TITLE PAGE

Word Count: abstract 241, main text 3394

Title: Assessment of a bronchodilator response in preschoolers: a systematic review

Running head: Bronchodilator response assessment in preschoolers

Authors: Matthew D. Wong MBBS1,2, Kathleena Condon MPH2, Paul D. Robinson PhD1,2, Sadasivam Suresh PhD1,2, Syeda Farah Zahir PhD3, Peter D. Sly DSc2, Tamara L. Blake PhD2.

Authors' affiliations:

1Department of Paediatric Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, AUSTRALIA

2Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld, 4101, Australia.

3Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, AUSTRALIA

Corresponding author details:

Name: Matthew D. Wong

Address: Level 7, Centre for Children's Health Research, 62 Graham Street, South Brisbane QLD 4101, Australia

E-mail: Matthew.Wong@uq.edu.au

Funding: MDW is supported by the Thrasher Research Fund, the Queensland Health Innovation, Investment and Research Office, and the University of Queensland Faculty of Medicine.

Ethical approval: Not applicable.

PROSPERO registration: CRD42021264659 at crd.york.ac.uk/prospero/
Notation of prior abstract publication/presentation: This manuscript has been submitted as an abstract for anticipated presentation at the 2024 annual scientific meeting for the Thoracic Society of Australia & New Zealand.

Contributors’ statement:

Matthew D. Wong: Conceptualization (lead); data curation (lead); formal analysis (lead); investigation (equal); methodology (lead); visualisation (lead); writing – original draft (lead); writing – review & editing (lead).

Kathleena Condon: Data curation (supporting); formal analysis (supporting); investigation (equal); visualisation (supporting); writing – original draft (supporting); writing – review & editing (supporting).

Paul D. Robinson: writing – review & editing (supporting).

Sadasivam Suresh: Supervision (equal); writing – review & editing (supporting).

Syeda Farah Zahir: Supervision (equal); writing – review & editing (supporting).

Peter D. Sly: Conceptualization (supporting); supervision (equal); writing – review & editing (supporting).

Tamara L. Blake: Conceptualization (lead); data curation (supporting); investigation (supporting); methodology (supporting); supervision (equal); visualisation (supporting); writing – original draft (supporting); writing – review & editing (supporting).

Conflicts of Interest: None

Data availability statement: Data are available from the corresponding author on reasonable request.

Keywords: Asthma, bronchodilator response, children, lung function, preschool, spirometry, oscillometry.
ABSTRACT

Background: A bronchodilator response (BDR) can be assessed in preschool-aged children using spirometry, respiratory oscillometry, the interrupter technique, and specific airway resistance, yet a systematic comparison of BDR thresholds across studies has not been completed.

Methods: A systematic review was performed on all studies up to May 2023 measuring a bronchodilator effect in children 2-6 years old using one of these techniques (PROSPERO CRD42021264659). Studies were identified using MEDLINE, Cochrane, EMBASE, CINAHL via EBSCO, Web of Science databases, and reference lists of relevant manuscripts.

Results: Of 1224 screened studies, 43 were included. Over 85% were from predominantly Caucasian populations, and only 22 studies (51.2%) calculated a BDR cut-off based on a healthy control group. Sample sizes ranged from 25-916. Only two studies (4.6%) adhered to formal recommendations for study design: at least 300 subjects, randomised for placebo response testing in healthy children, and incorporated within-session and between-session test repeatability. A relative BDR was most consistently reported by the included studies (95%) but varied widely across all techniques. A variety of statistical methods were used to define a BDR. The highest BDR feasibility was reported with oscillometry techniques in this age group.

Conclusion: A BDR in 2-6-year-olds cannot be defined based on the reviewed literature due to inconsistent methodology and cut-off calculations. Precise and feasible evaluation of lung function in young children is crucial for early detection and intervention of airway diseases. A standardised approach is required to develop robust BDR thresholds.
INTRODUCTION

Respiratory function testing enables the study of breathing mechanics and identifying airway and lung diseases. A positive bronchodilator response (BDR) is a key criterion used to diagnose and manage asthma, where a significant reversal of airflow limitation is demonstrated following acute treatment with a bronchodilator agent. However, there is no universally accepted definition of bronchodilator responsiveness in young children. Existing research on the diagnostic and prognostic value of BDR testing has produced conflicting results.\(^1,2\)

One challenge with young children is the variable feasibility of available lung function techniques in ambulatory care.\(^3\) Spirometry, which requires forced exhalation manoeuvres to achieve flow limitation, is often challenging for preschool-aged children to perform. Other techniques, such as oscillometry, specific airway resistance, and the interrupter technique, which can be performed during tidal breathing, offer greater feasibility for this age group but have varying clinical utility.\(^4\) The clinical utility of bronchodilator testing depends on a low, within-session coefficient of repeatability (CR\textsubscript{intra}) between pre-bronchodilator (preBD) and post-bronchodilator (postBD) testing.

Before defining a significant change following bronchodilators, several characteristics of the pulmonary function test must be known.\(^5\) First, the within-subject, within-session variation of the test, referred to as the coefficient of variability (CV), must be known for pre-bronchodilator and post-bronchodilator testing. Second, the within-subject CV for pre-placebo (prePL) and post-placebo (postPL) testing in healthy subjects provides information on the short-term repeatability of the technique. Lastly, the within-subject between-session coefficient of repeatability (CR\textsubscript{inter}) of BDR testing should be measured in age-matched
subjects with and without disease. A clinically significant BDR should be greater than the within-session CV, greater than the test measurement error (i.e., beyond the 95% limits of agreement from placebo testing), and specific to the population (or condition) being tested.

There are several ways to express a BDR. Reporting the absolute difference between preBD and postBD measurements (i.e., absolute BDR) favors taller children and may be influenced by large variations in preBD values. An absolute BDR may be appropriate if the Bland-Altman mean-difference plot demonstrates that the measurement variability is independent of the mean, as shown for spirometry in adults. Reporting the relative BDR, calculated as a percentage change from the initial test (i.e., percentage of preBD), is better suited when the difference between postBD and preBD is proportional to the preBD value. A relative BDR is less affected by the preBD values than an absolute BDR. If predictive values are available, reporting a BDR as a percentage of predicted or change in z-score eliminates the dependence on age, stature, and preBD values.

Each lung function modality assesses different mechanical properties of the respiratory system. Spirometry assesses lung volume changes over time but depends on maintaining expiratory flow limitation until residual volume. The interrupter technique estimates alveolar pressure using a single-compartment model that assumes an equilibrium with mouth opening pressure. The specific airway resistance (sRaw) is estimated from tidal volume changes and gas flow. These three measures are based on a single-compartment model of respiratory mechanics to provide information about the resistive properties, predominantly airway resistance. Oscillometry uses linear dynamic system theory to model pressure, volume, and flow as functions over time during tidal breathing. Within
oscillometry are several heterogeneous techniques that use pulses of square waves (impulse oscillometry), single-frequency sinusoidal waves (intra-breath oscillometry), or multiple frequencies of sinusoidal waves (spectral oscillometry).

