CD206 upregulation in monocytes within whole blood cultures correlates with lung function in Cystic Fibrosis: a pilot study

Sonali Singh¹,³, Jessica Longmate², David Onion¹, Paul Williams¹,²,³, Miguel Camara¹,³,⁴, Alan Smyth²,⁵, Helen Barr² and Luisa Martinez-Pomares¹,³*

Author affiliation

1-School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
2-Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK.
3-National Biofilm Innovation Centre, Nottingham, UK
4-Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
5- School of Medicine, University of Nottingham, Medical School, Nottingham, NG7 2UH, UK

*Corresponding author: Luisa Martinez-Pomares (luisa.m@nottingham.ac.uk)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Chronic inflammation dominates disease pathogenesis in Cystic Fibrosis (CF) and there is a need to characterise CF immunity. Whole blood cultures offer a cost-effective and non-invasive approach to investigate immune responses within the host environment. Here we used whole blood cultures to investigate the differentiation potential of monocytes (CD45+CD14+ cells) in CF (N=10) and controls (N=8) in the presence and absence of exogenous macrophage-colony stimulatory factor (M-CSF) or granulocyte-macrophage (GM)-CSF with and without interleukin (IL)-4. In CF and control cultures, CD45+CD14+ cells upregulated HLA-DR expression in all instances, and increased CD206 in the presence of GM-CSF with and without IL-4, and CD209 in the presence of GM-CSF and IL-4. In CF, we consistently observed reduced upregulation of CD206 in response to GM-CSF and a positive correlation between CD206 expression and lung function (FEV1). This was unique to cultured monocytes, and not seen with any other marker. These results highlight the potential of whole blood cultures to reveal cellular characteristics in differentiating monocytes related to clinical parameters that could guide the identification of novel biomarkers in CF.
1. Introduction

In Cystic Fibrosis (CF), chronic lung infection adversely affects life expectancy and quality of life. Pulmonary colonisation with pathogens such as *Pseudomonas aeruginosa*, negatively impacts lung function and can drive chronic neutrophilic inflammatory responses, leading to lung damage [1]. A tendency towards Th2/Th17-dominated immunity has described in CF [2]. There is a plethora of approaches to profiling human immunity with sample availability and processing being major factors to consider. Serum measurements can indicate clinical improvement in CF, for instance antibiotic treatment after exacerbation led to a reduction in circulating white blood cells and serum C-reactive protein, IL-6 and calprotectin [3]. Using stimulated peripheral blood mononuclear cells (PBMCs) we previously demonstrated that in people with CF IFN-γ production in response to phytohaemagglutinin positively correlated with lung function (FEV₁), whereas IL-17A production showed a negative correlation [4].

Monocytes are highly versatile and responsive immune cells that drive and respond to inflammatory processes and their characterisation could signpost inflammatory status in patients. Previous work identified changes in CF macrophages differentiated from purified blood monocytes compared to controls [5]. In addition, CF monocyte function is recovered in response to new therapeutic treatments [6, 7], which makes these cells possible therapeutic targets or prognosis markers in CF. Accordingly, monocytes driving neutrophilic inflammation in CF has recently been described [8].

In this study, we used whole blood cultures to identify potential differences in the phenotype of CF and control monocytes as they mature exposed to the host environment. This approach avoids potential artefacts caused by the cell purification process, reduces the sample size required, and takes into consideration the influence of plasma components and other blood cells. Whole blood cultures have been previously used to define immune status in volunteers [9, 10], and to establish how immune cells alter their phenotype under different culture conditions including treatment with SARS-CoV2 spike protein [11].

We analysed monocyte differentiation in the absence or presence of macrophage (M)-colony stimulating factor (CSF, CSF-1) or granulocyte-macrophage (GM)-CSF (CSF-2). Both factors contribute to macrophage homeostasis, with M-CSF produced constitutively and GM-CSF largely produced under inflammatory conditions [12]. GM-CSF also has an important homeostatic role in mucosal sites such as the lung where it is essential for the development of alveolar macrophages [13]. Although GM-CSF is widely considered to drive monocytes towards a pro-inflammatory phenotype[12], recent work analysing changes in gene expression and epigenetic modifications by Dabritz et al. indicate a
potential regulatory function for GM-CSF-monocytes in the context of intestinal inflammation [14]. GM-CSF together with interleukin (IL)-4 was also included because of its ability to induce a dendritic cell-like phenotype in monocytes (CD206+CD209+) and confirm that IL-4 would be able to transduce a signal, if present [15, 16].

