Transcutaneous Spinal Stimulation and Short-burst Interval Treadmill Training Improve Spasticity and Walking Function in Children with Cerebral Palsy

Siddhi R. Shrivastav¹, Charlotte D. Caskey²*, Victoria M. Landrum², Kristie F. Bjornson³,⁴,⁵, Desiree Roge⁵, Katherine M. Steele², Chet T. Moritz¹,³,⁶,⁷

¹Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
²Department of Mechanical Engineering, University of Washington, Seattle, United States
³Department of Rehabilitation Medicine, University of Washington, Seattle, United States
⁴Department of Pediatrics, University of Washington, Seattle, United States
⁵Seattle Children’s Research Institute, Seattle, United States
⁶Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
⁷Center for Neurotechnology, Seattle, WA, USA

*Authors had equal contribution

Correspondence: Dr. Chet Moritz, PhD; email: ctmoritz@uw.edu

Grant Support: This work was supported by Seattle Children’s Hospital CP Research Pilot Study Fund 2020 Award, UW Rehabilitation Medicine Walter C. and Anita C. Stolov 2021 Research Fund, and NSF Graduate Research Fellowship Program Award DGE-1762114.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Children with cerebral palsy (CP) experience spasticity that negatively affects their mobility. Current spasticity treatments reduce spasticity but do not improve walking function. The goal of this study was to evaluate the effect of transcutaneous spinal cord stimulation (tSCS) and short-burst interval locomotor treadmill training (SBLTT) on spasticity, neuromuscular coordination, and walking function in children with CP. In a crossover study design, four children with CP (4-13 years old), received 24 sessions each of SBLTT and SBLTT with tSCS (tSCS + SBLTT), with an 8-week washout in between. Spasticity, measured via the Modified Ashworth Scale, was significantly reduced in four lower-extremity muscles after tSCS + SBLTT (1.40 ± 0.22, p<0.001), 3-fold better than following SBLTT only (0.43 ± 0.39, p = 0.11). This was paralleled by improvements in one-minute walk test distance after both SBLTT (14.0 ± 6.0 m, p = 0.02) and tSCS + SBLTT (9.8 ± 6.7 m, p = 0.06). tSCS + SBLTT led to improvements in peak hip and knee extension (3.7 ± 10° and 7.6 ± 10°), that drove greater joint dynamic range of 3.4 ± 3.9° and 4.7 ± 7.2° at the hip and knee, respectively. Children and parents reported reduction in fatigue, and improved self-reported gait outcomes after tSCS + SBLTT. Improvements in spasticity and walking function were sustained during the 8-weeks of follow-up without any further stimulation. These results suggest that the tSCS + SBLTT improves spasticity while simultaneously improving walking function in the laboratory and community for ambulatory children with CP.
INTRODUCTION

Cerebral Palsy (CP) is a non-progressive disorder of movement and posture caused by damage to the developing brain. While CP is primarily a neurological disorder, it also affects the development of neuromuscular and skeletal systems, which negatively impacts mobility and participation in daily activities [1],[2],[3]. Development of corticospinal circuits are impacted in CP, leading to secondary complications such as altered motor control and muscle spasticity [4],[5].

Eighty-five percent of children with CP present with spasticity [6], which is characterized by a velocity-dependent increase in muscle tone. Spasticity is a major contributor to reduced function and increased discomfort in children with CP, limiting gross motor function during activities such as walking [7]. Current spasticity treatments reduce spasticity but do not translate to improved muscle activity and walking function [8],[9]. New interventions that can simultaneously reduce spasticity and improve walking function are needed.