Therefore, the definition of a BDR will vary depending on the lung function technique, disease process, and population being assessed. One method for defining a positive BDR is using the ≤5th percentile or ≥95th percentile of the response of healthy subjects to an inhaled bronchodilator6,11. Another approach is to account for the within-subject between-test repeatability in healthy subjects for the desired outcome variable where the BDR cut-off is calculated as the mean within-subject sample variance + (1.96 * within-subject sample standard deviation)1.

This systematic review explored the feasibility of BDR testing, the methods of BDR testing and reporting, and the derivation of BDR cut-off values across the following lung function techniques that have the most potential as safe, practical, and useful for testing in children 2-6 years old: spirometry, impulse oscillometry (IOS), intra-breath oscillometry (IB-OSC), spectral oscillometry (SPEC-OSC), interrupter technique, and specific airway resistance (sRaw).

METHODS

Search strategy

Following PRISMA guidelines, studies were identified from MEDLINE, Cochrane Central Register of Controlled Trials, EMBASE, the Cumulative Index to Nursing and Allied Health Literature (CINAHL) via EBSCO, Web of Science, and hand-searching reference lists of papers included in the review. The search text had bronchodilator response in children/paediatric
population, using either spirometry, oscillometry (including forced oscillation technique, impulse oscillometry, within-breath oscillometry, and intra-breath oscillometry), interrupter technique, or specific airways resistance. The final searches from each database were performed in May 2023. Conference abstracts, reviews, editorials, and commentaries were not included due to the limited data available for assessment. Details of the entire search strategy are included in Table S1.

Eligibility criteria

Included studies contained (1) a study population of children between 2-6 years old; (2) lung function involving spirometry, respiratory oscillometry, sRaw, or the interrupter technique; (3) a healthy control group; (4) use of a short-acting beta-2-agonist (SABA) administered by a metered dose inhaler and spacer; and (5) measurement of a bronchodilator response.

Studies were excluded if they included (1) a study population with no separate results provided for participants 2-6 years old; (2) a nebuliser-administered bronchodilator; (3) the bronchodilator was not a SABA; (4) or full-text manuscript was not available in English.

Study selection and data extraction

Title and abstract screening, duplicate removal, full-text reviews, and data extraction from database searches were performed using Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia). The authors (MDW, KC, and TB) reviewed the search references and identified potential inclusion studies based on titles, abstracts, and bibliographies. Three authors (MDW, KC, and TB) acquired and independently reviewed full-text studies meeting inclusion criteria. Two authors (MDW and KC) extracted data independently from all included studies. The data extracted from each study was the first
author, publication year, study type, country, sample size (disease and control groups), population age, and lung function apparatus. Extraction of specific lung function outcomes preBD and postBD are outlined in Table S2. BDR data extracted included the feasibility, bronchodilator drug, bronchodilator dose, bronchodilator delivery method, the time between preBD and postBD testing, and whether pre-placebo (prePL) and post-placebo (postPL) testing was performed.

Study quality assessment

The Joanna Briggs Institute (JBI) critical appraisal checklist for studies reporting prevalence data was used to assess studies included in the final review\(^1\).\(^2\)

Data analyses

The feasibility of BDR testing was calculated by dividing the number of children with a successful BDR test by the number of children who attempted BDR testing and expressed as a percentage. No meta-analysis was planned due to the anticipated heterogeneity in BDR methodology and reporting for each lung function technique. Reported BDR cut-offs were summarised in terms of an absolute change (BDR\(_{ABS}\)), a percentage of the initial test (BDR\(_{INIT}\)), a percentage of the predicted value (BDR\(_{PRED}\)), and z-score change (BDR\(_{Z}\)).

RESULTS

Our search conducted in May 2023 identified 2078 potential studies. After 854 duplicates were removed, 284 studies remained following title and abstract screening. The full-text review identified 242 studies for exclusion (Figure 1). Forty-three studies that met the pre-defined criteria were included for data extraction\(^1\),\(^8\),\(^13\)–\(^53\).
Study characteristics

The demographics and descriptions of the 43 included studies are summarised in Table 1. Over 85% of the studies (n=37) were conducted in predominantly Caucasian populations. A large majority (81.4%) of the included studies consisted of cross-sectional study design, followed by cohort (9.3%) and case-control (9.3%). Of the included studies, 23 (53.5%) were published within the last ten years (2013-2023), and 20 (46.5%) were published >10 years ago. Thirty-one studies (72.1%) measured a BDR in healthy children (Table 1). Many studies utilised multiple lung function modalities, with fifteen studies (34.9%) using IOS, thirteen (30.2%) using spirometry, eleven (25.6%) using SPEC-OSC, ten (23.3%) using the interrupter technique, six (14%) using sRaw and one (2.3%) with IB-OSC. Details of the lung function equipment, bronchodilator testing methods and feasibility of bronchodilator response are summarised for each technique in the supplement (Tables S3-S7).

Quality Assessment

Twenty-nine studies (67.4%) included a healthy cohort, but only six (14%) had a healthy sample size of more than 300 children (Table S8). Only twenty-four studies (55.8%) proposed a BDR cut-off and included detailed methodology of BDR testing (e.g., bronchodilator dose, the time between preBD and postBD testing, and type of spacer used) (Table S8). Only nine studies (20.9%) controlled for the short-term repeatability of the lung function measurement with placebo response testing (Table S8). There were 24 studies (55.8%) explicitly stating how they derived a BDR cut-off from their sample.

Feasibility of bronchodilator response testing by technique
The feasibility of bronchodilator response testing in preschool-aged children, including the bronchodilator drug type, drug dosage, sample size, and time between preBD and postBD measurements, is summarised in the supplementary tables. The highest median feasibility was reported for IOS and SPEC-OSC and the lowest for spirometry (Figure 2). In direct comparison within the same study, SPEC-OSC was more feasible in preschoolers (93%) than sRaw (68%).

One study used terbutaline (2.3%), and the remainder used albuterol (11.6%) or salbutamol (86%). Doses of SABA varied between 200-600 mcg, and the time between preBD and postBD testing ranged between 10-20 minutes (Tables S3-S7).

Defining a bronchodilator response

Twenty-two studies (51.2%) calculated a BDR cut-off based on a healthy control group (Table 2). BDR\textsubscript{MINIT} was reported by all studies except Malmberg et al. 2003 for IOS outcomes and Nielsen et al. 2001 for sRaw (Figure 3). Four studies reported BDR\textsubscript{MINPRED} and two reported BDR\textsubscript{Z}. Only five studies deriving BDR cut-offs incorporated placebo testing of healthy subjects to account for the within-subject intrasession repeatability of the test. The remaining 21 studies applied a BDR cut-off derived from published reference data to their study population. Results within individual techniques are discussed below.

