Immunity to non-dengue flaviviruses impacts dengue virus IgG ELISA specificity in Cambodia

Camila Odio¹, Christina Yek²,³*, Chloe M. Hasund¹*, Somnang Man², Piseth Ly², Sreynik Nhek², Sophana Chea², Chanthap Lon², Charlie Voirin¹, Rekol Huy⁴, Rithea Leang⁴, Chea Huch⁴, L. Fabiano Oliveira²,³, Jessica E. Manning²,³,⁺, Leah C. Katzelnick¹,⁺

Affiliations: ¹Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA, ²International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia, ³Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, ⁴National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh, Cambodia.

*Authors made equal contributions to this manuscript.

⁺Corresponding authors:

Leah Katzelnick PhD MPH
Chief, Viral Epidemiology and Immunity Unit
National Institutes of Allergy and Infectious Diseases, National Institutes of Health
Building 33, Room 3W10A, 33 North Drive
Bethesda, MD 20892-3203
Phone: 240-627-3276, Email: leah.katzelnick@nih.gov

Jessica Manning MD MSc
Director, International Center of Excellence in Research CAMBODIA
National Institutes of Allergy and Infectious Diseases, National Institutes of Health
Email: jess.manning@gmail.com
Abstract 92 words

Seroprevalence studies are the gold standard for disease surveillance, and serology was used to determine eligibility for the first licensed dengue vaccine. However, expanding flavivirus endemicity, co-circulation, and vaccination complicate serology results. Among 713 healthy Cambodian children, a commonly used indirect dengue virus IgG ELISA (PanBio) had a lower specificity than previously reported (94% vs. 100%). Of those with false positive PanBio results, 46% had detectable neutralizing antibodies against other flaviviruses, with the highest frequency against West Nile virus (WNV). Immunity to non-dengue flaviviruses can impact dengue surveillance and potentially pre-vaccine screening efforts.

Manuscript: 1,696 words

Background

The genus Orthoflavivirus includes multiple pathogenic mosquito-borne viruses including dengue viruses 1-4 (DENV1-4), Japanese encephalitis virus (JEV), West Nile virus (WNV), Zika virus (ZIKV) and yellow fever virus (YFV) [1]. With expanding vector habitats, known flaviviruses are rising in global incidence, and novel flaviviruses are emerging [2, 3]. These flaviviruses commonly co-circulate, and the antibodies induced by one exposure may cross-react with others in the genus [4]. Additionally, affected areas use vaccines to protect against JEV and YFV, further complicating serology. As flaviviruses expand their range and vaccination increases, differentiating true exposure from cross-reactivity is not only difficult, but also increasingly important to guide diagnostic, preventative, and therapeutic measures.
Accurately characterizing population level immunity to DENV is important for current dengue vaccination efforts. Dengvaxia (Sanofi Pasteur), the first widely approved dengue vaccine, was originally recommended in 2016 by the World Health Organization (WHO) Strategic Advisory Group of Experts (SAGE) panel for use in areas with \(\geq 70\% \) DENV seroprevalence in children age 9 and older, with seroprevalence most often measured using common IgG ELISAs [5]. When it was later shown that Dengvaxia increases the risk of severe disease in DENV-naïve individuals, the WHO recommended use of highly specific individual-level testing of DENV immunity to confirm vaccine eligibility, as well as use in high-risk populations in endemic areas [6][7]. The World Health Organization has since recommended that the second licensed dengue vaccine QDENGA (Takeda) be introduced to children aged 6 to 16 years, also in highly endemic areas [8]. Given the lack of observed vaccine-induced protection against DENV3 in seronegative individuals and the unknown protection against DENV4 [9], a strategy based on population-level estimates of endemicity has the potential to increase disease risk for seronegative individuals.