Non-invasive neuromodulation may be an alternative approach that can improve outcomes in CP when combined with physical therapy. Transcutaneous spinal cord stimulation (tSCS) is a novel, non-invasive neuromodulation technique that can modulate spinal and supraspinal circuits [10],[11] especially when implemented with physical therapy [12]. Use of tSCS with physical therapy has reduced spasticity and improved motor function in people with spinal cord injury and CP [12],[13],[14],[15]. In children with CP, a single session of tSCS improved coordination of walking and muscle activation [16], while repeated sessions with bodyweight supported treadmill training or activity-based neurorehabilitation therapy improved walking biomechanics and gross motor function, respectively [14],[15],[17].
While these recent results support using tSCS for children with CP, the impacts on spasticity and walking function in the lab and community have not been investigated. We hypothesize that tSCS may have simultaneous benefits to spasticity and mobility for children with CP by amplifying afferent feedback to support neuroplasticity [18]. Guiding reorganization of the spinal and supraspinal circuits may be advantageous than current spasticity treatments, including botulinum toxin type-A injections, baclofen, and selective dorsal rhizotomy. These treatments attempt to reduce muscle activity by inhibiting neural pathways, but often have side effects that result in inconsistent and unsatisfactory changes to walking function [9].

There is a need for approaches that can simultaneously improve function and support sensorimotor integration. By supporting neuroplasticity and reorganization of the spinal pathways, tSCS may be able to simultaneously reduce spasticity and improve motor function for children with CP. The objective of this study was to evaluate the effects of tSCS on spasticity and mobility in children with CP. We evaluated immediate and long-term effects of tSCS when combined with a unique physical therapy routine specifically designed to improve mobility in children with CP, short-burst interval locomotor treadmill training (SBLTT). For children with CP, SBLTT improves walking speed, endurance, and community walking [19]. Here we combined tSCS and SBLTT with the goal of improving sensorimotor organization. We hypothesized that tSCS combined with SBLTT would reduce spasticity and improve motor function more than SBLTT alone, thereby resulting in improved biomechanics, increased walking function, and increased community mobility.
METHODS

Study Design

We conducted a prospective crossover study with two intervention arms (Fig. 1). Each participant received 24 sessions of SBLTT first, and then 24 sessions of tSCS combined with SBLTT (tSCS + SBLTT), with an 8-week washout between interventions. Outcomes were collected during a 4-week baseline at the start, and during an 8-week washout between interventions, as well as 8-weeks of follow-up after all interventions. All visits were conducted at the University of Washington, with one exception. One participant (P02) had most training visits conducted at home, visiting the lab at least once per week for assessments. This study was approved by the University of Washington Human Subjects Division (IRB identifier: STUDY00008896) and was registered at ClinicalTrials.gov (NCT04467437).

Figure 1. A) Short-burst interval locomotor treadmill training (SBLTT) with contact guard assist. B) Spinal Cord Neuromodulation (SpineX SCONE™) with stimulating electrodes on the T11 and L1 dorsal spinous processes and two ground electrodes on the anterior superior iliac crest (ASIS - not visible). C) Spinal stimulation waveform with 10 kHz carrier frequency. D) Protocol timeline including the assessments before and after each intervention and after 8-weeks of follow-up.
During both intervention phases, SBLTT was delivered for 30 minutes at each visit following a previously established protocol [19]. SBLTT provides intensive walking practice in which children walk with alternating 30-second bursts of high and low-to-moderate speeds, mimicking children’s natural walking patterns. During SBLTT, the low-to-moderate speed was kept constant across all sessions, while the fast speed was increased based on perceived exertion as measured by clinical observation and the children's OMNI Scale of Perceived Exertion [20]. SBLTT was preceded by a 5- to 15-minute active warm-up and concluded with a 5-minute active cool-down. Warm-up and cool-down activities included overground walking, playing, or walking at a low, steady speed on the treadmill.