Spirometry

Of thirteen studies using spirometry, six (46.2%) incorporated a healthy control group and two (15.4%) included randomised placebo response testing (Table 2). Two studies used the within-subject between-test repeatability to define a BDR as the forced
expiratory volume in one second (FEV₁) +13.3-14% and forced expiratory volume in 0.75 seconds (FEV₀.75) +13.5-14%. Three studies used receiver operating characteristic (ROC) curve analysis to define a BDR; one applied a distribution-based cut-off using >95th percentile of the change in each variable in healthy children, and one study used an arbitrary cut-off of FEV₁ +12%. All spirometry studies reported BDRINIT, with none reporting BDRABS or BDRPRE.

Impulse oscillometry

Nine of fifteen (60%) studies using IOS included a healthy control group, with three incorporating placebo testing and all using the Jaeger MasterScreen IOS equipment (Table 2). The BDRINIT cut-off for R5 ranged from -15.6% to -40% and X5 from +20 to +42%. The only study in this review to report a BDR was by Knihtila and colleagues, who reported cut-offs for R5-20 and AX.

Spectral oscillometry

Seven of eleven (63.6%) SPEC-OSC studies incorporated a healthy control group (Table 2). Of these studies, only Oostveen et al. 2010 included randomised, placebo response testing. Four studies defined a BDR cut-off of >5th percentile for resistance outcomes (R4, R6, R8, R10) and >95th percentile in reactance outcomes (X6, X8, X10, AX). The BDR definitions used by Starczewska-Dymek and colleagues were based on those developed by Calogero and colleagues, who used a distribution-based cut-off of <5th and >95th percentile change following bronchodilator in healthy children. Udomittipong et al. defined a BDR using the within-subject between-test repeatability. All seven studies with healthy controls reported BDRINIT, and five reported both BDRABS and BDRPRE.
Interrupter technique

Two of the ten studies using the interrupter technique included a healthy control group (Table 2). Mele et al. defined a BDR cut-off as the $<5^{th}$ percentile of change following salbutamol in 60 healthy children and reported $\text{BDR}_{\text{ABS}}, \text{BDR}_{\text{INIT}}, \text{BDR}_{\text{RED}},$ and BDR_{Z}. Nielson et al. defined a BDR cut-off from 92 children as 2.5 intrasubject standard deviation units (SDw) and reported $\text{BDR}_{\text{ABS}}, \text{BDR}_{\text{INIT}}, \text{and BDR}_{\text{RED}}$.39

sRaw

Two out of six sRaw studies included a healthy control group (Table 2).40,51 Only Nielson et al. 2001 derived a BDR_{ABS} cut-off from their study data for sRaw as a change of three SDw and BDR_{RED} as -25%.40

DISCUSSION

The interest in and clinical utility of alternatives to spirometry for preschoolers is becoming more evident. Our review has revealed the need for greater standardisation of, and more consistency in, how a BDR assessment is conducted, defined, and reported across the literature. It is crucial to have a precise and feasible evaluation of lung function during preschool to enable early detection and intervention for airway disease, monitor longitudinal growth, and adjust for lung function evolution over this period.3 Standardising BDR measurements across different techniques is a critical first step towards achieving this goal.

The highest feasibility was found with impulse and spectral oscillometry (Table 2). This is not surprising as oscillometry measures respiratory impedance during tidal breathing and...
requires no voluntary breathing manoeuvres. Spirometry had the lowest feasibility, reflecting the difficulty that preschoolers have generating sufficient force to achieve and maintain expiratory flow limitation to the point of residual volume. Only 41% of healthy children under four years old can produce an acceptable FEV$_1$; most have a ratio of FEV$_1$ to forced vital capacity (FVC) of greater than 90% due to the smaller lung volumes relative to airway calibre.56 The use of preschool-relevant spirometry outcomes like the forced expiratory volume in 0.5 seconds (FEV$_{0.5}$) and FEV$_{0.75}$ would improve feasibility but have yet to be incorporated in the latest European Respiratory Society (ERS) and American Thoracic Society (ATS) technical standards due to a lack of systematic studies with these outcomes.6

Five studies did not specify whether a spacer delivered the bronchodilator. Although no significant differences were reported regarding spacer manufacturer, size, or use of facemasks versus mouthpieces for measuring a BDR using spirometry,57,58 this has not been assessed for other lung function techniques in preschool-aged children. It is recommended that the spacer apparatus be specified for all studies.

Although the choice of bronchodilator and dosing depends on the clinical question to be answered, it is still an assumption that a clinically significant BDR is similar with SABA doses between 200-600 mcg.54,58 The time between preBD and postBD testing ranged between 10-20 minutes, with seven studies having no mention in the methods of how long they waited between measurements. A minimum testing interval of 20 minutes is recommended for BDR testing in school-aged children using spirometry, but this has not been studied in preschoolers.58,59 Our analysis highlights the need for further research comparing different bronchodilator protocols in identical subjects and has been echoed in a recent lung function standards document.6
It is also difficult to distinguish between biological or methodological effects on variability when dealing with small sample sizes, leading to sampling errors. Quanjer et al. recommend sample sizes of more than 300 healthy subjects (150 females and 150 males) for generating spirometry reference values. However, only half of the studies in this systematic review included a healthy control group, and only five accounted for the within-subject intrasession repeatability of the test using paired prePL and postPL testing. Of the studies reviewed, only two had a sample size greater than 300, included a healthy control group with randomisation for placebo response testing, and derived BDR cut-offs using within-session and between-session repeatability. Data pooling for a more robust analysis is limited by the heterogeneity between studies in BDR methodology.

For preschool spirometry, Busi et al. and Borrego et al. accounted for the repeatability of testing in wheezy preschoolers and healthy controls; a preschool relative BDR of ≥12% for FEV$_{0.5}$ and ≥11-14% for FEV$_{0.75}$ may be appropriate.

Despite all IOS studies utilising the same equipment (Jaeger MasterScreen IOS), a wide range of BDR$_{\text{INIT}}$ cut-offs for both R5 and X5 were reported, which may reflect heterogeneous methodologies to define BDR, population differences, poor reproducibility between laboratories, or all the above. The range of BDR$_{\text{INIT}}$ cut-offs for R8 and X8 was -20% to -43% and +60% to +67%, respectively (Table 2). Since a BDR$_{\text{ABS}}$ will depend more on the preBD values, children with higher initial resistance (Rrs) or lower initial reactance (Xrs) will be more likely to reach a BDR$_{\text{ABS}}$ cut-off and be diagnosed with reversible airway disease.