Population-level serosurveys for DENV conducted for surveillance purposes generally use commercial IgG ELISAs. The plaque reduction neutralization test (PRNT), which measures neutralizing antibodies (nAbs) to DENV, is considered the gold standard for evaluating specificity but requires intensive and specialized labor. The PanBio indirect DENV IgG ELISA (Abbott, Brisbane, QLD, Australia) is one of the most commonly used assays for measuring DENV immunity, and the manufacturer reports 100% specificity based on 108 DENV-naïve individuals from endemic areas [10]. Separate work demonstrated 99% specificity of this ELISA using DENV1-4 PRNT\(_{50} \geq 10 \) as the standard for DENV immunity in a cohort of 534 individuals from both the USA and dengue-endemic regions before 2016 [11]. However, the PanBio indirect
DENV IgG ELISA yields higher false positivity rates when evaluated with individuals positive to other flaviviruses, including those who had received an inactivated JEV vaccine (3%), or had immunity against ZIKV (34%) or WNV (51%) [11]. The degree to which immunity to other flaviviruses affects DENV serosurveys is dependent on the site, and a major challenge is that the extent of circulation of other flaviviruses is often unknown. For instance, an observational study of children aged 9-14 years in the Philippines in 2017 used a PRNT$_{70} \geq 40$ as the indicator of DENV immunity and reported a relatively low ELISA specificity, of 93.4%. Of the false positive samples, 64% had nAb against ZIKV or JEV, in a region where ZIKV was not thought to be widespread. Thus, although the PanBio ELISA has a reportedly high specificity, this number may vary with flavivirus cross-reactivity and expanding co-circulation or vaccination.

Here, we examine the performance of the PanBio ELISA in young children in Cambodia, a highly dengue-endemic area. ZIKV was recently found to co-circulate in the area, and JEV is endemic. JEV vaccination campaigns with a live-attenuated JEV vaccine SA14-14-2 started around 2014, and WNV nAb have been identified in birds but not humans [12-15].

Methods

The study protocol was approved by the institutional review boards at the US National Institutes of Health and the National Ethics Committee on Human Research in Cambodia. The guardians of all pediatric participants provided signed informed consent to participate in the study. Between July and August of 2018, 771 children aged 2-9 years living in Kampong Speu, Cambodia were enrolled in a prospective longitudinal cohort (NCT03534245) [16]. At entry, the
PanBio indirect DENV IgG ELISA was performed on sera from 770 individuals. For the 273 participants with ELISA values >1.1 (defined as DENV positive by the manufacturer), PRNTs were performed using clinical isolates of DENV1-4 [17]. All PRNTs were performed on Vero cells, as described previously, starting at a serum dilution of 1:5 followed by the addition of an equal volume of virus. Thus, the lower limit of detection was a dilution of 1:10 [18]. The nAb titer was defined as the reciprocal of the calculated dilution wherein virus infectivity was reduced by 50% (PRNT_{50}). PRNT_{50}≥1:10 (reported as PRNT_{50}≥10) against any DENV serotype was considered immune to that serotype. To assess for non-dengue flavivirus nAbs, PRNTs were performed using the following strains: ZIKV-PARAIBA/2015, a chimeric vaccine candidate, WNV/DEN4Δ30 [19], and JEV vaccine strain SA14-14-2 (Figure 1A-B). Consistent with prior classifications, seropositivity to any non-dengue flavivirus was defined as PRNT_{50}≥10 [20-22]. Statistical comparisons were done in RStudio for macOS (2022.07.1, Build 554) using tidyverse and gtsummary packages. Heatmaps were generated in PRISM (v.9 for macOS).

Results

Of the 770 individuals, n=440 had ELISA<0.2 and were considered DENV naïve per work confirming a strong correlation between ELISA<0.2 and negative PRNT [23]. Fifty-seven individuals were excluded: 44 had ELISA values between 0.2-0.9 without a confirmatory PRNT and 13 had ELISA values between 0.9-1.1, which the manufacturer considers equivocal immunity. Of the 273 individuals with ELISA>1.1, n=28 were DENV negative by PRNT (‘false positive’), n=245 were DENV positive (‘immune’), and there were no false negatives, resulting in a 100% sensitivity and 94% specificity of the ELISA assay. Comparison of the naïve, false positive, and immune groups revealed that both the mean age and ELISA value of the false
positive group fell between those of the naïve and immune groups (p<0.001, Table 1A). Over the
two years of surveillance, there were few PCR-confirmed cases of symptomatic dengue (n=46)
with no differences in frequency among groups (p=0.7).

