Title: Cost-Effectiveness of Screening for Asymptomatic Carotid Artery Stenosis Based on Atherosclerotic Cardiovascular Disease Risk Thresholds

Authors: Jinyi Zhu, PhD*1; Janice Jhang*2; Hanxuan Yu, MEd1; Alvin I Mushlin, MD, ScM3; Hooman Kamel, MD4; Nathaniel Alemayehu5; John Giardina, PhD6; Ajay Gupta, MD7; Ankur Pandya, PhD2,5

*Jinyi Zhu and Janice Jhang are co-first authors.

Affiliations:
1Department of Health Policy, Vanderbilt University School of Medicine, Nashville, TN, USA;
2Department of Health Policy and Management, Harvard T.H. Chan School of Public Health, Boston, MA, USA;
3Departments of Population Health Sciences and Medicine, Weill Cornell Medical College, New York, NY, USA;
4Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA;
5Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, MA, USA;
6Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA, USA;
7Department of Radiology, Weill Cornell Medicine, New York, NY, USA

Address for correspondence:
Jinyi Zhu, PhD
Department of Health Policy, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
T: 615-875-6854
Email: jinyi.zhu.1@vanderbilt.edu

Word count: 3,280

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract (Word count: 350 out of 350)

Background: Carotid artery stenosis (50-99% extracranial internal carotid artery narrowing) is a risk factor for ischemic stroke. However, no population-based studies have directly assessed the benefits and harms of screening for asymptomatic carotid artery stenosis (ACAS), and the CREST-2 trial is currently evaluating the efficacy of revascularization vs. intensive medical management for ACAS patients. Given this gap, the United States Preventive Services Task Force (USPSTF) currently recommends against screening for ACAS in the general population. Because ACAS prevalence and ischemic stroke risk vary by clinical risk factors, we sought to quantify the cost-effectiveness of screening for ACAS by cardiovascular disease risk-based subgroups.

Methods: We developed a microsimulation model of ACAS and stroke to project the lifetime costs and quality-adjusted life-years (QALYs) associated with ACAS screening, stratified by individuals’ 10-year atherosclerotic cardiovascular disease (ASCVD) risk. We used individual-level data to estimate probabilities and severity of ACAS based on individual characteristics (e.g., age, sex, smoking status, blood pressure, and cholesterol). Annual stroke risks were functions of these characteristics and the degree of ACAS. In the model, individuals testing positive with Duplex ultrasound (>70% stenosis) and a confirmatory diagnostic test undergo revascularization, which reduces the risk of stroke but also introduces risk of complications. Diagnostic performance parameters, revascularization benefits and risks, and costs were estimated from published sources. Cost-effectiveness was assessed using a $100,000/QALY willingness-to-pay threshold.

Results: Compared to no screening, the incremental value of a one-time screening for adults aged 50-80 varied by ASCVD risk. Screening adults with 10-year ASCVD risk >30% and >25% resulted in incremental cost-effectiveness ratios of $29,500/QALY and $73,600/QALY, respectively. Screening strategies for adults with ASCVD risk thresholds lower than 25% were not cost-effective at the $100,000/QALY threshold. Results were sensitive to variation in the risks and benefits associated with revascularization.

Conclusions: Although the USPSTF recommends against screening for ACAS in the general population, a one-time screen may be cost-effective for adults aged 50+ with ASCVD risk >25%. Depending on updated findings from CREST-2, ACAS screening may still be cost-effective for higher ASCVD risk thresholds, even with lower efficacy or higher risks of revascularization than our base-case estimates.
Introduction

Stroke is the 5th leading cause of mortality and a major cause of disability in the United States. 1 14% of all strokes can be attributed to thromboembolism from previously asymptomatic stenosis of the extracranial internal carotid artery. 2 For some patients, a warning transient ischemic attack will precede their stroke, and revascularization procedures such as carotid endarterectomy and stenting are recommended for primary prevention of stroke in these patients. 2,3 For the remaining 11% of strokes attributable to undiagnosed carotid stenosis, population-level screening with duplex ultrasonography (DUS) could provide the opportunity for early intervention, but this approach is controversial in light of several evidence gaps. 2

The prevalence of moderate-to-severe asymptomatic carotid artery stenosis is low in the general population, ranging from 0 to 7.5%, which could require a high number needed to screen (NNS) to detect one case and limit the overall value of population-based screening. 3–5 Furthermore, given modern advancements in medical management of stroke risk factors, the optimal treatment for asymptomatic carotid artery stenosis remains unknown. For patients with severe carotid artery stenosis, previous trials have found benefits associated with revascularization procedures such as carotid endarterectomy and carotid artery stenting, but the procedures are also associated with risks of complications. The second Carotid Revascularization Endarterectomy vs. Stenting Trial (CREST-2) is currently underway to evaluate the risks and benefits associated with carotid endarterectomy and carotid artery stenting compared to modern intensive medical management alone. 6

