Unveiling the Hidden Toll of Drug-Induced Impulsivity: A Network Analysis of the FDA Adverse Event Reporting System.

Running Title: The burden of drug-induced Impulsivity

Authors:
Michele Fusaroli*1 MD 0000-0002-0254-2212 michele.fusaroli2@unibo.it (corresponding author)
Stefano Polizzi*2 MPhys, MBiostat, PhD 0000-0002-5264-5156 stefano.polizzi@unibo.it
Luca Menestrina*3 MPharm 0000-0002-3397-7737 luca.menestrina2@unibo.it
Valentina Giunchi1 MStat 0000-0001-5841-8520 valentina.giunchi2@unibo.it
Luca Pellegrini4,5 MD 0000-0002-2855-2865 luca.pellegrini@nhs.net
Emanuel Raschi1 MD, PhD 0000-0003-0487-7996 emanuel.raschi@unibo.it
Daniel Weintraub6,7 MD 0000-0003-0633-7168 Daniel.Weintraub@pennmedicine.upenn.edu
Maurizio Recanatini3 MChem, PhD 0000-0002-0039-0518 maurizio.recanatini@unibo.it
Gastone Castellani2 MPhys, MBio, PhD 0000-0003-4892-925X gastone.castellani@unibo.it
Fabrizio De Ponti1 MD, PhD 0000-0002-0367-9595 fabrizio.dePonti@unibo.it
Elisabetta Poluzzi1 MPharm, PhD 0000-0002-7209-0426 elisabetta.poluzzi@unibo.it

*Equally contributed

Affiliations:

1Pharmacology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
2Unit of Medical Physics, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
3Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
4Hertfordshire Partnership NHS University Foundation Trust, Highly Specialised OCD and BDD Service, Rosanne House, Parkway, Welwyn Garden City, Hertfordshire, UK
5School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
6Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
7Parkinson's Disease Research, Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, PA

Figures: 7 Tables: 2
Word count: 4,249
Fields: social psychiatry and epidemiology; neuropsychopharmacology

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Introduction: Adverse drug reactions significantly impact patients’ lives, yet their influence is often underestimated in treatment decisions and monitoring. Impulsivity induced by dopaminergic agents can lead to impaired social functioning and quality of life.

Aim: This study assesses impulsivity burdens from pramipexole and aripiprazole, pinpointing key symptoms for targeted mitigation.

Method: Leveraging data from the FDA Adverse Event Reporting System (January 2004 - March 2022), we employed the Information Component to identify the syndrome of signs and symptoms disproportionately co-reported with drug-induced impulsivity. Using composite network analyses (PPMI, Ising, ϕ) we characterized clusters of co-reported events (i.e., subsyndromes). Finally, we assessed the secondary impact of drug-induced impulsivity modeling our dataset as a chain of directed connections (Bayesian network).

Results: The drug-induced impulsivity syndrome (respectively 56 and 107 events in pramipexole and aripiprazole recipients), primarily encompassed psychiatric, social, and metabolic events, segregated into subsyndromes such as delusional jealousy and dopamine dysregulation syndromes among pramipexole recipients, and obesity-hypoventilation syndrome and social issues among aripiprazole recipients. Anxiety and economic problems emerged as pivotal nodes in the exacerbation of the syndromes.

Conclusion: Drug-induced impulsivity places a substantial burden on patients and their families, with manifestations shaped by the underlying disease. Network approaches, exploring intricate symptom connections and identifying pivotal symptoms, complement traditional techniques and clinical judgment, providing a foundation for informed prescription and targeted interventions to alleviate the burden of adverse drug reactions.

Keywords: drug-induced impulsivity; adverse drug reactions; quality of life; pramipexole; aripiprazole; impulse control disorders
1. Introduction

Adverse drug reactions (ADRs) significantly impact patients’ well-being by extending beyond organic diseases and trespassing into psychological illness and social sickness. For instance, immunodeficiency perturbs social activities, dysphonia hinders teaching roles, and sexual dysfunction intricately affects relationships and personal identity. Despite their profound effects, ADRs are often inadequately recognized, resulting in compromised patient-doctor relationships, prolonged hospitalization, and a pervasive decline in Quality of Life (QoL). This disregard extends to patient-reported outcomes—crucial for QoL assessment and patient-centered care—often relegated to the margins in prescribing information or package inserts.

Drug-induced impulsivity, classified as ‘impulse control disorders induced by other specified psychoactive substance (6C4E.73)’ in the International Classification of Diseases (ICD-11) category of disorders due to substance use, represents a distressing group of conditions marked by a loss of behavioral control. This pathological disinhibition can yield behaviors as pervasive as pathologic gambling, hypersexuality, compulsive shopping, and hyperphagia—the so-called “four knights of Impulse Control Disorder”9. Additionally, behaviors like stealing, hair pulling, and compulsive hoarding contribute to the intricate tapestry of drug-induced impulsivity. The first reports of drug-induced impulsivity were linked to dopamine receptor agonists like pramipexole, ropinirole, rotigotine, licensed for treating Parkinson’s disease (PD) and restless legs syndrome (RLS). More recently, the role of partial dopamine agonists like aripiprazole, brexpiprazole, cariprazine, licensed for treating psychosis and mood disorders, has also emerged.