During tSCS + SBLTT, the parameters and application of the Spinal Cord Neuromodulation (SCONE™, SpineX, Inc.) followed previously reported protocols [16]. Stimulation was applied using adhesive gel electrodes with the cathodes delivering stimulation placed just below the T11 and L1 spinous processes using 3.2 cm round electrodes. The anodes, serving as the ground electrodes, were 5.1 x 8.6 cm rectangular electrodes placed over the anterior, superior iliac spine (ASIS) (Fig. 1B). During each visit, stimulation was applied for an average of 56 ± 10 minutes. Amplitude for the subthreshold stimulation was determined based on children’s self-report of quality of walking, sensation beneath the cathodes, and a physical therapist’s clinical observation of gait quality and participant’s behavior.

Participants

We enrolled ambulatory children with spastic CP Gross Motor Function Classification System (GMFCS) Levels I-II [1] who were not currently taking spasticity medications, did not have history of selective dorsal rhizotomy, and had not undergone a lower extremity surgery or botulinum toxin injections in the past 1 year. Four children with CP participated in the study (Table 1). Two participants,
P02 and P03, weaned off their daily use of baclofen 3-weeks before starting the study. Another participant, P01 took baclofen as needed prior to the study and took 5 mg once during the SBLTT phase. Children and parents were informed of the study procedures and signed an informed consent and age-appropriate assent form, as appropriate.

Outcome Measure

Primary outcome measures were lower limb spasticity and walking distance. Spasticity was measured using the Modified Ashworth Scale (MAS) for the hamstrings, quadriceps, gastrocnemius, and soleus muscles bilaterally. MAS scores were converted into an ordinal scale, such that a value of zero indicated no spasticity and a value of five indicated joint rigidity. We also assessed the Tardieu Scale for the hip extensors, knee flexors and extensors, and ankle flexors and extensors as an additional measure of spasticity. Both the MAS and Tardieu scores were averaged across the total number of muscles included in each test. Walking capacity in the lab was measured using the 1-minute walk test (1-MWT), which measures the distance walked in one-minute and is considered a reliable measure of functional ability and walking endurance in ambulatory children with CP [21], [22]. One participant, P01 performed a 6-minute walk test at every time point and distances were converted to a 1-minute walking distance by calculating average distance walked in 1-minute for each assessment.

Table 1. Participant characteristics

<table>
<thead>
<tr>
<th>Participant Identifier</th>
<th>Sex</th>
<th>Age Range (years)</th>
<th>Leg Length (m)</th>
<th>Diagnosis</th>
<th>More-affected side</th>
<th>GMFCS Level*</th>
<th>Assistive Devices**</th>
<th>Amplitude (mA)***</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01</td>
<td>Male</td>
<td>8-13</td>
<td>0.81</td>
<td>Spastic diplegia Left</td>
<td>II</td>
<td>Bilateral AFO-FCs</td>
<td>54</td>
<td>40</td>
</tr>
<tr>
<td>P02</td>
<td>Male</td>
<td>2-7</td>
<td>0.50</td>
<td>Spastic diplegia Left</td>
<td>I</td>
<td>Bilateral AFO-FCs</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>P03</td>
<td>Male</td>
<td>8-13</td>
<td>0.75</td>
<td>Spastic hemiplegia Right</td>
<td>II</td>
<td>Bilateral AFO-FCs</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>P04</td>
<td>Male</td>
<td>8-13</td>
<td>0.85</td>
<td>Spastic hemiplegia Left</td>
<td>I</td>
<td>Left lift</td>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>

The more-affected side is based on the side with more spasticity at baseline and parent reports. *GMFCS = Gross Motor Function Classification System; **AFO-FC = ankle foot orthosis footwear combination; ***tSCS amplitude applied to T11 = thoracic spinous process I, L1 = lumbar spinous process I.
Biomechanical changes in walking were also assessed at the hip, knee, and ankle joints on each participant’s more-affected side. Joint kinematics and muscle activity were quantified during walking on a 10-meter walkway. Participants were instructed to walk at a self-selected pace while barefoot for a minimum of 25 steps at each assessment timepoint. Lower extremity motion data were collected using a modified Helen-Hayes marker set [23] and a 10- or 12-camera motion capture system at 120 Hz (Qualisys AB, Gothenburg, SE). Data were processed using custom MATLAB scripts (MathWorks, Natick, MA), USA) and OpenSim v4.3 (Stanford, USA) using a 23 degree-of-freedom model scaled to each individual participant [24], [25]. Across trials, the root-mean-square (RMS) and maximum model error for all markers were below 2 cm and 4 cm, respectively, which align with best practices for model quality [26]. Each joint’s dynamic range was calculated as the average change in joint angle across gait cycles.