Due to these factors, the US Preventive Services Task Force (USPSTF) and most US professional societies currently recommend against screening for asymptomatic carotid artery stenosis in the general adult population. 3,7–9 However, multiple professional societies recommend consideration of DUS screening for patients with multiple risk factors for stroke. 3,8,9 Because several factors increase risk for both carotid artery stenosis and ischemic stroke (e.g., older age, male sex, hypertension, current smoking, hypercholesterolemia, and diabetes mellitus), a targeted screening strategy could potentially be valuable for high-risk sub-groups. In its 2021 Evidence Review, the USPSTF highlighted the need to develop and validate tools to determine which individuals are at high risk for stroke due to carotid artery stenosis in order to better evaluate the benefits and harms of screening for asymptomatic carotid artery stenosis. 7 To address this knowledge gap, we sought to quantify the cost-effectiveness of a one-time screening of the US adult population for asymptomatic carotid artery stenosis stratified by sub-groups based on atherosclerotic cardiovascular disease (ASCVD) risk, defined by the American Heart Association’s Pooled Cohort Equations. 10
Methods

Study cohort and simulation model

We developed a carotid stenosis and stroke microsimulation model to project the lifetime health and stroke-related cost outcomes of a hypothetical cohort representative of all US adults aged 50-80 (N = 106,886,000). The population was sampled by weights, with replacement, from the nationally representative datasets of the 2013-2014, 2015-2016, and 2017-2018 waves from the National Health and Nutrition Examination Survey (NHANES). We extracted individual-level data, including age, sex, race, diabetes, smoking (current vs. any other), total and high-density lipoprotein cholesterol, systolic and diastolic blood pressure, history of CVD, and hypertension treatment to construct the starting model cohort.

Our microsimulation model structure (Figure 1) was based on previously published stroke simulation models. Pre-stroke natural history followed our previously published carotid stenosis model in terms of stenosis progression, regression, and revascularization, with new extensions related to asymptomatic carotid artery stenosis screening and transient ischemic attack (TIA). We simulated stroke-related outcomes based on our previously published acute stroke model. We simulated individuals at risk of TIA and stroke until death for the cost-effectiveness analysis of asymptomatic carotid artery stenosis screening over a lifetime horizon, in which the transitions between health states and between stenosis categories were based on annual probabilities (Table 1).

All Individuals in the microsimulation start the model without a history of stroke. A proportion of individuals in the microsimulation model receive a one-time screening for asymptomatic carotid artery stenosis depending on the strategy being evaluated and the individual’s ASCVD risk. Because carotid stenosis status is not collected in NHANES, we probabilistically determined the presence of moderate-to-severe asymptomatic carotid artery stenosis (>50% stenosis) for each individual in the micro-simulation. These probabilities were estimated using a multivariate logistic regression model we created using individual-level data from the Cardiovascular Health Study (CHS). This prediction model was based on the ACAS prediction model proposed by de Weerd et al., which was the best model found by Poorthuis et al. in an external validation study of models proposed for predicting ACAS. Our prediction model included overlapping covariates that were available in NHANES, i.e., age, sex, race, diabetes, smoking, total and HDL cholesterol, systolic and diastolic blood pressure, and history of CVD. We validated this prediction model using a split sample approach (i.e., in a test set of 30% of the data). In the microsimulation model, individuals with stenosis higher than 50% are randomly assigned to one of the four stenosis blockage categories (50-69%, 70-79%, 80-99%, 100%) with a weight of 0.6,
0.2, 0.1, and 0.1 separately; these weights were obtained through calibration to data reported in Hirt 2014.14 We calibrated the sex- and age-specific prevalence of asymptomatic carotid artery stenosis in the model population to estimates from published sources.4

\textit{Screening strategies}

In addition to no screening and screening all, we evaluated seven asymptomatic carotid stenosis screening strategies that were risk-stratified based on the level of Pooled Cohort Equations (PCEs), which were developed by the American College of Cardiology and the American Heart Association.15 The PCEs estimate the 10-year risk of ASCVD among patients without pre-existing cardiovascular disease. The predictors for the PCEs are age, sex, race, diabetes, smoking, total and HDL cholesterol, systolic blood pressure, and blood pressure treatment. We varied the ASCVD risk-based threshold using 5% intervals (between >30% and >5% ASCVD risk).