In this proof of principle study, we focused on cell activation markers (CD11b, HLA-DR) [17] and two lectin immune receptors (CD206 and CD209) shown to bind P. aeruginosa biofilms (CD206 and CD209) and planktonic cells (CD209) [16]. Our results show that monocytes upregulated HLA-DR, CD206, and CD209 upon culture and that CD206 expression in blood cultures positively correlates with FEV₁, suggesting that monitoring selected surface markers in differentiating monocytes could inform on immune responses linked to lung pathophysiology in CF.

2. Materials and Methods

Ethics
This study was approved by the Health Research Authority, REC reference: 17/LO/117, IRAS project ID: 190057. All participants’ details are presented in Table 1. None of the participants in the CF group were taking CFTR modulators.

Reagents
Details of reagents used are given in Supplementary Table 1.

Antibody staining of fresh blood
Whole blood was collected in citrate vacutainers. Samples (100 µl each) were incubated with relevant antibodies as per the manufacturer’s instructions for 15 min as follows: i. No antibodies (Unstained); ii. Isotype controls for CD45 and CD14; iii. Anti-CD45 and CD14 antibodies + isotype controls for HLA-DR, CD11b, CD206, and CD209; and iv. Anti-CD45, CD14, HLA-DR, CD11b, CD206, and CD209 antibodies (Supplementary Table 2). Samples were treated with OptiLyse C and processed as per the manufacturer’s instructions, resuspended in 0.1% paraformaldehyde in PBS, and stored at 4°C until analysis.

Whole blood cultures
Blood was gently mixed and diluted 1:1 with warm RPMI complete medium (RPMI-1640 medium containing 15% human AB serum, 2 mM GlutaMAX, and 10 mM HEPES). The blood-medium mixture was cultured in 24-well ultra-low attachment plates (400 µl per well). Samples were either left untreated or treated with M-CSF (50 ng/ml), GM-CSF (20
ng/ml), or GM-CSF plus IL-4 (20 ng/ml each). For each donor, all four conditions were performed in duplicate. Cultures were incubated at 37°C, 5% CO₂ for 24 h. Samples were labelled and processed for flow cytometry as for fresh blood.

Flow analysis and data analysis
All samples were analysed on a MoFlo Astrios EQ flow cytometer within 24 h. The lymphocyte gate based on Forward and Size Scatter characteristics, was used to normalise for number of events (100,000 per fresh blood sample, 50,000 per 24 h cultured sample). Raw data were processed using Kaluza and further analysed using GraphPad Prism. Results are reported as the percentage of cells positive for each marker, as well as the relative median fluorescence intensity (rMFI) of the marker (rMFI=MFI of positive cells in stained sample/MFI of all cells in isotype control sample). Statistical tests are detailed in main text and figure legends, p<0.05 was considered significant.

3. Results

Changes in monocyte phenotype within whole blood cultures
To establish the phenotype of circulating and cultured monocytes in CF and controls, we labelled fresh and 24 h cultured whole blood samples untreated or treated with M-CSF, GM-CSF, or GM-CSF+IL-4 for CD45 to identify haematopoietic cells and CD14 to identify monocytes, alongside CD11b, HLA-DR, CD206, and CD209 (see gating strategy in supplementary Figure 1). CD45+CD14+ cells expressed CD11b and HLA-DR under all conditions (Figure 1). Mean percentage of CD11b+ cells in fresh blood samples was 97% for CF and 87% for HC, with this variation reaching statistical significance and indicating differences in circulating monocytes between CF and control individuals. There were minor changes in the percentages of cells expressing CD11b in CF and HC samples upon culture but no differences between both groups were detected. Percentage of HLA-DR+ cells was high under all conditions (>70% for CF and controls) with a significant upregulation and reduced variance upon culture, regardless of the presence of cytokines. CD206 was detected in very low percentage of cells in fresh, and untreated and M-CSF-treated cultures (6.32-9.42% for CF and 2.44-7.87% for HC) but was detected in approximately 40% of cells in the presence of GM-CSF (37.58% for CF and 42.16% for HC) and 90% in the presence of GM-CSF+IL-4 (92.68% for CF and 90.96% for HC). CD209 was detected in 80% of CD45+CD14+ cells in GM-CSF+IL-4 cultures (79.12 % for CF and 80.1% for HC) with very low percentages of CD209+ cells detected in fresh, and untreated, M-CSF-
and GM-CSF-treated cultures (3.54-5.90% for CF and 2.64-7.32% for HC). We did not observe any differences in the percentages of cells expressing HLA-DR, CD206, or CD209 between CF and HC samples under any conditions.