Electromyography (EMG) data were synchronously recorded during motion capture trials bilaterally for five muscles: rectus femoris (RF), vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (MG). Using custom MATLAB scripts, raw EMG signals were high pass filtered (4th order Butterworth; 20 Hz), zero-centered, rectified, and low pass-filtered (4th order Butterworth; 10 Hz). Signals were then normalized to the 95th percentile of maximum activation across trials for that day and reported as milli-volts/millivolts (mV/mV). Integrated muscle activity was defined as the area under the curve for predefined phases of the gait cycle [27]. Co-contraction of antagonistic muscle pairs was defined as the co-contraction index (CCI) calculated as:

$$CCI (\%) = \frac{2I_{ant}}{I_{tot}} \times 100$$ \hspace{1cm} (1)

Where I_{ant} is the antagonistic muscle activity and I_{tot} is the sum of agonist and antagonist EMG activity [28].
Walking capacity and performance were evaluated by lab- and community-based measures. Walking speed (10-meter walk test, 10-MWT), functional mobility (Timed Up and Go, TUG), and dynamic balance (Pediatric Balance Scale, PBS) were evaluated in a lab-setting [29],[30],[31]. Patient-Reported Outcomes Measurement Information System (PROMIS®) Pediatric Profile-Fatigue short form was used for child-reported level of fatigue for all participants except P02 whose parent completed the parent proxy form due to the child's young age [32].

To quantify community-based walking activity, participants wore a step counter (StepWatch, Modus Health, Edmonds, WA) on their left ankle for seven consecutive days. Data from four weekdays and one weekend day were included for the final analyses [33]. Average daily stride rates were calculated for each participant. To evaluate child and parent perceptions about gait outcomes, we used child and parent-reported questionnaires, the Gait Outcomes Assessment List (GOAL) [34]. Total scores were calculated for each participant and parent.

We evaluated changes measured immediately after each intervention, as well as after 8-weeks follow-up with no further study intervention. For immediate changes, we compared pre-intervention to post-intervention for each treatment phase of the study. Over the 8-week follow-up, we compared pre-intervention to the 8-week timepoint following SBLTT only and tSCS + SBLTT. Shapiro-Wilk tests were used to determine data normality, and then paired t-tests or Wilcoxon signed ranked tests were used for normally and non-normally distributed data, respectively. Statistical analyses were conducted only for primary outcomes of spasticity, measured via the MAS and Tardieu scale, and walking distance measured using the 1-MWT. A p-value < 0.05 was considered a statistically significant difference from pre-intervention for each phase. A p-value < 0.10 was considered trending towards statistical significance and noted in some cases due to the small sample size.
RESULTS

Spasticity significantly reduced after tSCS + SBLTT. Spasticity, measured by MAS, improved by 1.4 ± 0.22 after tSCS + SBLTT ($p<0.001$), more than 3-fold greater than the non-significant improvement of 0.43 ± 0.39 after SBLTT only ($p = 0.11$). Average MAS scores remained low for 8-weeks after tSCS + SBLTT ($p = 0.068$) but not after SBLTT only ($p = 0.11$) compared to pre-intervention values (Fig. 2A).