If screened according to the strategy being evaluated in the micro-simulation model, the individual would receive a bilateral ultrasound duplex scan of carotid arteries (DUS) first and then a confirmatory test of computed tomography angiography (CTA) or magnetic resonance angiography (MRA) if they received a positive DUS test result (>70% stenosis in either carotid artery). In the microsimulation, the individual would only undergo a revascularization procedure if both tests found carotid artery stenosis 70-99%, following recommended indications for these procedures.3,8 The complications during revascularization (3.1% of all revascularizations)16,17 could be ischemic stroke (88.7% of complications)16 or death (11.3% of all complications).16 After revascularization, an individual’s level of stenosis would be categorized as 0-49%.

Individuals face annual, competing risks of background death, ischemic stroke, and TIA in the disease-free state. Non-stroke-related mortality is drawn from the age- and sex-specific US life tables.18 Transitions from the disease-free state (with or without treatment) to ischemic stroke events were based on 10-year cumulative incidence functions developed by Ferket et al. using data from 3 population-based cohort studies (the Cardiovascular Health Study, the Atherosclerosis Risk in Communities Study, and the Rotterdam Study).19 Ferket et al. cross-validated the ischemic stroke risk prediction function by fitting models in 2 cohorts and evaluating in the 3rd, resulting in c-statistics ranging from 0.651 - 0.760.19 Factors used to predict individual risk of ischemic stroke included age, sex, race, current smoking status, diabetes, antihypertensive medication use, systolic blood pressure, and history of coronary heart disease.19 History of TIA, category of stenosis, and history of revascularization affected individuals’ ischemic stroke risk using separate relative risk estimates (applied multiplicatively).
Revascularization was estimated to reduce the incidence of non-perioperative stroke by 46% based on results from the Asymptomatic Carotid Surgery Trial (ACST-1).\(^2^0\)

The incidence of TIA was based on sex- and age-specific incidence rates from the most recent epoch (2000 - 2017) of the Framingham Heart Study, a population-based cohort study.\(^2^1\) In the microsimulation model, any individual who experienced a TIA receives a confirmatory diagnostic test in the same model cycle. If the individual tests positive for carotid artery stenosis 70-99%, they receive the revascularization procedure.

Once an individual develops a stroke event, they transition to a previously published acute and post-acute stroke model, where details can be found on the model structure and parameter inputs.\(^1^2\) Acute stroke outcomes are governed by the modified Rankin Scale (mRS, a discrete score between 0 and 6, where mRS = 0 indicates no symptoms and mRS = 6 indicates death). A more severe mRS is also associated with higher recurrent stroke risk and post-stroke excess mortality for post-stroke survivors.

Model Outcomes

Our primary health outcomes were the number of strokes averted and quality-adjusted life-years (QALYs) gained. Quality of life is quantified using utility weights for acute and post-stroke health states and a disutility weight applied for 2 weeks after revascularization procedures. Total lifetime costs included the costs of TIA and stroke care, costs of screening tests and revascularization, and usual health care costs for individuals without a history of stroke. We estimated the incremental cost-effectiveness ratio (ICER), calculated as the incremental cost per QALY gained, for any screening strategy that was not dominated (more costly and less beneficial) nor dominant (less costly and more beneficial). We used a base-case willingness-to-pay threshold of $100,000/QALY.\(^2^2\) Future health and cost outcomes were discounted annually at 3%.

Sensitivity Analysis

We performed univariate sensitivity analysis, varying each model parameter between its 95% CI bounds (or otherwise plausible ranges), holding other parameters constant. We also performed a two-way sensitivity analysis of revascularization efficacy and complication risk. In probabilistic sensitivity analyses, we varied model input values based on pre-specified probability distributions and estimated the probability of each strategy being cost-effective at various willingness-to-pay thresholds. We reported the mean estimates for each model outcome from
1,000 samples of parameter sets from the probabilistic sensitivity analysis as our base case results, alongside the 95% uncertainty intervals (UI).

We performed analyses using R (version 4.2.2) and programmed the simulation model using the Rcpp package (version 1.0.10).

Results

Model calibration and validation

Appendix Table 1 shows key summary statistics of our model cohort. We found acceptable discrimination in the asymptomatic carotid artery stenosis prediction model we derived from CHS data, with a c-statistic of 0.72 in the test set. Our validation results were similar to the external validation results reported by Poorthuis et al. (c-statistic = 0.75).13

Base-Case Results

From the 1,000 parameter sets, we calculated the mean and 95% uncertainty intervals for the outcomes under all stratified strategies, reported in Table 2. Under our base-case $100,000/QALY willingness-to-pay threshold, the cost-effective strategy would be to screen adults (age 50-80) with a 10-year ASCVD risk larger than 25% (ICER = $73,600/QALY, 95% UI [$53,300/QALY, $98,100/QALY]). It also produced 63.52 (95% UI [63.05, 64.01]) strokes averted per 100,000 people.