CD206 upregulation differs in CF monocytes and correlates with lung function

Analysis of rMFI for CD11b, HLA-DR, CD206, and CD209 in CD45+CD14+ cells (Figure 2) revealed that CD11b rMFI was comparable in fresh and cultured blood, although there was a trend towards increased expression in CF compared with HC samples under all conditions. HLA-DR rMFI values increased in response to GM-CSF+IL-4 and we observed no differences between CF and HC samples. CD206 rMFI was significantly upregulated by GM-CSF+IL-4 in CD45+CD14+ cells in CF and control cultures but only significantly upregulated by GM-CSF in control cultures. Further analysis of this finding using multiple unpaired T tests or Mann-Whitney tests correcting for multiple comparisons (Holm-Sidak method), showed that differences in GM-CSF samples between CF and controls were statistically significant [adjusted p value 0.0136 (T test) and 0.0068 (Mann-Whitney test)]. CD209 was significantly upregulated by GM-CSF+IL-4 in CF samples but not in controls. This is possibly due to the three high responders in the CF cohort.

To establish the potential clinical relevance of these findings we explored correlations between marker expression (as percentages of expressing cells and rMFI) and lung function. We observed a positive correlation between CD206 rMFI in CD45+CD14+ cells within whole blood cultures exposed to M-CSF, GM-CSF, or GM-CSF+IL-4 with lung function (FEV₁) in CF donors (Figure 3). We found no such correlations for CD11b, HLA-DR, or CD209 (data not shown).

4. Discussion

The aim of this proof of principle study was to establish the possibility of detecting differences in the phenotype of differentiating monocytes within the host environment between people with CF and controls. Within this experimental set up (whole blood cultures), monocytes are influenced by the mutations in CFTR (∆F508 in this instance), alongside environmental factors including other circulating cells that can also respond to GM-CSF and/or IL-4, and circulating microbial products including endotoxin and quorum sensing molecules [18-21]. We stimulated the cultures with factors that promote homeostatic (M-CSF) and inflammatory and mucosal (GM-CSF) monocyte differentiation. There is extensive literature of how both cytokines affect monocytes and macrophages including upregulation of CD206 by GM-CSF in purified monocytes [22] and PBMC cultures [23]. Addition of GM-CSF was not an attempt to mimic inflammatory conditions in CF, indeed circulating levels of GM-CSF are low in CF [24, 25]. The aim was to
compare how monocytes would behave in M-CSF-dominated vs. GM-CSF-dominated environments.

Circulating CF and control monocytes were CD206-, CD209-, CD11b+, and HLA-DR+. We noted a significant trend for higher percentage of CD11b+ monocytes in fresh blood samples from CF compared to control donors. CD11b forms the α chain of the integrin CD11b/CD18, which plays a critical role in leukocyte adhesion and transmigration amongst other functions [26]. Elevated CD11b levels in CF may be caused by the inflammatory environment [27]. HLA-DR was upregulated upon culture, particularly in presence of GM-CSF+IL-4, a combination widely used to generate monocyte-derived dendritic cells with high T cell activating capacity [15], but no differences were observed in HLA-DR expression between CF and HC samples.

CF has been characterised as a Th2/Th17-dominated inflammatory disease [2]. Results from untreated and M-CSF-treated whole blood cultures indicate that the environment did not provide enough signals for induction of CD206 and CD209 expression after 24 h culture. CD206 and CD209 are both upregulated by IL-4 in human macrophages [28, 29]. The GM-CSF+IL-4 condition indicates that CF and HC monocytes were capable of upregulating CD206 and CD209 when suitably activated.

CD206 was upregulated only in 40% of monocytes by GM-CSF in 24 h cultures (both CF and HC). It is possible that this percentage would increase if cultures were maintained for longer. Intriguingly, in HC cultures, GM-CSF induced a significant increase in CD206 rMFI in monocytes compared to fresh, and untreated and M-CSF-treated cultures. This was not the case in CF despite both CF and HC cultures supporting similar CD206 rMFI upregulation in response to GM-CSF+IL-4. We speculate that CF monocytes might be less responsive to GM-CSF. Since GM-CSF is likely found at higher concentrations in the lung, recruited lung monocytes could display less CD206 in CF. This would agree with the reduced CD206 expression observed in a population of small CD14+, HLA-DR+, CD68weak sputum macrophages expanded in CF compared to controls, which could correspond to recruited inflammatory monocytes [30]. These cells would represent a different population to alveolar macrophages shown to express high levels of CD206 [31]. Lung macrophages are of monocytic origin and upregulate CD206 upon differentiation [32]. Murphy et al. [33] observed a negative correlation between percentage of CD206+ cells within CD11b+ cells (used as marker of infiltrating monocytes) in sputum and bronchoalveolar lavage of CF patients regardless of P. aeruginosa infection status, with P. aeruginosa infection being associated with increased percentage of CD206+ cells. Our results showing significant positive correlations between lung function and CD206 rMFI in M-CSF, GM-CSF, and GM-CSF+IL-4-treated monocytes in CF complement these findings. Both support the notion that physiological conditions in CF influence CD206 expression.
Understanding the relationship between CD206 and clinical status in CF may provide new biomarkers and/or therapeutic interventions, and as such, deserves further investigation.