Figure 2. A) Average Modified Ashworth Scale (MAS) for four muscles bilaterally and B) walking distance during the 1-minute walk test (1-MWT) for each participant before and after each intervention and after 8-weeks of follow-up. * $p < 0.10$, ** $p < 0.05$. SBLTT: Short-burst interval locomotor treadmill training; tSCS: transcutaneous spinal cord stimulation.
Reduced spasticity following tSCS + SBLTT was also measured by the Tardieu scale. Spasticity reduced by 4.3 ± 3.0 points after SBLTT only (p = 0.065) and 7.3 ± 4.3 points after tSCS + SBLTT (p = 0.04). Reduction in average Tardieu scores nearly sustained through 8-weeks follow-up after tSCS + SBLTT (p = 0.069, Supplemental Fig. 1A).

The greatest reductions in spasticity during tSCS + SBLTT were observed in the gastrocnemius and soleus muscles (Fig. 3). These muscles both contribute to ankle plantarflexion, with the gastrocnemius muscle also contributing to knee flexion. Reductions in spasticity were also consistently observed at the hamstrings and quadriceps but were variable between interventions.

Reductions in spasticity were paralleled by increases in distance walked during the 1-MWT, with increases of 14 ± 6 meters (m) after SBLTT only (p = 0.02) and continued increases of 10 ± 7 m after tSCS + SBLTT (p = 0.06). All participants maintained or continued to improve walking distance 8-weeks following tSCS + SBLTT (p = 0.007) but not following SBLTT only (p = 0.14) compared to pre-intervention values (Fig. 2B).

Figure 3. Change in muscle spasticity measured using the Modified Ashworth Scale (MAS). Left chart shows results averaged across all muscles. Remaining charts report individual muscles including the hamstrings, quadriceps, gastrocnemius and soleus, respectively. Larger negative numbers indicate greater reductions, or improvements, in muscle spasticity. Average spasticity score was calculated by averaging bilaterally for each muscle group. The horizontal dash line indicates the minimum clinically important difference (MCID) for spasticity reduction in adults post-stroke [35], as similar values are not available for children with CP.
Likely resulting from the improvements in spasticity, we documented an increase in joint extension and dynamic range of motion during walking after tSCS + SBLTT compared to a decrease in dynamic joint range after SBLTT only. During SBLTT only, participants decreased knee and hip peak extension by an average of 14 ± 17° and 3.8 ± 12°, respectively. This is characteristic of an increase in crouch gait. This caused a decrease in the overall joint dynamic range of motion during walking after SBLTT only of -9.0 ± 12° and -9.3 ± 12.6° for the hip and knee, respectively. In contrast, after tSCS + SBLTT, participants increased peak joint extension during gait, with average improvements of 3.7 ± 10° and 7.6 ± 10°, driving increases in joint dynamic range of motion of 3.4 ± 3.9° and 4.7 ± 7.2° at the hip and knee, respectively (Fig. 4A and B). Minimal changes were observed at the ankle (Supplemental Fig. 2).