One-Way and Two-Way Sensitivity Analysis Results

Figure 2 shows our one-way sensitivity analysis results. Cost-effectiveness results were robust to plausible changes in most model input parameters. Lower MRA specificity, lower DUS specificity, or lower annual probability of stenosis progression would result in the optimal threshold of 10-year ASCVD risk being higher than our base-case result, corresponding to fewer individuals being screened in the optimal strategy. Better revascularization efficacy, lower probability of complication during revascularization, or lower probability of post-revascularization restenosis would result in the optimal threshold of 10-year ASCVD risk being lower than our base-case result, corresponding to more individuals being screened in the optimal strategy.

Figure 3 shows the two-way sensitivity analysis results on the efficacy and complication risks of revascularization. Results were sensitive to variation in the risks and benefits associated with
revascularization. The optimal strategy will cover a bigger proportion of the population with a higher probability of complication or better effectiveness of revascularization on stroke occurrence.

Probabilistic Sensitivity Analysis Results

The probabilistic sensitivity analysis results are shown in cost-effectiveness acceptability curves and frontier (Figure 4). The acceptability curves show the probabilities of each ASCVD threshold being cost-effective for various willingness-to-pay (i.e., cost-effectiveness) thresholds, while the frontier emphasizes the cost-effective strategy on average at a particular threshold.

When the willingness-to-pay threshold is $25,000/QALY, screening no one was optimal in 64.7% of PSA iterations. Under a $70,000/QALY willingness-to-pay threshold, screening adults with a 10-year ASCVD risk >30% was optimal in 49.7% of PSA iterations. Screening adults with a 10-year ASCVD risk >25% was optimal in 29.1% of PSA iterations under a $100,000/QALY willingness-to-pay threshold. Moreover, screening adults with a 10-year ASCVD risk >20% would be optimal for any willingness-to-pay threshold larger than 110,000 $/QALY.

Discussion

We performed a model-based cost-effectiveness analysis of targeted screening strategies for asymptomatic carotid artery stenosis and found that screening individuals with 10-year ASCVD risk greater than 25% would meet conventional standards for cost-effectiveness in the U.S. (<$100,000/QALY). Individuals eligible for screening would represent ~23% of the US population aged 50–80. Compared to lower 10-year ASCVD risk thresholds, screening adults with >25% risk resulted in higher lifetime QALYs gained and lower incremental costs. Most of the gains in stroke prevention came from the group with the highest ASCVD risk (>30%).

These results were sensitive to assumptions regarding the effectiveness and safety of revascularization procedures, carotid disease incidence and progression probabilities, and the specificity of tests used to screen for and diagnose carotid stenosis. Model parameters were based on results from the Carotid Revascularization and Medical Management for Asymptomatic Carotid Stenosis Trial (CREST) and the first and second Asymptomatic Carotid Surgery Trials (ACST-1 and -2), which examined the relative efficacy of carotid artery stenting (CAS) compared to carotid endarterectomy (CEA). These trials did not compare the efficacy of revascularization plus modern intensive medical management to medical management alone. It is thought that the benefits of revascularization are diminishing due to modern advancements and increasing utilization of anti-hypertensive and anti-lipid medications. To account for these
factors, CREST-2 is currently underway to re-assess the relative benefit of revascularization compared to intensive medical management alone for asymptomatic carotid stenosis. Once CREST-2 concludes, the results from our analysis can help translate the trial results into cost-effective screening recommendations. Medication advancements and declining stroke incidence suggest that revascularization will be found to be less effective than reported in previous trials, so the optimal screening strategy may shift to higher ASCVD risk thresholds or to no screening at all.

Our study addresses a key need that was highlighted by the US Preventive Services Task Force in its 2021 Recommendation Statement. The USPSTF currently recommends against screening asymptomatic individuals for carotid stenosis, and most specialty societies agree. However, guidelines from the Society for Vascular Surgery and joint guidelines from multiple professional societies include exceptions for individuals with risk factors for stroke, which are present in nearly 1 in 3 US adults. Previous studies to assess the cost-effectiveness of screening for asymptomatic carotid stenosis were conducted prior to 2000 and did not stratify screening strategies by individual risk. Assuming the benefit of endarterectomy for asymptomatic patients reported by the Asymptomatic Carotid Atherosclerosis Study, prior studies found that a one-time screening could be cost-effective if it were implemented in populations with high prevalence of carotid stenosis or if both screening and endarterectomy were performed in centers of excellence. More recent studies have assessed the value of using tools, e.g., the Carotid Mortality Index or ultrasound imaging to assess cerebrovascular reserve and plaque echolucency, to risk stratify patients with ACAS who might benefit most from revascularization. However, no modern studies have explicitly re-assessed the value of a population-level screening for asymptomatic carotid stenosis.