Reporting BDR$_{\text{PREPRED}}$ or BDR$_{\text{Z}}$ is ideal for all lung function modalities as it is population-specific and independent of subject age, height, and the magnitude of the preBD value. Future
studies involving preschool spirometry should incorporate $\text{BDR}_{\%\text{PRE}}$ or BDR_z as there is spirometry reference data available for three years and older from the Global Lung Function Initiative (GLI). However, normative data are lacking for many techniques, especially for non-Caucasian children under six years old. Korea, Columbia, and Thailand were the only non-Caucasian predominant populations included in this review. There were no studies involving First Nations or African American children under six years old.

Our findings have significant implications for determining the clinical relevance of lung function changes following bronchodilator administration. To accurately assess the minimal clinically important difference (MCID) of BDR for diagnostic purposes, such as identifying asthma, and to evaluate the impact of interventions within clinical trials and individual young children, it is crucial to standardise preschool BDR methodology by establishing consensus definitions61.

For example, nearly half of all preschool-aged children worldwide experience asthma-like symptoms, but only 30% of those with recurrent wheezing will develop asthma beyond six years62–64. A distribution-based MCID, often defined as a change greater than the expected measurement error, can be calculated based on standardised response mean by taking the difference between \text{preBD} and \text{postBD} values and dividing by the standard deviation of the difference (SD_{diff})65–68. This method relies heavily on sample sizes as SD_{diff} will be inversely proportional to the sample size. Early suggestions defining a distribution-based MCID as roughly equivalent to 0.5 SD_{diff} of the sample may only reflect the smallest detectable difference (SDD) for the test and may not be clinically perceivable by the clinician or patient68. Diagnosing asthma based on a positive BDR >0.5 SD in preschool wheezing may over-diagnose children with asthma and lead to unnecessary exposure to corticosteroids.
Some argue that the minimal detectable change (MDC) is a surrogate for an MCID, where the MDC based on the 95% confidence interval is $1.96 \times \sqrt{2} \times SEM$, where SEM is the standard error of the measurement and sample independent. Further studies are needed in children with disease (e.g., asthma) using an anchor-based MCID where the change in lung function is compared to the change in a clinical anchor (e.g., a patient’s reported symptoms).

This review included 43 studies and covered six established and emerging lung function testing modalities. To our knowledge, all studies followed recommended testing guidelines on equipment that met ERS/ATS requirements. Our quality assessment (Table S8) revealed significant heterogeneity among results from studies that used different lung function equipment, which could not be pooled for meta-analyses, even when controlling for methodology and outcome variables. Dandurand et al. demonstrated this comparability problem by showing significant differences in measurements of high-impedance test loads using IOS and SPEC-OSC devices\(^6^9\). Clinical and methodological diversity made pooling lung function data and meta-analyses impractical even for studies of the same lung function modality.

Several studies were excluded from this review as we could not separate preschool-aged data from larger cohort populations. Furthermore, we cannot comment on the potential learning effect sometimes experienced between preBD and postBD testing and acknowledge that this may create some bias in reported feasibility data. However, this is more likely to be experienced in techniques requiring specific manoeuvres (e.g., spirometry and sRaw), which scored lowest in overall feasibility. As previously mentioned, there was
limited ethnic variation in our review, with only six studies performed in non-Caucasian predominant populations.

CONCLUSION

Our review found significant inconsistencies in BDR assessment for preschool-aged children. This includes inconsistencies in testing methodology, cut-off determination, and BDR reporting. Defining a BDR in 2-6-year-old children is impossible based on available literature. Conventional techniques like spirometry and sRaw were less feasible for BDR testing in preschoolers. In contrast, tidal breathing-based techniques like oscillometry were easier to perform and can be incorporated more easily into clinical settings. Future research should aim to generate normative data, standardise BDR delivery, and consider the MCID in children with airway disease. The applicability of the Caucasian-derived estimate of BDR to diverse ethnic populations requires further clarification.
REFERENCES

FIGURE CAPTIONS:

Figure 1. PRISMA diagram of study selection.

Figure 2. Reported feasibility for preschool bronchodilator response testing with colours representing individual referenced studies. The range of values is plotted in studies where feasibility is reported for subgroups within the overall cohort.

Figure 3. Studies reporting a bronchodilator response (BDR) as a percentage of the initial test (BDR$_{\text{INIT}}$) for spirometry (top), impulse oscillometry (middle), and spectral oscillometry (bottom) with shapes corresponding to lung function variables and colours corresponding to referenced studies.
Studies from databases/registers (n = 2078)
- Embase (n = 136)
- Web of Science (n = 90)
- PubMed (n = 63)
- CINAHL (n = 8)
- Citation searching (n = 1)
- Unspecified (n = 1800)

References removed (n = 854)
 - Duplicates identified by Covidence (n = 854)

Studies screened (n = 1224)

Studies sought for retrieval (n = 284)

Studies assessed for eligibility (n = 284)
 - Duplicate (n = 5)
 - Wrong age (n = 29)
 - Not in English (n = 8)
 - Wrong study design (n = 96)
 - No discrete bronchodilator response data (n = 77)
 - Wrong bronchodilator type (n = 5)
 - Wrong bronchodilator route (n = 11)
 - Wrong lung function technique (n = 10)

Studies included in review (n = 43)

Included studies ongoing (n = 0)
Studies awaiting classification (n = 0)
Abbreviations: IOS, impulse oscillometry; Rint, interrupter resistance; sRaw, specific airway resistance; SPEC-OSC, spectral oscillometry.
Spirometry

FEF25-75, forced expiratory flow between 25% and 75% of vital capacity; FEV0.5, forced expiratory volume in 0.5 seconds; FEV0.75, forced expiratory volume in 0.75 seconds; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity.
The distribution-based cut-offs and receiver operating characteristic curve cut-offs from Busi et al. 2017 are references 1a and 1b, respectively.

Impulse oscillometry

AX, the area under the reactance curve; R5, resistance at 5 Hz; R5-20, absolute difference in resistance at 5 Hz and 20 Hz; R5-20%, the relative difference in resistance at 5 Hz and 20 Hz; X5, reactance at 5 Hz; IOS, impulse oscillometry.