We hypothesized that the discordance between the DENV ELISA IgG and PRNT results could
be due to cross-reactivity against non-dengue flaviviruses. To test this, we compared the
frequencies of nAbs against JEV, ZIKV, and WNV in the false positive individuals versus n=50
randomly chosen naïve individuals (Figure 1A-B). Consistent with prior classifications,
seropositivity was defined as PRNT_{50}≥10 [20-22]. Overall, 46% of the false positive group had
PRNT_{50}≥10 against ≥1 other flavivirus versus 20% of the naïve group (p=0.020, Table 1B).
Although the false positive group had higher percentages of individuals with positive JEV and
ZIKV nAbs, only WNV nAbs were significantly more common than in the naïve group (0% vs.
25%, p<0.001). To further assess these trends, we tested n=21 individuals with DENV
ELISA>1.1 and DENV PRNT between 10-20 (Figure 1). This group has low DENV nAbs and
has been considered DENV negative in other work [16, 23]. When compared to the false positive
group, the low DENV nAb group had similar frequencies of JEV, ZIKV, and WNV nAb (p≥0.4
for all three nAbs, Table 1B). Thus, immunity to other flaviviruses may contribute to high
ELISA values in individuals with undetectable and low DENV nAbs.

To help identify the primary exposure in the 13 individuals with PRNT_{50}≥10 against ≥2
flaviviruses, PRNT_{90} titers were calculated [4]. Of these, n=4 had PRNT_{90}<10 against all 4
flaviviruses, and n=3 had PRNT_{90}≥10 to multiple flaviviruses: n=2 to JEV and WNV, n=1 to
JEV, WNV, and ZIKV (Figure 1C-D). Six individuals had PRNT_{90}≥10 against only 1 flavivirus:
Of the two individuals with PRNT$_{90} \geq 10$ against WNV only, one had received a JEV vaccine and had a PRNT$_{50} \geq 10$ against JEV and one had PRNT$_{50} \geq 10$ against ZIKV. While the PRNT$_{90} \geq 10$ against WNV only suggests a primary WNV infection, it is possible that JEV vaccination and ZIKV primary exposure induced highly cross-reactive WNV nAb [24]. There were also two individuals with low DENV nAb and PRNT$_{50} \geq 10$ against WNV only. Although these individuals did not have PRNT$_{90} \geq 10$ against DENV or WNV, one had WNV titer that was 2-fold higher than DENV titer. Again, this finding is suggestive of primary WNV infection, but cross-reactivity after DENV exposure cannot be ruled out. Regardless of the WNV nAb source, this immunity was common and likely central to the decreased ELISA specificity observed.

Discussion

We found that the PanBio DENV indirect IgG ELISA has a lower specificity than reported in prior studies. This discrepancy may be partially explained by the assay’s detection of WNV nAb with potential contributions by ZIKV and JEV nAb. Notably, JEV vaccination can induce WNV cross-reactivity [25], and it is possible that the WNV nAb were induced by JEV vaccination or infection. Alternatively, the WNV nAbs may represent true WNV exposure, underlining the need for ongoing vigilance for WNV circulation in humans in Cambodia. Additionally, half of the false positive results remained unexplained, potentially due to waning immunity or infection by unidentified flaviviruses.

Clinicians, investigators, and public health authorities should be aware that expanding flavivirus co-circulation and vaccination could increasingly impact serology results. Serosurveys conducted
for vaccination campaigns to identify populations where dengue is endemic may overestimate dengue burden as a result of false positivity due to infection or vaccination with other flaviviruses. Such population-based strategies are of particular concern when identifying target populations for dengue vaccines where safety in DENV seronegative individuals has not yet been confirmed. Adverse events in these individuals could greatly impact vaccine trust and uptake, as occurred with Dengvaxia [26]. For vaccines that are known to be unsafe in seronegative individuals like Dengvaxia, pre-vaccination screening is required to determine vaccine eligibility, which allows individuals to make informed decisions about their own vaccine risk and benefit. It is recommended that past infection be confirmed either by virological assay or by two specific serological assays, such as the anti-DENV1-4 NS1 ELISA IgG and a IgG rapid test [7]. Evaluation of false positivity due to infection with other emerging flaviviruses is critical to ensuring the safety of this screening approach.