Within the landscape of PD, drug-induced impulsivity unfurls a complex narrative. Initially, it may manifest as heightened motivation and hobbyism, known as “honeymoon period”16. However, even when concealed in subclinical forms, drug-induced impulsivity holds the potential to significantly erode patients’ QoL. This erosion, appraised through metrics like the PDQ-39 scale, encompasses diverse neuropsychiatric and somatic domains including mobility, daily activities, stigma, social support, communication, urinary and sexual function, sleep, attention, and cardiovascular symptoms. The impact extends beyond patients to affect caregivers, who grapple with their own set of health issues, depression, and social impediments.

Nevertheless, conventional evaluations frequently fall short in encompassing neuropsychiatric symptoms, altered behavior patterns, financial hardships, and legal
entanglements23, failing to capture the full spectrum of these disorders. This underscores the crucial need for an integrative approach, considering the perspectives of both patients and caregivers and acknowledging the complex interconnections between symptoms24.

The US FDA Adverse Event Reporting System (FAERS), a public global repository gathering spontaneous reports on suspected ADRs from patients and healthcare professionals, stands as a powerful data source for this purpose25. Remarkably, patients offer unique insights into the experiences and impacts of ADRs on QoL, surpassing the information provided by healthcare professionals26–30.

Moreover, network analyses, providing the means to investigate complex systems consisting of multiple interacting entities, present a promising avenue. Specifically, they enable the analysis and visualization of ADRs as interwoven symptoms and signs rather than isolated events31–a composite syndrome encompassing psychosocial implications.

Our investigation into the intricacies of drug-induced impulsivity aligns with three overarching goals. The first is to untangle the components of the syndrome of drug-induced impulsivity. Through examining the interplay of symptoms and their consequences, we aim to gain a deeper understanding of how these syndromes manifest and affect patients' lives.

Our second goal is to identify distinct sub-syndromes within the broader spectrum of drug-induced impulsivity, i.e., whether symptoms fall into distinct clusters, with different clinical consequences.

Our third goal is to identify pivotal symptoms that centrally contribute to exacerbating the syndrome of drug-induced impulsivity. By pinpointing these key symptoms, we aim to pave the way for targeted interventions that alleviate the adverse effects on patients' lives.

In pursuing these goals, our study focuses on recipients of pramipexole and aripiprazole, chosen as representative instances: pramipexole, a dopamine agonist used in neurological conditions, and aripiprazole, a dopamine partial agonist employed in psychiatric disorders. Through this focused investigation, we aim to illuminate the complexities of drug-induced impulsivity, exploring how the same ADR might manifest differently in various populations. Specifically, we anticipate that younger and more stigmatized individuals taking aripiprazole may bear a heavier burden compared to older individuals with stronger social support prescribed pramipexole. A better understanding of the impact of these ADRs on quality of life could contribute to informed decision-making for patients and caregivers, laying the foundation for interventions capable of alleviating the toll exacted by impulsivity.
2. Materials and Methods

2.0 Study Design

The study design (Figure 1) involved downloading and cleaning FAERS reports (Step 1), identifying aripiprazole and pramipexole recipients, and selecting cases recording drug-induced impulsivity within these two populations (Step 2). Disproportionality analysis defined the syndrome as events statistically co-reported with drug-induced impulsivity, rather than with other suspected reactions of the same drug (Step 3). Subsequently, three parallel network analyses identified sub-syndromes as clusters of co-reported events (Step 4). Finally, a Bayesian Network (Step 5) provided insights into the potential direction of associations and the secondary impact of drug-induced impulsivity (Step 5).
Figure 1. Pipeline of the study, showing step-by-step the study design.
2.1 Step 1 – Data Preprocessing

We downloaded quarterly FAERS data in ASCII format (January 1st, 2004, to March 31st, 2022). Adverse events were coded to the Medical Dictionary for Regulatory Activities (MedDRA®, version 25.0) preferred terms (PTs), while drugs were standardized to active ingredients. The latest report version was retained, and rule-based deduplication was applied to reduce redundancy (cfr. https://github.com/fusarolimichele/DiAna).

2.2 Step 2 – Case Retrieval

Analyzing aripiprazole and pramipexole recipients separately, we identified cases as reports recording impulsivity. Following FAERS coding of events to MedDRA, we employed PTs that were specifically curated for investigating drug-induced impulsivity within the FAERS database. These PTs encompassed a range of manifestations, including gambling, hypersexuality, compulsive shopping, hyperphagia, gaming, setting fires, stealing, hoarding, excessive exercise, overwork, compulsive wandering, body-focused repetitive behaviors, stereotypy, and impulsivity (see Table S1). A cautious approach is imperative during interpretation, as MedDRA terms used for reporting suspected ADRs may not align directly with terms in other frameworks like the Diagnostic and Statistical Manual of mental disorders (DSM-5-TR) and ICD-11, which may refer to idiopathic conditions.

To explore potential risk factors for impulsivity, demographic characteristics, outcomes, and reporter contributions (e.g., healthcare practitioners, patients, lawyers) were compared between cases and non-cases within each population, using the Chi-square test for categorical and Mann-Whitney test for continuous variables. To address multiple testing, we applied the Holm-Bonferroni correction with a significance level of 0.05.

2.3 Step 3 – Disproportionality Analysis: The drug-induced impulsivity syndrome

We conducted a disproportionality analysis to identify events frequently co-reported with drug-induced impulsivity, separately for aripiprazole and pramipexole recipients (see Table 1).