Spectral oscillometry

A8, admittance at 8 Hz; AX, the area under the reactance curve; R10, resistance at 10 Hz; R4, resistance at 4 Hz; R6, resistance at 6 Hz; R8, resistance at 8 Hz; SPEC-OSC, spectral oscillometry; X10, reactance at 10 Hz; X6, reactance at 6 Hz; X8, reactance at 8 Hz.
<table>
<thead>
<tr>
<th>Study, year (country)</th>
<th>GLI Ethnic Category</th>
<th>Lung function</th>
<th>Study design</th>
<th>Study population (setting)</th>
<th>Sample size n (F:M)</th>
<th>Healthy n (F:M)</th>
<th>Disease n (F:M)</th>
<th>Age</th>
<th>Placebo response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busi, 2017 (Argentina)</td>
<td>Caucasian</td>
<td>SPIRO</td>
<td>Cross-sectional</td>
<td>Healthy (community) and wheezy (clinic)</td>
<td>720 (329:391)</td>
<td>431 (211:220)</td>
<td>WZ 289 (118:171)</td>
<td>3-5 years</td>
<td>Yes</td>
</tr>
<tr>
<td>Boyton, 2008 (France)</td>
<td>Caucasian</td>
<td>RINT</td>
<td>Cross-sectional</td>
<td>Chronic cough but no wheezing or asthma medications (clinic)</td>
<td>38 (23:15)</td>
<td>n/a</td>
<td>n/a</td>
<td>2-6.4 years</td>
<td>No</td>
</tr>
<tr>
<td>Bokov, 2021 (France)</td>
<td>Caucasian</td>
<td>IOS, RINT</td>
<td>Cross-sectional</td>
<td>Wheezy (clinic)</td>
<td>139 (45:94)</td>
<td>None</td>
<td>WZ 139 (45:94) WZ 4.7 (0.8) years</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Borrero, 2013 (Portugal)</td>
<td>Caucasian</td>
<td>SPIRO</td>
<td>Cross-sectional</td>
<td>Healthy and wheezy (clinic)</td>
<td>65 (27:38)</td>
<td>22 (12:10)</td>
<td>WZ 43 (15:28)</td>
<td>3-7 years</td>
<td>Yes</td>
</tr>
<tr>
<td>Bridge, 1999 (UK)</td>
<td>Caucasian</td>
<td>RINT</td>
<td>Cross-sectional</td>
<td>Children with previous wheeze or active wheezing (clinic)</td>
<td>48 (N/A)</td>
<td>None</td>
<td>Past WZ 32 (n/a) Active WZ 16 (n/a)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Bridge, 2001 (UK)</td>
<td>Caucasian</td>
<td>RINT</td>
<td>Cross-sectional</td>
<td>Asymptomatic children with a history of respiratory symptoms (clinic)</td>
<td>40 (n/a)</td>
<td>None</td>
<td>40 (n/a)</td>
<td>2.5-5.0 years</td>
<td>No</td>
</tr>
<tr>
<td>Bridge, 2005 (UK)</td>
<td>Caucasian</td>
<td>RINT</td>
<td>Cross-sectional</td>
<td>Wheezy (clinic)</td>
<td>25 (15:10)</td>
<td>None</td>
<td>WZ 25 (15:10) WZ 2.5-5.6 years</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Burity, 2016 (Brazil)</td>
<td>Caucasian</td>
<td>SPIRO</td>
<td>Cross-sectional</td>
<td>Healthy (community)</td>
<td>160 (76:84)</td>
<td>160 (76:84)</td>
<td>None</td>
<td>HL 3-5 years</td>
<td>No</td>
</tr>
<tr>
<td>Calogero, 2010 (Italy)</td>
<td>Caucasian</td>
<td>SPEC-CSC</td>
<td>Cross-sectional</td>
<td>Healthy (community)</td>
<td>163 (82:81)</td>
<td>163 (82:81)</td>
<td>None</td>
<td>HL 2.9-6.1 years</td>
<td>No</td>
</tr>
<tr>
<td>Czitvek, 2016 (Australia)</td>
<td>Caucasian</td>
<td>IB-CSC, SPEC-CSC</td>
<td>Cross-sectional</td>
<td>Healthy (community) and wheezy (hospital)</td>
<td>40 (n/a)</td>
<td>23 (n/a)</td>
<td>WZ 17 (n/a)</td>
<td>HL 4.29 (0.51) years WZ 4.04 (0.55) years</td>
<td>No</td>
</tr>
<tr>
<td>De Silva Serna, 2021 (Australia)</td>
<td>Caucasian</td>
<td>IOS</td>
<td>Prospective cohort</td>
<td>Previous hospitalisation for rhinovirus bronchiolitis in infancy (hospital)</td>
<td>139 (49:90)</td>
<td>None</td>
<td>Past bronchiolitis 139 (49:90)</td>
<td>47 (42.51) months</td>
<td>No</td>
</tr>
<tr>
<td>Devereux, 2006 (UK)</td>
<td>Caucasian</td>
<td>SPIRO</td>
<td>Cross-sectional</td>
<td>Healthy (birth cohort)</td>
<td>502 (n/a)</td>
<td>n/a</td>
<td>n/a</td>
<td>5 years</td>
<td>No</td>
</tr>
<tr>
<td>Dom, 2014 (Belgium)</td>
<td>Caucasian</td>
<td>SPEC-CSC</td>
<td>Cross-sectional</td>
<td>Healthy (birth cohort)</td>
<td>535 (265:270)</td>
<td>535 (265:270)</td>
<td>None</td>
<td>HL 4.3 (0.2) years</td>
<td>No</td>
</tr>
<tr>
<td>Duenas-Meza, 2019 (Columbia)</td>
<td>Other</td>
<td>IOS</td>
<td>Cross-sectional</td>
<td>Healthy (community)</td>
<td>96 (50:38)</td>
<td>96 (50:38)</td>
<td>None</td>
<td>HL 4-71 months</td>
