fusion TRMO-TRNT1. PCR and Sanger sequencing validated the presence of this fusion in seven samples from patients with late stage tumors. Mutation in TRMO has been associated with thyroid carcinoma (Kulkarni et al., 2021). TRNT1 has not been associated with any cancer thus far, although its mutation is responsible for causing congenital disease and sideroblastic anemia (Wedatilake et al., 2016). The fusion product does not have any coding potential, according to CPAT (Wang et al., 2013). In future, it might be interesting to study the mechanism of action of this fusion gene in OSCC progression.

Finally, CNV was considered. CNV in tissues, as well as in cfDNA, has been studied and was shown to be associated with many cancers, including OSCC. (Shlien and Malkin, 2009). In our study, we found regions of chromosomes 3q22.2, 7q35, 15q26 to be amplified. Amplifications
were also seen in chromosomes 8p21.3, 10q26.2, 2p25 and 1q21.3. Gene ontology pathway analysis of genes at these loci revealed them to be associated with angiogenesis, immune activation pathways, and GPCR, interleukin, VEGF, FGF, vasopressin activation pathways. The deleterious regions at chromosomes 1q23, 2q22, 3p21, 3q26, 7q31, 8p21, 9q34, 13q13 and 14q21 affect genes associated with apoptosis, CCKR, cell cycle, and immune activation and cell signaling pathways. Mutations in these genes and structural variations associated with these loci have been studied in TCGA and by other groups. Our study agrees with TCGA and previous studies (Lawrence et al., 2015; Rhie et al., 2015; Wang et al., 2019b; Wu et al., 2022). In future, targeted sequencing of these genes or CNV analysis of these chromosomal loci could be used as biomarkers for OSCC.
Figure legends

Fig. 1: Correlation of cfDNA concentration with different tumor profiles. A. cfDNA concentration compared with tumor stage using Shapiro-Wilk normality. B. cfDNA vs. secondary malignancy. C. cfDNA vs. recurrence. D. Probability of survival was determined using a survival curve, with the threshold of survival being 27 ng/ml. E. Survival analysis using the Kaplan-Meyer method showed 68% probability of survival within the cohort.

Fig. 2: Identification of virusal DNA in cfDNA samples. A. Pie chart showing the percentage of samples containing viral DNA. B. Presence of different viral DNA in the samples. Some patients had DNA from more than one virus in their samples.

Fig. 3: Identification of a novel fusion. A. Agarose gel of PCR product from two confirmed patient samples with the fusion highlighted by a red box. B. Sanger sequencing of the PCR product confirmed the fusion junction of our samples with results from the ChiTaRS fusion database. C. Agarose gel image for fusion identification in other patients’ cfDNA after PCR highlighted by the red box.

Fig. 4: Coding potential of the fusion sequence. A. The CPAT score suggests that the fusion is non-coding. B. The CNIT result was also used to validate the coding potential and likewise suggests that the fusion gene is a non-protein coding sequence.

Fig. 5: Copy number variation analyses of cfDNA sequences: CNV analysis was done on 30 patient cfDNA samples using Gistic2.0. An amplification plot suggests (A) amplification in the regions 8p21.3, 10q26.2, 2p25 and 1q21.3 and (B) deletions in chromosomes 1q23, 2q22, 3p21, 3q26, 7q31, 8p21, 9q34, 13q13 and 14q21. C.D. Gene ontology analysis of amplified (C) and deleted regions (D) using PantherDB. Genes related to various signaling pathway and the apoptosis pathway were enriched.
Figures

Fig 1A

Tumour Stage vs cfDNA concentration

Fig 1B

cfDNA vs malignancy
Fig 2A

Virus identified in cfDNA of OSCC

Fig 2B

Virus

No virus
<table>
<thead>
<tr>
<th>Patients' ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17</td>
</tr>
</tbody>
</table>
References:

47. Wang, Y. et al. (2015) ‘Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas’, Science Translational Medicine, 7(293). Available at: https://doi.org/10.1126/SCITRANSLMED.AAA8507.