Table 1. 2-way contingency table. The table shows the different instances that can be observed when considering pathologic impulsivity and a specific event. Legend: E = event; I = impulsivity; 1 = presence; 0 = lack; N = total

<table>
<thead>
<tr>
<th>Event (y)</th>
<th>Other events</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulsivity (x)</td>
<td>(n_{I_1E_1})</td>
<td>(n_{I_1E_0})</td>
</tr>
<tr>
<td>Other event</td>
<td>(n_{I_0E_1})</td>
<td>(n_{I_0E_0})</td>
</tr>
<tr>
<td>Sum</td>
<td>(n_{E_1})</td>
<td>(n_{E_0})</td>
</tr>
</tbody>
</table>
Disproportionate reporting was assessed using the Information Component (IC)35, also known as pointwise mutual information (PMI) in information theory36,37. The IC compares the actual co-reporting of two events x (i.e., drug-induced impulsivity) and y (i.e., any specific event) with their expected co-reporting if their probability were independent36. To mitigate the risk of false positives for infrequent events38, a shrinkage or smoothing approach was applied by adding $k=0.5$ to both the numerator and denominator. Significance was determined using $IC_{0.25} > 0 \left(p(y,x) > p(x) * p(y) \right)$.

$$IC(x,y) = PMI(x,y) = \log_2 \frac{p(y,x)}{p(x)p(y)} = \log_2 \frac{n_{1E_1}}{n_{1} \times n_{E_1}} \approx \log_2 \frac{n_{1E_1} + 0.5}{n_{1} \times n_{E_1} + 0.5}$$

$$IC(x,y)_{0.25} = IC - 3.3 \times (n_{1E_1} + 0.5)^{-1} - 2 \times (n_{1E_1} + 0.5)^{3}$$

$$IC(x,y)_{0.75} = IC + 2.4 \times (n_{1E_1} + 0.5)^{-1} - 0.5 \times (n_{1E_1} + 0.5)^{3}$$

2.4 Step 4 – Network Analysis: sub-syndromes

Building on insights from prior studies on drugs39 and events31,40,41 co-occurrence, our network analysis aimed to unveil sub-syndromes. Using three established network estimations as distinct mathematical representations (PPMI, Ising, ϕ) and excluding negative links (i.e., potential mutually exclusive events), we explored co-reporting patterns.

The positive pointwise mutual information (PPMI) focused on cases where events were reported together (the n_{11} case), applying additive smoothing ($k=1$, $d=N^5$ events42). Bootstrap and Bonferroni adjustments assessed statistical significance, with a 0.01 threshold.

$$PPMI_{x,y} = \max \left(\log_2 \frac{(n_{11} + k) \times (N + kd)}{(n_{1, \cdot} + k) \times (n_{\cdot, 1} + k)}, 0 \right)$$

The Ising model computed partial logistic regression coefficients (β) considering the impact of all other events43. Positive coefficients indicated a tendency for two events to be reported together. A LASSO method pruned out weak links, eliminating spurious associations but potentially sacrificing weaker genuine relationships44.

$$Ising_{x,y} = \max \left(\frac{1}{2} \beta_{x,y}, 0 \right)$$

The ϕ coefficient45, akin to the traditional correlation coefficient, approaches one when two events are frequently reported together and converges to zero if they are either independent or mutually exclusive. The Bonferroni adjustment was applied with a significance threshold of 0.01. The p-value was computed using a χ^2 probability distribution with one degree of freedom45.
For each population, the three networks shared identical nodes but varied in links. We used modularity maximization and the greedy modularity algorithm to detect clusters of co-reported signs and symptoms. Between networks we compared degree of link overlap (Jaccard similarity index), goodness of partitioning (clustering modularity); cluster agreement (Purity index), link density (ratio of actual links to possible links), and interconnectedness among neighbors (small worldness).

2.5 Step 5 – Bayesian Network: The secondary impact of drug-induced impulsivity

To uncover potential ramifications following drug-induced impulsivity, we estimated the conditional probabilities of chained events. The resulting Bayesian network is both directed, offering insights into plausible causal relationships, and acyclic, ensuring that any chain originating from a node does not loop back to itself. The network was derived through 1000 bootstraps, optimizing the BIC score with the Hill-Climbing algorithm. We computed the average network retaining links exceeding a threshold computed via L_1 minimization.

Evaluation focused on nodes with the highest out-degree centrality and the main manifestations of drug-induced impulsivity.

3. Results

3.1 Case Retrieval

After preprocessing FAERS quarterly data, we retrieved 12,030,756 distinct reports: 27,601 pramipexole recipients and 80,238 aripiprazole recipients. Suspected drug-induced impulsivity was documented in 7.49% of pramipexole recipients (n=2,066: mainly gambling disorder–n=1,345; 4.87%–, hypersexuality–612; 2.22%–, impulsivity–453; 1.64%–, compulsive shopping–384; 1.39%–, and hyperphagia–334; 1.21%–) and in 4.50% aripiprazole recipients (n=3,609: mainly gambling disorder–n=2,067; 2.58%–, hypersexuality–1,077; 1.34%–, compulsive shopping–1,029; 1.28%–, hyperphagia–868; 1.08%–, and impulsivity–730; 0.91%–) (see Table S2).