<td>No</td>
</tr>
<tr>
<td>Friedman, 2018 (USA)</td>
<td>Caucasian</td>
<td>SPEC-CSC</td>
<td>Cross-sectional</td>
<td>Healthy and wheezy (clinic)</td>
<td>51 (31:20)</td>
<td>28 (19:9)</td>
<td>WZ 23 (12:11)</td>
<td>HL 5.2 (1.1) years WZ 5.0 (1.0) years</td>
<td>No</td>
</tr>
<tr>
<td>Author/Year</td>
<td>Ethnicity</td>
<td>Study Design</td>
<td>Comparison</td>
<td>Healthy & Wheezy</td>
<td>Wheezy</td>
<td>Duration</td>
<td>Healthy & Wheezy</td>
<td>Wheezy</td>
<td>Duration</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>--------</td>
<td>----------</td>
<td>----------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Harrison, 2010 (Australia)</td>
<td>Caucasian</td>
<td>sRAW, SPEC-CSC</td>
<td>Cross-sectional</td>
<td>Healthy and wheezy (clinic)</td>
<td>83 (38:45)</td>
<td>24 (14:10)</td>
<td>WZ 59 (24:35)</td>
<td>HL 5.3 (1.2) years*</td>
<td>WZ 4.8 (1.12) years*</td>
</tr>
<tr>
<td>Hellinckx, 1998 (Belgium)</td>
<td>Caucasian</td>
<td>IOS</td>
<td>Cross-sectional</td>
<td>Healthy and wheezy (community)</td>
<td>281 (152:129)</td>
<td>247 (n/a)</td>
<td>WZ 34 (n/a)</td>
<td>2.7-4.6 years§</td>
<td>Yes</td>
</tr>
<tr>
<td>Jerzyńska, 2015 (Poland)</td>
<td>Caucasian</td>
<td>sRAW, SPIRO</td>
<td>Cross-sectional</td>
<td>Asthma-like symptoms (clinic)</td>
<td>142 (n/a)</td>
<td>n/a</td>
<td>n/a</td>
<td>4-6 years§</td>
<td>No</td>
</tr>
<tr>
<td>Knihili, 2017 (Greece)</td>
<td>Caucasian</td>
<td>IOS</td>
<td>Cross-sectional</td>
<td>Healthy and wheezy (community)</td>
<td>146 (62:84)</td>
<td>103 (50:53)</td>
<td>WZ 43 (12:31)</td>
<td>HL 5.3 (1.2) years*</td>
<td>WZ 4.8 (1.12) years*</td>
</tr>
<tr>
<td>Konstantinou, 2019 (Greece)</td>
<td>Caucasian</td>
<td>IOS</td>
<td>Cohort</td>
<td>Healthy and wheezy (clinic)</td>
<td>89 (46:43)</td>
<td>46 (26:20)</td>
<td>WZ 43 (20:23)</td>
<td>HL 5 (0.7) years*</td>
<td>WZ 5 (0.5) years*</td>
</tr>
<tr>
<td>Lee, 2020 (Korea)</td>
<td>Northeast Asian</td>
<td>SPIRO</td>
<td>Cross-sectional</td>
<td>Healthy and asthma (community)</td>
<td>916 (446:470)</td>
<td>880 (431:449)</td>
<td>ASTH 36 (15:21)</td>
<td>HL 58.4 (12.6) months*</td>
<td>ASTH 61.9 (11.2) months*</td>
</tr>
<tr>
<td>Leiria-Pinto, 2020 (Portugal)</td>
<td>Caucasian</td>
<td>IOS, SPIRO</td>
<td>Cross-sectional</td>
<td>Healthy (community) and wheezy (clinic)</td>
<td>121 (63:58)</td>
<td>14 (7:7)</td>
<td>WZ 107 (46:61)</td>
<td>HL 4.3 (6.5, 1.1)†</td>
<td>WZ 5.1 (4.4, 5.5)†</td>
</tr>
<tr>
<td>Lezana, 2017 (Chile)</td>
<td>Caucasian</td>
<td>IOS</td>
<td>Case control</td>
<td>Wheezy (clinic)</td>
<td>106 (62:56)</td>
<td>None</td>
<td>WZ 108 (52:56)</td>
<td>WZ 2.6 years§</td>
<td>No</td>
</tr>
<tr>
<td>Malmberg, 2003 (Finland)</td>
<td>Caucasian</td>
<td>IOS</td>
<td>Cross-sectional</td>
<td>Healthy, asthma, and chronic cough (clinic)</td>
<td>158 (72:86)</td>
<td>62 (32:30)</td>
<td>ASTH 50 (20:30)</td>
<td>Chronic cough 46 (20:26)</td>
<td>HL 4.1-3 years§</td>
</tr>
<tr>
<td>Maurer-Hamel, 2020 (France)</td>
<td>Caucasian</td>
<td>sRAW, RINT</td>
<td>Cross-sectional</td>
<td>Wheezy children (clinic)</td>
<td>130 (55:75)</td>
<td>None</td>
<td>WZ 130 (55:75)</td>
<td>4.9 (0.63) years*</td>
<td>No</td>
</tr>
<tr>
<td>McKenzie, 2000 (UK)</td>
<td>Caucasian</td>
<td>RINT</td>
<td>Cross-sectional</td>
<td>Healthy, wheezy, and recurrent cough (clinic)</td>
<td>203 (92:110)</td>
<td>63 (33:30)</td>
<td>WZ 82 (31:51)</td>
<td>Recurrent cough 58 (25:29)</td>
<td>HL 3.8 (0.72) years*</td>
</tr>
<tr>
<td>Modeleros, 2020 (Brazil)</td>
<td>Caucasian</td>
<td>IOS</td>
<td>Cross-sectional</td>
<td>Healthy and wheezy (community)</td>
<td>76 (45:31)</td>
<td>21 (10:11)</td>
<td>WZ 55 (35:20)</td>
<td>HL 4.95 (0.89) years*</td>
<td>WZ 4.3 (0.97) years*</td>
</tr>
<tr>
<td>Mele, 2010 (Italy)</td>
<td>Caucasian</td>
<td>RINT</td>
<td>Cross-sectional</td>
<td>Healthy and wheezy (asymptomatic and symptomatic)</td>
<td>180 (76:104)</td>
<td>60 (23:37)</td>
<td>WZ asymptomatic 60 (24:26)</td>
<td>WZ symptomatic 60 (29:34)</td>
<td>HL 5.4 (1.0) years*</td>