In addition to changes in joint mechanics during tSCS + SBLTT, all participants maintained or reduced muscle activity in the VM and MG muscles after tSCS + SBLTT. Integrated VM activity during stance increased on average 5.9 ± 12 during SBLTT only and decreased 3.1 ± 2.5 during tSCS + SBLTT. Integrated MG midstance decreased 0.41 ± 1.4 and 1.2 ± 1.2 during SBLTT and tSCS + SBLTT, respectively. This resulted in greater decreases in CCI between the VM and BF (SBLTT only: 5.6 ± 11%; tSCS + SBLTT: -18 ± 19%) and between the MG and TA (SBLTT only: 0.43 ± 9.4%; tSCS + SBLTT: -7.9 ± 9.7%) during tSCS + SBLTT compared to SBLTT only.
Figure 4. Average joint kinematics and muscle activity during barefoot walking at a self-selected speed. The left column shows examples from P03, other columns represent data from all participants as follows. Changes in A) hip and B) knee joint kinematics, C) vastus medialis (VM) activity and co-contraction index (CCI) between the VM and biceps femoris (BF), and D) medial gastrocnemius (MG) activity and CCI between the MG and tibialis anterior (TA). Arrows indicate desired direction of change for each variable, including increased hip/knee extension, increased dynamic range of motion, decreased muscle activity during stance, and decreased co-contraction. Notes: The VM data from P01’s baseline visit is missing from (C) due to poor EMG signal during data collection. The sample VM activity from P03 in (C) also has a consistent large artifact at heel strike, likely due to sensor movement.
Participants’ walking speed and peak stride rate were maintained or improved during both interventions, while all participants reported greater reductions in fatigue and improved community mobility during tSCS + SBLTT than SBLTT only. Specifically, walking speed, measured via the 10-MWT improved by 0.06 ± 0.10 meters/second (m/s), or 4%, after SBLTT only and by 0.16 ± 0.25 m/s, or 10%, after tSCS + SBLTT (Fig. 5A). Peak stride rate in the community did not change after SBLTT only but improved by 3.0 ± 4.1 strides/minute, or 5%, after tSCS + SBLTT (Fig. 5B). Average time taken to complete TUG reduced by 1.3 ± 1.6 seconds (16%) after SBLTT only, and further reduced by 0.4 ± 1.0 seconds (6%) after tSCS + SBLTT (Supplemental Fig. 2B). Dynamic balance as evaluated by Pediatric Balance Scale (PBS) scores improved by 3.7 ± 3.2 (8%) points after SBLTT only with continued improvements of 3.7 ± 5.5 points (7%) after tSCS + SBLTT (Supplemental Fig. 2C).

Participants reported 25% increase in fatigue after SBLTT only, but 6% decrease in fatigue after tSCS + SBLTT as captured via the PROMIS® (Fig. 5C). Child-reported gait outcomes scores reduced by 4.3 ± 5.5 points (6%) after SBLTT only and increased by 9.7 ± 8.5 points (14%) after tSCS + SBLTT. Parent-reported gait outcomes scores reduced by 1.8 ± 0.96 points (3%) after SBLTT only but improved by 3.0 ± 4.1 points (5%) after tSCS + SBLTT (Fig. 6).

DISCUSSION

The combination of transcutaneous spinal cord stimulation and SBLTT (tSCS + SBLTT) led to 3-fold greater improvements in spasticity compared to SBLTT only. Reductions in spasticity during tSCS + SBLTT corresponded with increases in joint dynamic range and less demand on muscles during walking, allowing continued increases in walking function and more satisfaction with community mobility from children and parents. Further, nearly all improvements were maintained for at least two months after tSCS, demonstrating sustained
benefits of reduced spasticity and better walking function persist following tSCS + SBLTT for children with CP.

It is important to place the observed changes in spasticity in a clinical context. While there is no reported minimum clinically important difference (MCID) for the MAS in children with CP, in adults who had a stroke an average change in lower extremity MAS of 0.73 is considered a large effect MCID. All four participants achieved this MCID for reduction in spasticity after tSCS + SBLTT, which was also sustained for at least two months with no further study treatment (Fig. 3).

Common, clinically available treatments of spasticity for children with CP include botulinum toxin type-A (BTA) injections, baclofen, and selective dorsal rhizotomy (SDR) surgery. BTA injections are applied intramuscularly and reduce muscle activity by blocking acetylcholine release from motor neurons at the neuromuscular junction [36]. BTA injections provide temporary reduction in spasticity, requiring repeated injections that come with negative effects on muscle development and reduced spasticity response on repeated use [36], [37].
Baclofen is a pharmacological intervention option that can be taken orally or delivered via an implanted pump. Baclofen reduces the release of excitatory neurotransmitters in the spinal cord that contribute to spasticity [38]. Baclofen is a GABA\textsubscript{B} receptor agonist, and may result in epilepsy, anxiety and sleep disorders [39], [40]. SDR is a neurosurgical procedure that permanently transects afferent nerves in the spinal cord. After SDR, children require intensive rehabilitation to recover to pre-SDR function. Given the side effects that accompany these treatments and our observed improvements in spasticity following tSCS + SBLTT, non-invasive spinal neuromodulation should be further studied as a spasticity management approach for children with CP.