Various risk scores and tools have been proposed to identify individuals at high risk for asymptomatic carotid stenosis to allow for targeted screening. For our analysis, we stratified screening strategies by 10-year ASCVD risk estimated by the Pooled Cohort Equations. Developed by the American College of Cardiology and the American Heart Association, the 10-year ASCVD risk assessment is commonly used in clinical practice to estimate patients’ future risk of cardiovascular events and would be efficient to implement for potential ACAS screening decisions. Poorthuis et al. investigated the detection rate of ACAS through selective screening by 10-year ASCVD risk thresholds and found that the prevalence of ACAS increased over increasing ASCVD risk groups for both men and women. Compared to a number needed to screen (NNS) of 64 if all participants were screened, selective screening of participants with ASCVD risk >20% reduced the NNS to 27 and identified 40% of all ACAS cases. Poorthuis et al. demonstrated that selective screening of ACAS using ASCVD risk assessment could be effective.
at reducing the NNS compared to population-wide screening, and our analysis complements these findings by explicitly identifying the optimal ASCVD risk threshold for selective screening.

Recently, the American Heart Association announced new risk prediction equations, PREVENT (AHA Predicting Risk of cardiovascular disease Events), to estimate 10- and 30-year risk of cardiovascular disease.\(^{31}\) The tool factors in predictors and outcomes relevant to the newly defined cardiovascular-kidney-metabolic syndrome, accounts for social determinants of health when available, and removes race as a risk factor.\(^{31}\) Risk stratification for ACAS screening using the PREVENT equations rather than the Pooled Cohort Equations could be evaluated in future studies.

Our study has several limitations. First, the NHANES data used to construct the model population did not report individuals’ carotid stenosis status or severity, so we developed a multivariate logistic regression (ACAS prediction) model to probabilistically determine the presence of moderate-severe asymptomatic carotid stenosis for each individual in our model. We validated our ACAS prediction model using a split sample approach and found acceptable, but not perfect, discrimination (AUROC of 0.72). Our ACAS prediction model was based on the best model\(^5\) determined by Poorthuis et al.\(^{13}\) in an external validation study of proposed models to predict ACAS and included all overlapping covariates that were available in NHANES. Poorthuis et al. found that most models proposed for ACAS prediction have modest discrimination; however, these prediction models can reliably identify cohorts of individuals at high risk of carotid stenosis, which could substantially reduce the NNS to detect ACAS.\(^{13}\) Second, the assumptions regarding the efficacy and risk associated with revascularization are based on estimates from previous trials that did not use modern intensive medical management as the baseline comparator. However, our sensitivity analyses provide interpretable thresholds for the pending results of CREST-2 that may shift the optimal ASCVD-risk based screening strategy. Third, this analysis did not differentiate between types of revascularization procedures, i.e., carotid endarterectomy and carotid artery stenting, but CREST,\(^3\) ACST-2,\(^{17}\) and ACT\(^{13}\) have reported comparable outcomes for both procedures among patients with asymptomatic carotid stenosis. Fourth, our study did not account for secular trends in population stroke risk over time.\(^{34}\) Improvements in medical management of stroke risk factors may continue to reduce the risk of cardiovascular events among patients with asymptomatic carotid stenosis in the future, which may diminish the value of a population-level screening policy, but our sensitivity analyses capture this potential uncertainty as it relates to the efficacy of revascularization versus medical management. Finally, our full simulation model has not been externally validated, but we conducted split-sample validations of individual-level data analyses that parameterized key model inputs such as the individual-level prediction of moderate-to-severe carotid stenosis. As discussed above, our prediction model was based on
the best model for predicting asymptomatic carotid stenosis that was identified in an external validation study.13

Based on our model results, neither a screen-none policy nor a screen-all policy is cost-effective for preventing stroke among individuals with asymptomatic carotid artery stenosis. Instead, it may be cost-effective to screen adults at higher risk of having a cardiovascular event over the next 10 years. With our current base-case assumptions, screening adults with ASCVD risk >25\% would meet conventional standards for cost-effectiveness, which would make \textapprox\ 23\% of the US population aged 50–80 eligible for screening. Our results were sensitive to key parameters that will be clarified pending the results of CREST-2, but our study provides information to put the findings of the trial into context to inform future cost-effective screening guidelines.
Tables