</tr>
<tr>
<td>Nielsen, 2001 (Denmark)</td>
<td>Caucasian</td>
<td>IOS, sRAW, RINT</td>
<td>Cross-sectional</td>
<td>Healthy (community) and wheezy (clinic)</td>
<td>92 (44:48)</td>
<td>37 (19:18)</td>
<td>WZ 55 (25:30)</td>
<td>HL 2.5-6.9 years§</td>
<td>WZ 2.3-6.9 years§</td>
</tr>
<tr>
<td>Oh, 2013 (Korea)</td>
<td>Northeast Asian</td>
<td>IOS</td>
<td>Cross-sectional</td>
<td>Healthy, early onset-wheeze, late-onset wheeze (community)</td>
<td>372 (188:184)</td>
<td>282 (144:138)</td>
<td>Early-onset WZ 23 (10:13)</td>
<td>Late-onset WZ 267 (34:33)</td>
<td>HL 5.5 (0.7) years*</td>
</tr>
<tr>
<td>Otagabe, 2005 (Spain)</td>
<td>Caucasian</td>
<td>IOS, sRAW, SPIRO</td>
<td>Cross-sectional</td>
<td>Wheezy (clinic)</td>
<td>36 (11:25)</td>
<td>None</td>
<td>WZ 36 (11:25)</td>
<td>WZ 3-6 years§</td>
<td>Yes</td>
</tr>
<tr>
<td>Oostveen, 2010 (Belgium)</td>
<td>Caucasian</td>
<td>SPEC-CSC</td>
<td>Cohort</td>
<td>Healthy and wheezy (birth cohort)</td>
<td>325 (152:173)</td>
<td>144 (73:71)</td>
<td>WZ 161 (78:102)</td>
<td>HL 4.4 (0.2) years*</td>
<td>WZ 4.4 (0.2) years*</td>
</tr>
<tr>
<td>Study</td>
<td>Region</td>
<td>Race</td>
<td>Study Design</td>
<td>Population Details</td>
<td>Age Mean (SD)</td>
<td>Age Median (Q1, Q3)</td>
<td>Age Range</td>
<td>Duration</td>
<td>Country</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------------------</td>
<td>--</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Passerini, 2014 (Chile)</td>
<td>Caucasian</td>
<td>SPIRO</td>
<td>Case-control</td>
<td>Healthy and wheezy (clinic)</td>
<td>96 (54:42)</td>
<td>32 (19:13)</td>
<td>WZ 64 (35:29)</td>
<td>HL 3.5-6 years§</td>
<td>No</td>
</tr>
<tr>
<td>Sartia, 2014 (USA)</td>
<td>Caucasian</td>
<td>SPIRO</td>
<td>Case-control</td>
<td>Infants with eczema (clinic)</td>
<td>74 (n/a)</td>
<td>n/a</td>
<td>n/a</td>
<td>4 years</td>
<td>No</td>
</tr>
<tr>
<td>Shin, 2012 (Korea)</td>
<td>Northeast Asian</td>
<td>IOS, SPIRO</td>
<td>Cross-sectional</td>
<td>Healthy (community) and wheezy (clinic)</td>
<td>59 (31:28)</td>
<td>29 (15:14)</td>
<td>WZ 30 (16:14)</td>
<td>HL 4.6 (0.3) years*</td>
<td>No</td>
</tr>
<tr>
<td>Simpson, 2012 (Australia)</td>
<td>Caucasian</td>
<td>SPEC-OSC</td>
<td>Cross-sectional</td>
<td>Healthy, asthma, cystic fibrosis (CF), and chronic neonatal lung disease (CNLD) (clinic)</td>
<td>288 (138:150)</td>
<td>78 (42:36)</td>
<td>WZ 66 (25:41) ASTH 56 (21:35) CF 39 (24:15) CNLD 49 (28.23)</td>
<td>HL 4.90 (95% CI 4.8, 5.0) years WZ 5.25 (95% CI 5.0, 5.5) years CF 5.04 (95% CI 4.7, 5.4) years CNLD 4.83 (95% CI 4.6, 5.1) years</td>
<td>No</td>
</tr>
<tr>
<td>Song, 2008 (Korea)</td>
<td>Northeast Asian</td>
<td>IOS, SPIRO</td>
<td>Cross-sectional</td>
<td>Healthy and wheezy (clinic)</td>
<td>132 (49:83)</td>
<td>55 (20:35)</td>
<td>WZ 77 (29:48)</td>
<td>HL 5.1 (95% CI 4.9 to 5.3 years)</td>
<td>No</td>
</tr>
<tr>
<td>Starczewska-Dymek, 2018 (Poland)</td>
<td>Caucasian</td>
<td>SPEC-OSC</td>
<td>Cross-sectional</td>
<td>Healthy, controlled asthma, and uncontrolled asthma (clinic)</td>
<td>151 (79:72)</td>
<td>45 (25:20)</td>
<td>Controlled ASTH 53 (26.25) Uncontrolled ASTH 53 (26.27)</td>
<td>HL 3.9 (1.2) years* Controlled ASTH 4.2 (1.3) years* Uncontrolled ASTH 4.8 (2.1) years*</td>
<td>No</td>
</tr>
<tr>
<td>Starczewska-Dymek, 2021 (Poland)</td>
<td>Caucasian</td>
<td>sRaw, SPEC-OSC</td>
<td>Cross-sectional</td>
<td>Healthy and wheezy (clinic)</td>
<td>154 (76:78)</td>
<td>52 (27:26)</td>
<td>WZ 102 (46:53)</td>
<td>2-6 years§</td>
<td>No</td>
</tr>
<tr>
<td>Udornmittipong, 2020 (Thailand)</td>
<td>Southeast Asian</td>
<td>SPEC-OSC</td>
<td>Cross-sectional</td>
<td>Healthy (community)</td>
<td>111 (60:51)</td>
<td>111 (60:51)</td>
<td>None</td>
<td>HL 5.2 (1.1) years*</td>
<td>No</td>
</tr>
<tr>
<td>Viloomi, 2005 (Israel)</td>
<td>Caucasian</td>
<td>SPIRO</td>
<td>Cross-sectional</td>
<td>Healthy and wheezy (community)</td>
<td>265 (121:144)</td>
<td>109 (59:50)</td>
<td>WZ 156 (62:94)</td>
<td>2-6.5 years§</td>
<td>No</td>
</tr>
</tbody>
</table>