Among pramipexole recipients, drug-induced impulsivity was more frequently reported in males (57.42% vs. 36.99%, p<0.001), with lower median age (56 vs. 67, p<0.001), often non-serious outcomes (i.e., no death, disability, or hospitalization; 44.87% vs. 33.58%, p<0.001), and PD as indication (see Figure 2 and Table S3). Similarly, among aripiprazole recipients, drug-induced impulsivity was more common in males (48.59% vs.
40.72%, p<0.001), but with hospitalization more common (33.39% vs. 23.39%, p<0.001), and an important portion of reports submitted by lawyers (34.08% vs. 1.10%, p<0.001) (see Table S4).

Figure 2 – Characteristics of the investigated populations. The figure presents information about two populations extracted from the deduplicated FAERS database - one consisting of reports related to pramipexole and the other consisting of reports related to aripiprazole. Within these populations, cases of pathologic impulsivity were identified. The figure compares drug-induced impulsivity cases and the reference group (other reports recording the drug), considering the indication for use. Only the two most prevalent indications were taken into account. For each drug and indication, the caption describes the percentage of reports with the specified indication, the percent of reports involving males, and the median and interquartile range of ages. In the drug-induced impulsivity cases sections, green and red arrows indicate variables that are respectively higher or lower than expected based on the reference group.
3.2 Disproportionality Analysis: the drug-induced impulsivity syndrome

A total of 56 events were disproportionally reported with pramipexole-related impulsivity. The highest IC was found for obsessive-compulsive disorder (OCD, reporting rate = 26.77%; IC median = 3.47, 95%CI = 3.33-3.57), emotional distress (21.35%; 3.42, 3.26-3.54), marital problem (1.11%; 3.30, 2.61-3.79), dependence (2.37%; 3.26, 2.79-3.6), economic problems (6.05%; 3.15, 2.85-3.36), compulsions (1.74%; 3.05, 2.49-3.44), fear (4.65%; 2.95, 2.61-3.19), eating disorder (2.47%; 2.95, 2.49-3.28), personality change (2.66%; 2.93, 2.49-3.26), and suicide attempt (5.28%; 2.74, 2.43-2.97).

A total of 107 events were disproportionally reported with aripiprazole-related impulsivity. The highest IC was found for bankruptcy (10.58%; 4.43, 4.26-4.55), divorce (7.59%; 4.38, 4.19-4.53), homeless (6.93%; 4.37, 4.16-4.52), shoplifting (5.02%; 4.37, 4.12-4.54), neuropsychiatric symptoms (4.74%; 4.35, 4.1-4.53), loss of employment (12.64%; 4.33, 4.18-4.44), theft (5.79%; 4.32, 4.09-4.48), economic problems (37.85%; 4.28, 4.19-4.34), sexually transmitted disease (3.05%; 4.24, 3.93-4.47), and OCD (33.19%; 4.16, 4.07-4.23) (see Figure 3 and Table S5 and S6).
Figure 3 – Secondary impact of drug-induced impulsivity. The dendrogram shows the events disproportionally reported with aripiprazole and pramipexole-related impulsivity. Events are gathered by clinical similarity in alternately colored slices, labeled on the outer border with a name and an icon. Disproportionalities are shown as dots organized in two colored rings, each representing a drug/case population. The dots’ size is proportional to the percent of reports showing the event, the color is darker for stronger disproportionality (higher median Information Component).

3.3 Network Analysis: sub-syndromes
In the second step we estimated the networks using three different approaches and identifying clusters of events. We included a total of 120 nodes (107 events disproportionally reported with impulsivity + 13 impulsivity-related terms) and 70 nodes (56 + 14) for the aripiprazole and pramipexole network, respectively. Although the nodes remained constant, edges, clusters, and network properties were different (Table 2-S7-S10-S11). The most central nodes (degree centrality) were the ones with the highest occurrence in Ising and the lowest occurrence in PPMI. The Jaccard similarity was higher for Ising-, while for -PPMI half of the links were different. The clustering was more overlapping between -PPMI, followed by
\(\phi\)-Ising and PPMI-Ising, as captured by the purity index. \(\phi\) and PPMI tended to group together multiple Ising clusters (Figures S11-S16).

Table 2. Network properties. The table shows the network properties for the three networks estimated for aripiprazole and pramipexole, respectively, and for their comparison. Legend: (–) means that there is also a strong link between the first and last element.