Our findings build on prior studies of tSCS for children with CP. There have now been evaluations of tSCS with more than 50 children with CP across several research groups [14], [15], [16], [17]. Most prior studies have not evaluated impacts on spasticity or long-term training. In the one prior study that evaluated spasticity, however, no effect of tSCS on spasticity was reported for the two GMFCS Level I-II children included in the study when tSCS was combined with activity-based neurorehabilitation therapy [15]. They applied tSCS to the cervical and thoracic spine at lower amplitudes (12-18 mA at C5-6 and 10-16 mA at T11-12).
than used in the present study. They did report a reduction in spasticity for four children at GMFCS Level III-V, although the muscles for which spasticity was quantified were not reported. These differences suggest the activity used with tSCS as well as the stimulation location and amplitude may influence whether tSCS impacts spasticity. Future work should consider how to optimize physical therapy paired with tSCS to positively impact spasticity, mobility, and daily activities.

Improvements in spasticity during tSCS + SBLTT may have contributed towards the observed increases in hip and knee extension. Increases in hip and knee extension are characteristics of reductions in crouch gait [41]. Reductions in spasticity observed at the hamstrings and gastrocnemius may have been a driver for increased knee extension, particularly when occurring gradually over 24 sessions of tSCS + SBLTT [42]. With limited evaluation of other non-invasive methods for improving crouch gait mechanics in children with CP, tSCS + SBLTT may be an option for improving gait kinematics while maintaining overall walking function.

The reduction in crouch gait kinematics was paralleled by reductions in excessive muscle activity in the vastus medialis [43]. Walking with less crouch gait can reduce demand on hip and knee extensors, as we observed here with less hamstring activity, potentially driving the self-reported reductions in fatigue, as captured through the PROMIS®. Fatigue in CP is associated with deteriorated walking, especially as children transition into adulthood [44]. Therefore, approaches that reduce fatigue are a high priority for the CP community [45].

Interestingly, minimal changes were seen at the ankle (Supplemental Fig. 2). This may be because all participants wore their community assistive devices during SBLTT, including three participants who wore their rigid ankle foot orthoses-footwear combination (AFO-FC)
that limits movement of the ankle. We chose to use the children’s prescribed AFO-FC during SBLTT to maximize transfer to daily activities. The AFO-FCs likely supported the fast-walking speeds achieved during SBLTT but may also reduce afferent feedback that tSCS seeks to amplify during training, and potentially limit other therapeutic effects at the ankle. Evaluating the effects of orthoses on training responses represents an important area for future research.

Along with reductions in spasticity, we observed improvements in lab-based, community-based and self-reported measures of walking function. All participants increased walking distance during the 1-MWT after SBLTT only and reached at least a medium effect of the MCID, with two participants reaching the large effect MCID. All participants also increased their 1-MWT distance after tSCS + SBLTT, with two participants reaching the large effect MCID [46]. All participants improved their TUG performance time after SBLTT only, with one participant reaching a large effect MCID and another reaching a medium effect MCID. Three of four participants further improved TUG performance time after tSCS + SBLTT, with two participants reaching the large effect MCID [46]. This suggests that both SBLTT only and tSCS + SBLTT improve walking performance in a clinically important way, but only tSCS + SBLTT led to sustained improvements in both spasticity and walking function 8 weeks after the intervention was complete.

Children with CP often have reduced levels of physical activity in daily life and demonstrate less walking intensity compared to typically developing peers [47]. Our results suggest that tSCS + SBLTT can facilitate community walking intensity, as shown by peak stride rates, and may be a valuable tool in CP rehabilitation [19]. Improvements in lab-based measures of walking function provide preliminary evidence on the effects of tSCS + SBLTT on walking capacity in a controlled environment, while improvements in peak stride rate captured in the
community via a StepWatch provide insight into transference to children’s day-to-day natural environments.