Abbreviations:
* Mean (SD); † median (quartile-1, quartile-3); ‡ median (10th; 90th percentile); § range; ¶ taken from American Thoracic Society Standardization of Spirometry 2019 update.
<table>
<thead>
<tr>
<th>Study, year</th>
<th>Lung function</th>
<th>BDR definition</th>
<th>Sample size</th>
<th>Placebo</th>
<th>Variable</th>
<th>Reported BDR cut-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duenas-Meza, 2019</td>
<td>IOS</td>
<td>Distribution cut-off (<5th percentile of change following salbutamol inhalation in healthy children)</td>
<td>96</td>
<td>No</td>
<td>R5</td>
<td>-26.36%</td>
</tr>
<tr>
<td>Hellinckx, 1998</td>
<td>IOS</td>
<td>Outside the 95% confidence interval</td>
<td>281</td>
<td>Yes</td>
<td>R5</td>
<td>-40%</td>
</tr>
<tr>
<td>Knithilä, 2017</td>
<td>IOS</td>
<td>Distribution cut-off (<5th percentile of change following salbutamol inhalation in healthy children) and Bland-Altman limits of agreement</td>
<td>146</td>
<td>Yes (Randomised)</td>
<td>R5-20, R5-20% AX</td>
<td>-110% -106% -75% -153% -139% -2.76 -2.20 -3.07</td>
</tr>
<tr>
<td>Konstantinou, 2019</td>
<td>IOS</td>
<td>ROC curve analysis</td>
<td>89</td>
<td>No</td>
<td>R5</td>
<td>-20.9%</td>
</tr>
<tr>
<td>Meinberg, 2003</td>
<td>IOS</td>
<td>ROC curve analysis</td>
<td>158</td>
<td>No</td>
<td>R5</td>
<td>> 0.3 SD < -1.5 SD -21.2% -55.3%</td>
</tr>
<tr>
<td>Medeiros, 2020</td>
<td>IOS</td>
<td>Cut-off derived from another reference (Marotta et al. 2003)</td>
<td>76</td>
<td>No</td>
<td>R5</td>
<td>-20% +20% -26% +42% -29%</td>
</tr>
<tr>
<td>Nielsen, 2001</td>
<td>IOS</td>
<td>R5: 10 SDw, X5: 1.5 SDw</td>
<td>92</td>
<td>Yes (Randomised)</td>
<td>R5 X5</td>
<td>-0.39 kPa/Ls < -1.5 SD < -28% +42% -29%</td>
</tr>
<tr>
<td>Shin, 2012</td>
<td>IOS</td>
<td>ROC curve analysis</td>
<td>59</td>
<td>No</td>
<td>R5</td>
<td>-15.6%</td>
</tr>
<tr>
<td>Song, 2008</td>
<td>IOS</td>
<td>Bland-Altman limits of agreement</td>
<td>132</td>
<td>No</td>
<td>R5</td>
<td>-20%</td>
</tr>
<tr>
<td>Nielsen, 2001</td>
<td>sRaw</td>
<td>sRaw: 3 SDw units</td>
<td>92</td>
<td>Yes (Randomised)</td>
<td>sRaw</td>
<td>3 SDw -25%</td>
</tr>
<tr>
<td>Stanczewska-Dymek, 2021</td>
<td>sRaw</td>
<td>Arbitrary cut-off</td>
<td>154</td>
<td>No</td>
<td>sRaw</td>
<td>-25%</td>
</tr>
<tr>
<td>Mele, 2010</td>
<td>RINT</td>
<td>Distribution cut-off (<5th percentile of change following salbutamol inhalation in healthy children)</td>
<td>180</td>
<td>No</td>
<td>Rnt</td>
<td>-0.26 kPa/Ls < -3% -33% -1.25</td>
</tr>
<tr>
<td>Nielsen, 2001</td>
<td>RINT</td>
<td>Rnt: 2.5 SDw</td>
<td>92</td>
<td>Yes (Randomised)</td>
<td>Rnt</td>
<td>-0.13 kPa/Ls < -9.7% -12.8%</td>
</tr>
<tr>
<td>Calogero, 2010</td>
<td>SPEC-Osc</td>
<td>Distribution cut-off (<5th percentile for R8 and >95th percentile for X8)</td>
<td>163</td>
<td>No</td>
<td>R8 R8 X8 A8</td>
<td>-3.16 hPa/Ls +2.25 hPa/Ls < -34% -6%</td>
</tr>
<tr>
<td>Ostveen, 2010</td>
<td>SPEC-Osc</td>
<td>Distribution cut-off (<5th percentile for R4 and AX)</td>
<td>325</td>
<td>Yes (Randomised)</td>
<td>R4 R6 R8 AX</td>
<td>-5.5 hPa/Ls -31 hPa/L -43% -41% -43% -81%</td>
</tr>
<tr>
<td>Simpson, 2012</td>
<td>SPEC-Osc</td>
<td>Distribution cut-off (>95th percentile in healthy children)</td>
<td>288</td>
<td>No</td>
<td>R8 R8 X8 A8</td>
<td>-37% +6% +6%</td>
</tr>
<tr>
<td>Stanczewska-Dymek, 2018</td>
<td>SPEC-Osc</td>
<td>Derived from Calogero et al. 2013 (distribution cut-off of the 5th and 95th percentile in healthy children)</td>
<td>151</td>
<td>No</td>
<td>R8</td>
<td>-2.79 cmH2O/Ls < -32%</td>
</tr>
<tr>
<td>Stanczewska-Dymek, 2021</td>
<td>SPEC-Osc</td>
<td>Derived from Calogero et al. 2013 (distribution cut-off of the 5th and 95th percentile in healthy children)</td>
<td>154</td>
<td>No</td>
<td>R8</td>
<td>-2.79 cmH2O/Ls < -32%</td>
</tr>
<tr>
<td>Year</td>
<td>Study Type</td>
<td>Method Details</td>
<td>N</td>
<td>Randomised</td>
<td>R5</td>
<td>R8</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>--</td>
<td>------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>2007</td>
<td>SPEC-OSC</td>
<td>Bland-Altman limits of agreement using the BDR_INIT</td>
<td>288</td>
<td>No</td>
<td>R6</td>
<td>R8</td>
</tr>
<tr>
<td>2020</td>
<td>SPEC-OSC</td>
<td>Bland-Altman limits of agreement</td>
<td>111</td>
<td>No</td>
<td>R6</td>
<td>R8</td>
</tr>
<tr>
<td>2013</td>
<td>SPIRO</td>
<td>Bland-Altman limits of agreement</td>
<td>65</td>
<td>Yes (Randomised)</td>
<td>FEV1</td>
<td>FEV0.75</td>
</tr>
<tr>
<td>2016</td>
<td>SPIRO</td>
<td>Distribution cut-off (>95th percentile of the change in each variable)</td>
<td>160</td>
<td>No</td>
<td>FEV1</td>
<td>FEV0.75</td>
</tr>
<tr>
<td>2017</td>
<td>SPIRO</td>
<td>Method 1. Bland-Altman limits of agreement</td>
<td>720</td>
<td>Yes (Randomised)</td>
<td>FEV1</td>
<td>FVC</td>
</tr>
<tr>
<td>2020</td>
<td>SPIRO</td>
<td>Method 2. ROC curve analysis</td>
<td>720</td>
<td>Yes (Randomised)</td>
<td>FEV1</td>
<td>FVC</td>
</tr>
<tr>
<td>2014</td>
<td>SPIRO</td>
<td>Spirometry 12% increase in FEV1 (adult definition)</td>
<td>916</td>
<td>No</td>
<td>FEV1</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>SPIRO</td>
<td>ROC curve analysis</td>
<td>96</td>
<td>No</td>
<td>FEV1</td>
<td>FEV0.5</td>
</tr>
<tr>
<td>2012</td>
<td>SPIRO</td>
<td>ROC curve analysis</td>
<td>99</td>
<td>No</td>
<td>FEV1</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AHR, airway hyperreactivity; AX, area between zero line and reactance spectrum below resonant frequency; BDR, bronchodilator response; BDR_ABS, absolute BDR; BDR_PRED, relative BDR; BDR_Z, BDR as a change in percentage of predicted; BDR_Z_ABS, absolute BDR as a change in z-score; CI, confidence interval; FEF25-75, forced mid-expiratory flow; FEF0.5, forced expiratory volume in 0.5 seconds; FEF0.75, forced expiratory volume in 0.75 seconds; FEF1, forced expiratory volume in 1 second; FVC, forced vital capacity; IBOSC, intra-breath oscilometry; IOS, impulse oscillometry; n/a, unavailable or unspecified; R5, resistance at 5 Hz (IOS); R5-20, the absolute difference in resistance at 5 Hz and 20 Hz (IOS); R5-20%, the relative difference in resistance at 5 Hz and 20 Hz (IOS); R6, resistance at 6 Hz; R8, resistance at 8 Hz; R10, resistance at 10 Hz; ROC, receiver operating characteristic; RINT, interrupter technique; SPEC-OSC, spectral oscilometry; SPIRO, spirometry; X6, reactance at 6 Hz; X8, reactance at 8 Hz; X10, reactance at 10 Hz; X5, reactance at 5 Hz (IOS); sRaw, specific airway resistance; Rint, interrupter resistance; SD, standard deviations; SDw, intersubject standard deviation units.