<table>
<thead>
<tr>
<th>Aripiprazole (120 nodes)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>gambling disorder (N=2057), economic problems (1366), obsessive-compulsive disorders (1198)</td>
<td>Ising</td>
<td>PPMI</td>
</tr>
<tr>
<td>Links</td>
<td>301</td>
<td>1186</td>
</tr>
<tr>
<td>Central node (1°)</td>
<td>economic problems</td>
<td>Irritability</td>
</tr>
<tr>
<td>Heaviest links (1-3°)</td>
<td>AP below therapeutic – effect variable – effect incomplete Theft–shoplifting</td>
<td>(–)AP below therapeutic–effect variable–toxicity(–) Kleptomania–overwork–pyromania Overwork–pioromania</td>
</tr>
<tr>
<td>Clusters (N)</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Clustering modularity</td>
<td>0.71</td>
<td>0.59</td>
</tr>
<tr>
<td>Small worldness ((\omega))</td>
<td>0.26</td>
<td>0.04</td>
</tr>
<tr>
<td>(\phi) -Ising</td>
<td>0.25 (0.25)</td>
<td>0.56 (0.95)</td>
</tr>
<tr>
<td>Purity index‡</td>
<td>0.68</td>
<td>0.89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pramipexole (70 nodes)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>gambling disorder (N=1340), obsessive-compulsive disorders (553), and hypersexuality (543)</td>
<td>Ising</td>
<td>PPMI</td>
</tr>
<tr>
<td>Links (density %)</td>
<td>85</td>
<td>240</td>
</tr>
<tr>
<td>Central node (1°)</td>
<td>gambling disorder</td>
<td>mental disorder</td>
</tr>
<tr>
<td>Heaviest links (1-3°)</td>
<td>body-focused disorders–kleptomania mental impairment–mental disorder on and off phenomenon–dyskinesia</td>
<td>Pain–emotional distress–obsessive-compulsive disorder Hyperphagia–weight increased (–)Pioromania–pyromania–gaming disorder(–)</td>
</tr>
<tr>
<td>Clusters (N)</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Clustering modularity</td>
<td>0.66</td>
<td>0.51</td>
</tr>
<tr>
<td>Small worldness ((\omega)) §</td>
<td>-0.01</td>
<td>0.29</td>
</tr>
<tr>
<td>(\phi) -Ising</td>
<td>0.34 (0.35)</td>
<td>0.23 (0.42)</td>
</tr>
<tr>
<td>Purity index</td>
<td>0.44</td>
<td>0.66</td>
</tr>
</tbody>
</table>

† \(f(A,B) = \frac{|\text{Adj}(A,B)|}{|\text{Adj}(A\cup B)|}\).
‡ Purity = \(\frac{1}{N} \sum_{k=1}^{K_{\text{min}}} \max_{n} n_{k,n} \), with \(K_{\text{min}}\) the minimum clusters and \(\max_{n} n_{k,n}\) the maximum elements.
§ a small world has \(\omega = \frac{L_{r}}{L} - \frac{c}{c_{l}} \approx 0\): the shortest path length \(L_{r}\) is similar to that of an equivalent random network \(r\) and the clustering coefficient \(C\) is similar to that of an equivalent lattice network \(l\).

For both drugs, the central clusters included cognitive disorders (e.g., cognitive impairment, memory impairment), bipolar disorder, and depression. Among aripiprazole recipients (Figure 4), the prominent cluster also includes stress and its psychophysical manifestations (irritability, headache, sleep disorders, decreased appetite, weight loss, constipation, and myalgia), together with panic attack and auditory hallucinations. Another stress-related sub-
syndrome included migraine, nightmares, back and abdominal pain, arthralgia, reflux, diarrhoea, and hyperidrosis. Gambling and shopping were strictly related to social issues (hoarding, unemployment, homeless, bankruptcy, divorce, theft), suicide attempts, and through hypersexuality with unintended pregnancy and sexually transmitted diseases. Hyperphagia was co-reported with obesity, sleep apnoea syndrome, sedation, amnesia, and hypertension. Blood alterations, such as increased lipids, transaminases, and glucose in the blood, were reported together.

Figure 4. The secondary impact of aripiprazole-induced impulsivity. The network shows the events disproportionally reported with aripiprazole-related impulsivity and their pattern of co-reporting. Drug-induced impulsivity manifestations are shown as squares and other events as circles. Node colors identify clusters from the Ising estimation, dashed contours for the estimation, and colored contours for the PPMI estimation. The link width represents the weight of the links of the Ising, here chosen over the others because they are fewer and more conservative. The layout has been manually adjusted to reduce the overlapping. The layout calculated using a spring model with, as weight, the weights from the individual networks and the average of the weights of the three networks, after rescaling them from 0 to 1, is shown in the supplementary material.

Among pramipexole recipients (Figure 5), the prominent cluster also includes apathy, delusion, and economic problems. A sub-syndrome included terms related to dopamine...
dysregulation syndrome (a manifestation of pathological impulsivity marked by excessive levodopa use53, which can be co-administered with dopamine agonists to better control motor symptoms), such as drug dependence and withdrawal, and on and off phenomenon. Hallucinations, irritability, and crying were reported with delusional jealousy, hypersexuality, and marital problems. Hyperphagia was associated with weight increase, somnolence, insomnia, and disturbance in attention. Fear, anxiety, pain, stress, and depression were associated with suicide attempts. Finally, body-focused repetitive behaviors and stealing behaviors showed strong co-reporting.

Figure 5. The secondary impact of pramipexole-induced impulsivity. The network shows the events disproportionally reported with pramipexole-related impulsivity and their pattern of co-reporting. Drug-induced impulsivity manifestations are shown as squares and other events as circles. Node colors identify clusters from the Ising estimation, dashed contours for the estimation, and colored contours for the PPMI estimation. The link width represents the weight of the links of the Ising, here chosen over the others because they are fewer and more conservative. The layout has been manually adjusted to reduce the overlapping. The layout calculated using a spring model with, as weight, the weights from the individual networks and the average of the weights of the three networks, after rescaling them from 0 to 1, is shown in the supplementary material.
3.4 Bayesian Network: The secondary impact of drug-induced impulsivity

The Bayesian Network yielded insights into the directional associations between co-reported events (see Figure 6 and OSF repository).
High out-degree centrality identified pivotal events that likely heightened the likelihood of reporting other events (Figure S9-S10). Since this directed network only generates hypotheses, we preferred temporal terminology (i.e., preceding and following) to causal terminology even if no temporality was taken into account.