Positive self-reported changes in gait outcomes captured via the GOAL questionnaires provide a holistic view of participants’ and their parents’ positive subjective experiences of tSCS + SBLTT. Both children and parents reported an increase in achieving walking goals after tSCS + SBLTT, which was driven by improvements in gait pattern and appearance. Future work should expand this approach to understand implementations of tSCS + SBLTT and user’s perceptions on how novel interventions affect community mobility.

It is also important to establish the underlying neuromechanical mechanisms driving changes for evidence-driven, personalized rehabilitation. By modulating sensorimotor activity, tSCS aims to induce neuroplasticity, or promote a more natural organization of neural pathways, thereby improving sensory integration and motor control [10], [48]. In children with CP whose early brain injury affects both the spinal and supraspinal circuits [4], [49], disorganization between the supraspinal and the spinal pathways causes inadequate sensorimotor processing [49]. This further leads to a disruption of inhibitory and excitatory inputs, manifesting as spasticity [50] and impacting mobility [51]. We theorize that the combination of tSCS and motor training promotes reorganization of the spinal-supraspinal connectivity by amplifying sensory signals at the level of the spinal cord during functional activities [11], [15]. Motor practice during this amplified state of sensory feedback may result in improved sensorimotor integration at both spinal and supraspinal levels that is maintained for at least several months following treatment [11]. Our findings provide preliminary support for this hypothesis, allowing for simultaneous improvements in how sensory information is integrated both involuntarily...
(i.e., spasticity) and voluntarily (i.e., walking). Confirming the underlying neurophysiological effects of neuromodulation represents an exciting avenue for future work.

Despite encouraging findings, there are several limitations to this work. First, the small sample size of only four males with spastic CP and GMFCS I-II limits the generalization of results. A second limitation of this study is that the timing over which each intervention was delivered differed slightly due to their family’s availability and the COVID-19 pandemic. Nonetheless, the number of therapy sessions was the same between all participants and intervention phases. Third, we did not restrict the physical therapy that participants may have been receiving outside the study. However, this indicates that even when the interventions are applied in the real-world context of changes to daily life, tSCS + SBLTT consistently resulted in greater improvement in spasticity compared to SBLTT only. Finally, the order of the interventions was fixed. Due to evidence of carry-over effects after tSCS in SCI, we did not randomize the order of SBLTT and tSCS + SBLTT. This likely contributed to ceiling effect observed on some outcome measures after the gains during the initial exposure to SBLTT. Evaluating carry-over effects and the impacts of repeated exposures to tSCS represent important areas for future research.

CONCLUSION

We report that the combination of transcutaneous spinal cord stimulation and short-burst interval locomotor treadmill training led to significant and sustained reductions in spasticity, with continued improvements in walking function. Children walked faster, for longer distances, and with less crouch mechanics, while also reporting improved gait outcomes and reduced fatigue as spasticity reduced. Future work should consider whether this is applicable to other forms of therapy for children with CP and elucidate the underlying neuromechanics driving improvements. More
research is also needed to understand how non-invasive neuromodulation and physical therapy interventions can be combined and optimized to meet the needs and goals of children with CP and their families.

ACKNOWLEDGEMENT

The authors thank the children and their families for the time they dedicated to the research. We also thank Dr. Soshi Samejima, Rich Henderson, and Lauren Bachman for assisting with interventions and assessments, and Avocet Nagle-Christensen for data analysis.

DISCLOSURES

Chet T. Moritz serves as a clinical advisor to the company SpineX, who provided the stimulator for the study. SpineX also licensed IP generated by the team at the University of Washington, Chet T. Moritz, Katherine M. Steele, Siddhi R. Shrivastav, and Charlotte D. Caskey.

REFERENCES