Overall, our study demonstrates that the PanBio IgG ELISA and even PRNT results should be interpreted with caution in areas with flavivirus co-circulation and vaccines, and multiple tests may be required to confirm DENV seroprevalence.
Figure 1. Neutralizing antibody titers against DENV, JEV, WNV, ZIKV in individuals who were false positive (ELISA>1.1, DENV PRNT₅₀<10), naïve (ELISA<0.2), or had low DENV nAb (ELISA>1.1, DENV PRNT₅₀ of 10-20) as measured by PRNT₅₀ (A-B) and PRNT₉₀ titers (C-D). PRNT₉₀ titers were only measured in those with nAb against ≥2 non-dengue flaviviruses.
Table 1. Characteristics and immune profiles of individuals who were naïve (ELISA<0.2), false positive (ELISA>1.1, PRNT$_{50}$<10), or DENV immune (ELISA>1.1, PRNT$_{50}$≥10). The presence of neutralizing antibodies against non-dengue flaviviruses were compared in the naïve and false positive groups and between the false positive and the low DENV immune group (ELISA>1.1, PRNT$_{50}$ 10-20).

A. Cohort characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Naïve (n=440)*</th>
<th>False positive (n=28)</th>
<th>Immune (n=245)</th>
<th>p-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>4.9 (2.0)</td>
<td>6.0 (2.2)</td>
<td>6.8 (2.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Female</td>
<td>230 (52)</td>
<td>10 (36)</td>
<td>126 (51)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>210 (48)</td>
<td>18 (64)</td>
<td>119 (49)</td>
<td></td>
</tr>
<tr>
<td>ELISA IgG value</td>
<td>0.03 (0.04)</td>
<td>2.00 (0.72)</td>
<td>2.92 (0.84)</td>
<td><0.001</td>
</tr>
<tr>
<td>Dengue case</td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>No dengue</td>
<td>321 (91)</td>
<td>22 (92)</td>
<td>156 (93)</td>
<td></td>
</tr>
<tr>
<td>Symptomatic dengue</td>
<td>32 (9)</td>
<td>2 (8)</td>
<td>12 (7)</td>
<td></td>
</tr>
<tr>
<td>Unknown‡</td>
<td>87</td>
<td>4</td>
<td>77</td>
<td></td>
</tr>
</tbody>
</table>

B. Immunity subset analysis

<table>
<thead>
<tr>
<th>Immunity profile</th>
<th>Naïve (n=50)</th>
<th>p-value§</th>
<th>False positive (n=28)</th>
<th>p-value¶</th>
<th>Low DENV nAb (n=21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JEV nAb</td>
<td>0.058</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>Positive</td>
<td>ZIKV nAb</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>ZIKV nAb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNV nAb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean (SD) or no. (%)

†One-way ANOVA, Pearson’s Chi-squared test; Fisher’s exact test

‡Unknown indicates that participant was lost to follow-up prior to final study visit at 24 months

§Fisher’s exact test comparing naïve vs. false positive group.

¶Fisher’s exact test comparing false positive group vs. low DENV nAb group.

Dengue virus, DENV; Japanese encephalitis virus, JEV; neutralizing antibodies, nAb; West Nile virus, WNV; Zika virus, ZIKV
Acknowledgements: The authors would like to thank Patrick Mpingabo for his support establishing ELISA assays to evaluate samples for antibodies against the nonstructural-1 proteins of JEV, ZIKV, and WNV. These assays were not ultimately used in the manuscript. We would also like to thank Kelsey Lowman for her support completing the WNV and JEV PRNT assays.

Funding: This research was supported by the Intramural Research Program at the National Institute of Allergy and Infectious Diseases.

Conflict of Interest: The authors declare no conflict of interest.

This work was presented as a poster at the American Society of Tropical Medicine and Hygiene annual conference in October 2023.

References