Table 1: Parameter inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Base-Case Value</th>
<th>Confidence Interval</th>
<th>Probability Distribution</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of moderate-to-severe asymptomatic carotid artery stenosis</td>
<td>Age- and sex-specific</td>
<td></td>
<td>μ (normal)</td>
<td>de Weerd et al,4 2010</td>
</tr>
<tr>
<td>Annual probability of stenosis progression</td>
<td>0.052</td>
<td>0.034 - 0.070</td>
<td>β</td>
<td>Hirt,14 2014; Kakkos et al,29 2014</td>
</tr>
<tr>
<td>Conditional probability of progression by 2+ categories (given progression)</td>
<td>0.207</td>
<td>0.175 - 0.241</td>
<td>β</td>
<td>Hirt,14 2014</td>
</tr>
<tr>
<td>Conditional probability of progression by 3+ categories (given progression)</td>
<td>0.50</td>
<td>0.40 - 0.60</td>
<td>β</td>
<td>Assumption</td>
</tr>
<tr>
<td>Annual probability of stenosis regression</td>
<td>0.045</td>
<td>0.024 - 0.065</td>
<td>β</td>
<td>Hirt,14 2014</td>
</tr>
<tr>
<td>Annual incidence rate of transient ischemic attack (rate per 1000 person-years)</td>
<td>Age- and sex-specific</td>
<td></td>
<td>μ (normal)</td>
<td>Lioutas et al,21 2021</td>
</tr>
<tr>
<td>Annual risk of stroke</td>
<td>Based on individual risk factors</td>
<td></td>
<td>μ (lognormal)</td>
<td>Ferket et al,19 2014</td>
</tr>
<tr>
<td>OR of stroke for 50-69% vs. 0-49% stenosis</td>
<td>1.4</td>
<td>0.9 - 2.2</td>
<td>Log-normal</td>
<td>Howard et al,36 2021</td>
</tr>
<tr>
<td>OR of stroke for 70-79% vs. 0-49% stenosis</td>
<td>2.3</td>
<td>1.5 - 3.5</td>
<td>Log-normal</td>
<td>Howard et al,36 2021</td>
</tr>
<tr>
<td>OR of stroke for 80-99% vs. 0-49% stenosis</td>
<td>3.2</td>
<td>2.1 - 4.9</td>
<td>Log-normal</td>
<td>Howard et al,36 2021</td>
</tr>
<tr>
<td>Rate ratio of stroke for 100% vs. 0-49% stenosis</td>
<td>7.74</td>
<td>2.19 - 27.44</td>
<td>Log-normal</td>
<td>Hirt,14 2014</td>
</tr>
<tr>
<td>Rate ratio of stroke given stenosis regression</td>
<td>0</td>
<td></td>
<td></td>
<td>Kakkos,35 2014</td>
</tr>
<tr>
<td>Hazard ratio of stroke for TIA vs. non-TIA (10-year)</td>
<td>4.4</td>
<td>3.47 - 5.57</td>
<td>Log-normal</td>
<td>Converted to annual, assuming constant rates Lioutas et al,21 2021</td>
</tr>
<tr>
<td>Annual probability of non-stroke related death</td>
<td>Age- and sex-specific</td>
<td></td>
<td>μ (lognormal)</td>
<td>United States Life Tables18</td>
</tr>
<tr>
<td>Duplex ultrasound sensitivity for stenosis >70%</td>
<td>0.86</td>
<td>0.84 - 0.89</td>
<td>β</td>
<td>Nederkoorn et al,37 2003; Saxena et al,38 2019</td>
</tr>
<tr>
<td>Duplex ultrasound specificity for stenosis >70%</td>
<td>0.87</td>
<td>0.84 - 0.90</td>
<td>β</td>
<td>Nederkoorn et al,37 2003; Saxena et al,38 2019</td>
</tr>
<tr>
<td>Description</td>
<td>Value</td>
<td>Confidence Interval</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>------------------------</td>
<td>------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Confirmatory CTA/MRA sensitivity</td>
<td>0.95</td>
<td>0.92 - 0.97</td>
<td>Nederkoorn et al,37 2003; Saxena et al,38 2019</td>
<td></td>
</tr>
<tr>
<td>Confirmatory CTA/MRA specificity</td>
<td>0.9</td>
<td>0.86 - 0.93</td>
<td>Nederkoorn et al,37 2003; Saxena et al,38 2019</td>
<td></td>
</tr>
<tr>
<td>Relative risk of future stroke following revascularization</td>
<td>0.54</td>
<td>0.50 - 0.90</td>
<td>Halliday et al,20 2010</td>
<td></td>
</tr>
<tr>
<td>Probability of complications during revascularization</td>
<td>0.031</td>
<td>0.025 - 0.038</td>
<td>Hill et al,16 2012; Halliday et al,17 2021</td>
<td></td>
</tr>
<tr>
<td>Conditional probability of death</td>
<td>0.113</td>
<td>0.091 - 0.136</td>
<td>Hill et al,16 2012</td>
<td></td>
</tr>
<tr>
<td>Conditional probability of ischemic stroke</td>
<td>0.887</td>
<td>0.864 - 0.910</td>
<td>Hill et al,16 2012</td>
<td></td>
</tr>
<tr>
<td>Stroke severity mRS 0-1</td>
<td>0.354</td>
<td></td>
<td>Levin et al,39 2019</td>
<td></td>
</tr>
<tr>
<td>Stroke severity mRS 2-3</td>
<td>0.323</td>
<td></td>
<td>Levin et al,39 2019</td>
<td></td>
</tr>
<tr>
<td>Stroke severity mRS 4-5</td>
<td>0.323</td>
<td></td>
<td>Levin et al,39 2019</td>
<td></td>
</tr>
<tr>
<td>Probability of restenosis following revascularization (from 0-49%)</td>
<td>0.03</td>
<td>0.01 - 0.04</td>
<td>Lal et al,40 2012</td>
<td></td>
</tr>
<tr>
<td>Cost of bilateral Duplex ultrasound scan of carotid arteries</td>
<td>$148</td>
<td>$118 - $178</td>
<td>Medicare Physician Fee Schedule,41 2023</td>
<td></td>
</tr>
<tr>
<td>Cost of confirmatory CTA/MRA scan</td>
<td>$314</td>
<td>$270 - $380</td>
<td>Medicare Physician Fee Schedule,42 2023</td>
<td></td>
</tr>
<tr>
<td>Cost of treatment for transient ischemic attack</td>
<td>$6,200</td>
<td>$3,000 - $12,000</td>
<td>Converted from 2010 USD Kamel et al,43 2012</td>
<td></td>
</tr>
<tr>
<td>Cost of revascularization for asymptomatic carotid artery stenosis</td>
<td>$8,862</td>
<td>$7090 - $10,635</td>
<td>Converted from 2015 USD Obeid et al,44 2017</td>
<td></td>
</tr>
<tr>
<td>Cost of revascularization following transient ischemic attack</td>
<td>$15,368</td>
<td>$12,294 - $18,442</td>
<td>Converted from 2015 USD Obeid et al,44 2017</td>
<td></td>
</tr>
<tr>
<td>Utility of asymptomatic carotid artery stenosis</td>
<td>1</td>
<td>0.836 - 1</td>
<td>Tengs et al,45 2003</td>
<td></td>
</tr>
<tr>
<td>Utility of transient ischemic attack</td>
<td>0.95</td>
<td>0.8 - 1</td>
<td>Kamel et al,43 2012</td>
<td></td>
</tr>
<tr>
<td>Utility of revascularization procedure (applied for 2 weeks)</td>
<td>0.77</td>
<td>0.77 - 1</td>
<td>Cohen et al,46 2012</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Base-case cost-effectiveness results