In pramipexole recipients, anxiety (3.55), emotional distress (2.92), and gambling (2.30) attained the highest out-degree centrality. Anxiety preceded insomnia (with irritability, somnolence, and attention disturbances), stress and depression (with suicide), fear, OCD, and emotional distress. Emotional distress preceded pain and injury (with major depression and economic problems), abnormal thinking and behavior, weight gain, and pathologic gambling. Furthermore, hypersexuality preceded delusional jealousy and marital difficulties, compulsive shopping stealing behaviors, and hyperphagia weight increase.

In aripiprazole recipients, economic problems (5.97), gambling (4.15), and hyperphagia (2.33) attained the highest out-degree centrality. Economic problems preceded theft, hoarding, divorce, loss of employment, homelessness, suicide, sex dysfunction, sexually transmitted diseases, and eating disorder. Gambling preceded aggressivity, suicide, cognitive disorders, hyperphagia, and paraphilia. Hyperphagia preceded somnolence and fatigue (with stress, attention disturbances, myalgia, cough), hunger, weight increase (with constipation), obesity (with hypertension), compulsive wandering, and paraphilic disorders. Anxiety preceded depression (with sleep disorders and suicide), fear and panic attacks (with relationship issues), pain and injury (with emotional distress, disability, anhedonia, and economic problems). Furthermore, hypersexuality preceded sexual dysfunction, sexually transmitted diseases, unintended pregnancy, and loss of employment, compulsive shopping eating disorders and economic problems.

4. Discussion

4.1 Summary and Key Results

Patients and caregivers should be informed about the potential impact of drugs inducing impulsivity on their QoL. Investigating aripiprazole and pramipexole, we captured the main clinical scenarios at risk of drug-induced impulsivity. Disproportionality analysis revealed features of the impulsivity syndrome for each scenario, encompassing mainly psychosocial events but also organic conditions. Network analysis identified sub-syndromes such as delusional jealousy (also known as Othello syndrome) and dopamine dysregulation.
syndrome (i.e., the excessive use of levodopa) in pramipexole recipients, and obesity-hypoventilation syndrome (historically Pickwickian syndrome) and social issues in aripiprazole recipients. The Bayesian Network highlighted directional associations, potentially suggesting secondary consequences of drug-induced impulsivity. Anxiety and economic problems emerged as pivotal events that could be potentially targeted to disrupt the chain of events and alleviate the burden of drug-induced impulsivity: for instance, monitoring and effectively managing anxiety or providing financial guidance or legal guardianship to prevent wasteful spending. Since marital problems affect caregivers’ QoL and increase the risk of early placement in nursing homes, addressing delusional jealousy and economic problems, identified as factors preceding marital problems, may be critical for preserving wellbeing in pramipexole recipients.

While aripiprazole and pramipexole offer clear benefits, the substantial impact on patients’ and caregivers’ QoL should be acknowledged and considered in the monitoring and management of dopamine agonist therapies.

4.2 Case Retrieval

Our findings align with established risk factors, including male gender and younger age, Parkinson’s Disease (PD) and depression. Commonly reported impulsivity manifestations included the "four knights" (i.e., gambling, shopping, hyperphagia, and hypersexuality), garnering special attention due to their pronounced impact on QoL. Other manifestations were body-focused repetitive behaviors, paraphilic disorders, and hoarding.

4.3 Disproportionality analysis: the drug-induced impulsivity syndrome

Pramipexole and aripiprazole recipients differ significantly. Pramipexole is primarily administered to older patients with hypodopaminergic conditions, characterized by motor impairment and reduced motivational drive. These patients, well managed and supported by caregivers because of the later onset and clear neurologic origin of the disease may experience a mitigated drug-induced impulsivity burden. Conversely, aripiprazole is prescribed to younger patients with mood and psychotic disorders, often linked to hyperdopaminergic states and a pre-existing diathesis for impulsivity. Challenges for caregivers and social support are heightened in these cases due to earlier onset, psychiatric origins, and stigma, potentially leading to a greater burden. Over a third of aripiprazole cases were submitted by lawyers, suggesting potential overreporting for legal compensation (cfr., Abilify lawsuit), but also a response to underdiagnosis by physicians hesitant to attribute behavioral changes to the drug in the presence of underlying psychiatric conditions. Intriguingly, an ascertainment bias may also arise because neurologists prescribing
pramipexole may be less attuned to psychiatric issues than psychiatrists prescribing aripiprazole, further underscoring the contrast in the reported impact on QoL for these two drugs.

By performing the disproportionality analysis on each drug population, comparing reports involving impulsivity with those encompassing various reactions other than impulsivity, we addressed indication bias and other confounding factors. This comparative analysis served as a rigorous filter, allowing us to sift through the complex data and unveil the genuine characteristics associated with impulsivity, as well as those arising from the dynamic interaction between impulsivity and the underlying drug or disease, excluding traits tied solely to the underlying drug or disease.

This approach revealed a complex syndrome, characterized by psychosocial, cognitive, psychosomatic, and metabolic events. The burden of drug-induced impulsivity appears more pronounced in aripiprazole recipients, with functional (or psychosomatic) manifestations and social issues impacting work, relationships, and economics.

4.4 Network Analysis: sub-syndromes

Network analysis, employing three estimation methods, revealed potential subsyndromes associated with specific impulsivity expressions in the two populations (Figure 7). The Ising delineated well-defined clusters, while PPMI and ϕ emphasized inter-clusters relationships.
Figure 7. Drug-induced impulsivity syndrome, aripiprazole and pramipexole. The main syndrome, representing one or more strongly interconnected central clusters of symptoms and signs identified through network analysis, is depicted as the central figure. Other potential sub-syndromes are shown on the sides highlighted with a colored square.

In both populations, cognitive and mood disorders, significant in their association with drug-induced impulsivity and contribution to disability development\(^{62}\) played central role. Obesity-hypoventilation syndrome\(^{63}\), involving weight gain, cognitive and sleep disorders, and sedation, was consistent in both populations, but seemingly heavier in aripiprazole recipients (also reporting obesity, sleep apnoea syndrome, hypertension, and metabolic blood alterations, highlighting the link between hyperphagia and diabetes onset\(^{64}\)).

For aripiprazole recipients, the prominent cluster included sleep disorders and stress, connected to a psychosomatic sub-syndrome involving migraine, back and abdominal pain, reflux, diarrhoea, constipation, and hyperidrosis. Gambling and shopping were linked to pervasive social issues, theft, and suicidal ideation (expected during hyperdopaminergic impulsive states\(^{65}\)). Hypersexuality was linked to unintended pregnancy, sexually transmitted diseases, and sexual dysfunction.
Among pramipexole recipients, the prominent cluster included apathy, delusion, and economic problems. The dopamine dysregulation sub-syndrome, closely related to impulsivity but primarily associated with levodopa and apomorphine, involved on and off phenomenon (oscillations in effectiveness and motor and motivational symptoms), excessive levodopa use to avoid off phases, and dopamine agonist withdrawal syndromes (DAWS) upon discontinuation. A cluster aligned with paranoid delusional jealousy (false and unwavering belief in the partner’s unfaithfulness), often seen in PD with drug-induced hypersexuality, presented challenges in marital relationships, potentially resulting in early placement in a nursing home. We also found a cluster with fear, pain, stress, anxiety, depression, and suicidal ideation, indicative of the transformation of reward-driven impulsivity into stressful risk-averting compulsivity over time. Finally, the co-reporting of two archetypal compulsive symptoms—body-focused repetitive behaviors and stealing behaviors—was evident.

4.5 Bayesian Network: the secondary impact of drug-induced impulsivity

The interplay of events within the context of drug-induced impulsivity is intricate and multifaceted. Events reported alongside drug-induced impulsivity may result from impulsivity itself (like financial problems from gambling) or predispose individuals to impulsivity (e.g., bipolar disorder). Sometimes, events can both trigger and be exacerbated by drug-induced impulsivity (e.g., anxiety). Sometimes events are concomitantly mentioned for precision, such as in cases of semantic overlap (e.g., theft and shoplifting, or injury and brain injury). Events associated with drug-induced impulsivity may even be synonyms for well-known impulsivity expressions (e.g., restlessness, referring to excessive wandering and porrimania), or could be the very reason for prescribing the drug, as seen in the off-label use of aripiprazole to prevent behavioral and cognitive decline in brain injury or to address drug dependence.

The Bayesian Network a directed acyclic graph representing our dataset, revealed potential directional associations, enabling formulation of hypotheses about clinically plausible causal sequences. Anxiety emerged as a central factor, preceding insomnia, irritability, cognitive impairment, stress, injury, pain (linked to disability and economic problems), depression, and even suicidal ideation. Drug-induced impulsivity manifestations appeared to exacerbate each other. Economic problems had the highest out-degree centrality among aripiprazole recipients, preceding theft, relationship difficulties, and suicidal ideation.

The Bayesian Network provides clinicians with valuable insights on the pivotal nodes that could be targeted by interventions to disrupt the cascade of events and ameliorate the...
secondary impact of drug-induced impulsivity. It also highlighted secondary ramifications of main impulsivity manifestations: hypersexuality precedes marital problems through delusional jealousy in pramipexole recipients, while it precedes unintended pregnancy and sexually transmitted diseases in aripiprazole recipients; hyperphagia precedes weight increase in pramipexole recipients and obesity, somnolence, and cognitive impairment in aripiprazole. Marital problems, following delusional jealousy and economic problems in pramipexole recipients, may be of particular interest since they are associated with an early placement in nursing homes. Finally, the Bayesian Network seems to support the higher secondary impact of drug-induced impulsivity in aripiprazole recipients.

4.6 Limitations and Further Developments

While this study provides valuable insights into the intricate interplay of events related to drug-induced impulsivity and its subsequent implications, it is crucial to acknowledge its limitations. Spontaneous reports, while uniquely granting access to patients’ perspective, are susceptible to biases like under-reporting, missing data, and unverified reliability, preventing reliable incidence or prevalence estimates. The high contribution of reports from lawyers may have influenced the higher psychosocial impact attributed to aripiprazole-induced impulsivity. Nonetheless, this study sets the foundation for further studies and a potential score to assess the impact of ADRs on QoL.

Limitations in network analysis methodologies adopted include the Ising estimation’s assumptions (pairwise interaction, linear effects, and binary variables), and the inability to account for time and severity in symptom manifestation. The incorporation of negative links could facilitate a more nuanced separation of symptoms that infrequently co-occur. The Bayesian Network lacks bidirectional relationships and cyclic feedback loops and would require the inclusion of all shared cause between any two events (causal Markov condition) limiting its capacity to illuminate causality. These limitations could be rectified by integrating clinical longitudinal data and embedding temporal aspects into the network analysis.