<table>
<thead>
<tr>
<th>% of Population Aged 50~80</th>
<th>Discounted Cost ($, in millions)</th>
<th>Discounted QALYs (in thousands)</th>
<th>Incremental Cost, ($, in millions)</th>
<th>Incremental QALYs (in thousands)</th>
<th>Strokes averted</th>
<th>ICER ($/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Screening</td>
<td>0%</td>
<td>20,389,402</td>
<td>1,525,872</td>
<td>Dominated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20,388,376 to 20,390,428)</td>
<td>(1,525,712 to 1,526,022)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen ASCVD risk >30%</td>
<td>16.1%</td>
<td>20,393,763</td>
<td>1,526,022</td>
<td>4,361 (4,291 to 4,432)</td>
<td>148 (146 to 149)</td>
<td>46,720 (46,431 to 47,019)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20,392,748 to 20,394,789)</td>
<td>(1,525,862 to 1,526,172)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen ASCVD risk > 25%</td>
<td>23.0%</td>
<td>20,395,997</td>
<td>1,526,043</td>
<td>2,228 (2,200 to 2,256)</td>
<td>30.3 (29.8 to 30.8)</td>
<td>10,411 (10,314 to 10,518)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20,394,971 to 20,397,023)</td>
<td>(1,525,894 to 1,526,204)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen ASCVD risk > 20%</td>
<td>31.8%</td>
<td>20,398,969</td>
<td>1,526,076</td>
<td>2,971 (2,936 to 3,007)</td>
<td>27.2 (26.6 to 27.9)</td>
<td>10,763 (10,646 to 10,881)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20,397,943 to 20,399,995)</td>
<td>(1,525,915 to 1,526,225)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen ASCVD risk > 15%</td>
<td>43.3%</td>
<td>20,403,009</td>
<td>1,526,097</td>
<td>4,039 (3,993 to 4,086)</td>
<td>20.2 (19.3 to 21.1)</td>
<td>11,405 (11,255 to 11,544)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20,401,010 to 20,404,035)</td>
<td>(1,525,937 to 1,526,247)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen ASCVD risk > 10%</td>
<td>59.0%</td>
<td>20,408,952</td>
<td>1,526,097</td>
<td>Dominated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20,407,904 to 20,409,999)</td>
<td>(1,525,937 to 1,526,247)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen ASCVD risk > 5%</td>
<td>79.8%</td>
<td>20,417,278</td>
<td>1,526,033</td>
<td>Dominated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20,416,209 to 20,418,358)</td>
<td>(1,525,883 to 1,526,193)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen All</td>
<td>100%</td>
<td>20,425,904</td>
<td>1,525,947</td>
<td>Dominated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20,424,782 to 20,427,016)</td>
<td>(1,525,798 to 1,526,108)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All results are reported for the US adult population aged 50~80 (total N = 106,886,000).
Figure Captions:

Figure 1: Model schematic. Individuals can progress or regress in the carotid artery stenosis severity. Severity of carotid artery stenosis affects individuals’ probability of experiencing a transient ischemic attack or stroke.

Figure 2: One-way sensitivity analysis. Stars denote the base-case parameter values. The graph includes all six parameters where the optimal screening strategy was sensitive to variation in those parameters. The optimal screening strategy did not change while varying all the other parameters.

Figure 3: Two-way sensitivity analysis results on the probability of revascularization complications and efficacy of revascularization.

Figure 4: Probabilistic sensitivity analysis results. Colored curves denote the cost-effectiveness acceptability curves, showing the probability of a strategy being optimal at different cost-effectiveness thresholds. Black dots denote the cost-effectiveness acceptability frontier, showing the optimal strategy on average for a given cost-effectiveness threshold.
Figure 1: Model schematic. Individuals can progress or regress in carotid artery stenosis severity. Severity of carotid artery stenosis affects individuals’ probability of experiencing a transient ischemic attack or stroke.

* Following a revascularization procedure, individuals are categorized as having 0-49% carotid artery stenosis.
Figure 2: One-way sensitivity analysis. Stars denote the base-case parameter values. The graph includes all six parameters where the optimal screening strategy was sensitive to variation in those parameters. The optimal screening strategy did not change while varying all the other parameters.
Figure 3: Two-way sensitivity analysis on the probability of revascularization complications and efficacy of revascularization
Figure 4: Probabilistic sensitivity analysis results. Colored curves denote the cost-effectiveness acceptability curves, showing the probability of a strategy being optimal at different cost-effectiveness thresholds. Black dots denote the cost-effectiveness acceptability frontier, showing the optimal strategy on average for a given cost-effectiveness threshold.
References:

Appendix Table 1. Summary statistics for model cohort.

<table>
<thead>
<tr>
<th>ASCVD risk</th>
<th>Sex (male)</th>
<th>Initial Age</th>
<th>ACAS prevalence</th>
<th>proportion in the population</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5%</td>
<td>16.4%</td>
<td>Mean 55.6 (SD 4.1)</td>
<td>0.28%</td>
<td>20.2%</td>
</tr>
<tr>
<td>5-10%</td>
<td>42.4%</td>
<td>Mean 59.6 (SD 5.4)</td>
<td>0.85%</td>
<td>20.8%</td>
</tr>
<tr>
<td>10-15%</td>
<td>50.4%</td>
<td>Mean 63.5 (SD 6.0)</td>
<td>1.9%</td>
<td>15.7%</td>
</tr>
<tr>
<td>15-20%</td>
<td>54.6%</td>
<td>Mean 65.5 (SD 6.5)</td>
<td>2.8%</td>
<td>11.5%</td>
</tr>
<tr>
<td>20-25%</td>
<td>60.1%</td>
<td>Mean 68.0 (SD 6.3)</td>
<td>4.0%</td>
<td>8.73%</td>
</tr>
<tr>
<td>25-30%</td>
<td>66.7%</td>
<td>Mean 69.5 (SD 6.0)</td>
<td>4.5%</td>
<td>6.91%</td>
</tr>
<tr>
<td>>30%</td>
<td>66.8%</td>
<td>Mean 71.8 (SD 5.7)</td>
<td>7.1%</td>
<td>16.1%</td>
</tr>
</tbody>
</table>