Looking ahead, a broader definition of drug-induced impulsivity could improve sensitivity in case retrieval. Conditions like suicide attempts, hypersomnia, obsessive-compulsive symptoms, explosive anger, personality changes, disturbance in attention, and drug dependence might represent different expressions of this underdefined condition, warranting further exploration.

Limitations in network analysis methodologies adopted include the Ising estimation’s assumptions (pairwise interaction, linear effects, and binary variables), and the inability to account for time and severity in symptom manifestation. The incorporation of negative links could facilitate a more nuanced separation of symptoms that infrequently co-occur. The Bayesian Network lacks bidirectional relationships and cyclic feedback loops and would require the inclusion of all shared cause between any two events (causal Markov condition) limiting its capacity to illuminate causality. These limitations could be rectified by integrating clinical longitudinal data and embedding temporal aspects into the network analysis.

Looking ahead, a broader definition of drug-induced impulsivity could improve sensitivity in case retrieval. Conditions like suicide attempts, hypersomnia, obsessive-compulsive symptoms, explosive anger, personality changes, disturbance in attention, and drug dependence might represent different expressions of this underdefined condition, warranting further exploration.

. CC-BY 4.0 International licenseIt is made available under a CC-BY 4.0 International license.
5. Conclusion

The profound impact of drug-induced impulsivity reverberates across patients and their families, encompassing psychosocial challenges and organic complications such as metabolic syndrome (in the case of hyperphagia), and sexual health issues (in the case of hypersexuality). Recognizing these potential consequences is crucial for informed pharmacological management and diligent patient monitoring. Network analysis has revealed intriguing co-reporting patterns among adverse events, leading to their classification as sub-syndromes. Notable examples include the emergency of obesity-hypoventilation syndrome with hyperphagia and associations of hypersexuality with delusional jealousy in pramipexole recipients and unintended pregnancy and sexually transmitted diseases in aripiprazole recipients. Our parallel approach effectively avoids the risk of disease-related diathesis compromising analytical integrity, enhancing the robustness of our findings.

For clinicians, this study emphasizes the potential burden of drug-induced impulsivity, and therefore the necessity of meticulous scrutiny into patients’ medical histories. Factors such as age, gender, pre-existing mood disorders and family history should be red flags, warranting heightened vigilance. While transitioning to an alternative active ingredient may mitigate impulsivity, it is not always feasible or adequate. Monitoring for potential complications, as unveiled in our work (e.g., obesity-hypoventilation syndrome and delusional jealousy), is pivotal when such transitions are not a viable solution. For example, an overlooked delusional jealousy may result in marital problems and early nursing home placement.

Central to our findings is the pivotal realization that drug reactions rarely occur in isolation; instead, they manifest as syndromes with diverse signs and symptoms. These can be direct reactions to the drug itself, secondary consequences to the reaction, risk factors for the reaction, or comorbidities. Causal chains and loops can contribute to symptom aggravation and chronicity. Identifying syndromes and sub-syndromes, combining network strategies with traditional techniques and clinical judgment, proves a potent strategy for delving into the secondary impact of adverse drug reactions and fostering heightened awareness within clinical practice.

In sum, the intricate relationships between signs and symptoms, coupled with the insights from the Bayesian Network, underscore the multifaceted nature of drug-induced impulsivity. More significantly, it equips clinicians with indispensable tools to discern intervention points, decipher causal sequences, and mitigate the cascading secondary effects associated with drug-induced impulsivity. In doing so, this study contributes to advancing our
comprehension and management of drug-induced impulsivity, ultimately enhancing the well-being and care of affected patients.

Acknowledgements

MedDRA®, version 25.0 was developed under the auspices of the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use. Part of the work was presented orally at the SIF congress, 2023, in Rome. Icons for figures 1, 2, 6, and 7 were obtained using Bing Image Creator.

Declarations

Funding: No specific funding supported this research.

Conflicts of interest: The authors declare no conflict of interest specific for this research.

Ethics approval: not applicable because spontaneous reports of the FAERS are anonymous and publicly available.

Consent to participate: not applicable because spontaneous reports of the FAERS are anonymous and publicly available.

Consent for publication: not applicable because spontaneous reports of the FAERS are anonymous and publicly available.

Software used: Analyses were performed using R (version 4.2.1) and Python (version 3.8.16). We relied on several essential packages for network analysis: IsingFit, igraph, psych, and bnlearn.

Availability of data and material: The data we used comes from the FDA Adverse Event Reporting System (FAERS), and is made publicly available by the FDA as quarterly data downloadable at https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html. The algorithm for cleaning FAERS data is open-source at https://github.com/fusarolimichele/DiAna, and the cleaned database is available on an OSF repository and through the R package DiAna.

Code availability: The code for the project is available on an OSF repository, the function for the Ising network is also available in the DiAna package (cfr. “network_analysis()”).

Author contributions: MF, SP, LM, conceptualized and designed the study. MF, SP, LM developed the methodology. The formal analysis was performed by MF, SP, LM, VG. MF, SP, VG performed the visualization. MF, SP, LM, VG wrote the original draft. All the authors strongly contributed to the interpretation of results, and to the review and editing of the draft. All the authors read and approved the final version.
References