Lower CD206 upregulation in response to GM-CSF in CF monocytes could be caused by (i) reduced transcription because of substantial levels of endotoxin in CF plasma [20] or reduced cellular responses to GM-CSF in CF, or (ii) increased release of soluble CD206 (sCD206) which is enhanced in response different stimuli [34]. Reduced responsiveness to GM-CSF in CF might have implications for wound healing at mucosal sites [14]. CD206 can be released from cells as soluble form: sCD206 [35, 36]. Raised levels of sCD206 are found in inflammatory conditions [37], and sCD206 is of prognostic value in pulmonary tuberculosis [38] and community-acquired pneumonia [39]. Analysis of sCD206 in CF would clarify this point.

This pilot study has clear limitations such as the reduced number of samples and markers analysed, lack of longitudinal samples, and no quantification of serum biomarkers like levels of LPS or cytokines. Nevertheless, our results clearly pave the way for the exploitation of whole blood cultures to analyse monocyte differentiation in CF and other inflammatory diseases and assess effect of therapeutics such as CFTR-modulators on immune cells. These studies will benefit from increasing the range of parameters analysed informed by high-dimensional phenotyping, [3, 40, 41] that could be linked to serum biomarkers and sputum analysis.
Figure legends

Figure 1. Analysis of percentages of CD45+CD14+ cells expressing CD11b, HLA-DR, CD206, and CD209 in CF and control fresh and cultured blood samples.

Whole peripheral blood from CF and healthy control (HC) donors was either directly labelled and processed for flow cytometry or diluted 1:1 with complete RPMI medium and incubated for 24 h in the presence of M-CSF, GM-CSF, GM-CSF+IL-4, or no cytokines (Untreated, Unt), and then labelled and processed for flow cytometry. Both sets of samples were stained for CD45, CD14, CD11b, HLA-DR, CD206, and CD209. A. Representative histograms showing the expression of CD11b, HLA-DR, CD206, and CD209 on monocytes in fresh and cultured blood. Red lines represent the marker, while grey lines represent the corresponding isotype control. B. Monocytes from both donor groups consistently expressed CD11b and HLA-DR under all conditions with a higher percentage of CD11b+ cells observed in CF fresh blood compared to HC. Percentage of HLA-DR+ cells consistently significantly increased upon culture. The percentage of CD206+ cells was significantly increased in the presence of GM-CSF and GM-CSF+IL-4, while the percentage of CD209+ cells increased only in the presence of GM-CSF and IL-4. Graphs show mean ± standard error of mean (SEM) for n=10 CF donors and n=8 control donors. Data analysed using Two-Way ANOVA and Tukey's multiple comparison test. (*) p<0.05; (**) p<0.01; (***) p<0.0001; (****) p<0.0001.

Figure 2. Analysis of CD11b, HLA-DR, CD206, and CD209 rMFI in CD45+CD14+ cells in CF and control fresh and cultured blood samples.

Whole peripheral blood from CF and healthy control (HC) donors was either directly labelled and processed for flow cytometry or diluted 1:1 with complete RPMI medium and incubated for 24 h in the presence of M-CSF, GM-CSF, GM-CSF+IL-4, or no cytokines (Untreated, Unt), and then labelled and processed for flow cytometry. Both sets of samples were stained for CD45, CD14, CD11b, HLA-DR, CD206, and CD209. CD11b rMFI values were highly heterogeneous and no clear trend was observed regarding sample origin or treatment. HLA-DR rMFI displayed a clear trend towards upregulation upon culture, with this trend becoming statistically significant in GM-CSF+IL-4 samples. CD206 rMFI was significantly upregulated in CF and HC cultures in the presence of GM-CSF+IL-4. Upregulation in response to GM-CSF only reached significance in HC cultures. CD209 rMFI was only increased in GM-CSF+IL-4 cultures with this upregulation only reaching significance for CF samples. Data analysed using Two-Way ANOVA and Tukey’s multiple comparison test. (*) p<0.05; (**) p<0.01; (***) p<0.0001; (****) p<0.0001.
Figure 3. CD206 rMFI in CD45+CD14+ cells within 24 h whole blood cultures positively correlate with lung function in CF.

Whole peripheral blood from CF donors was either directly labelled and processed for flow cytometry or diluted 1:1 with complete RPMI medium and incubated for 24 h in the presence of M-CSF, GM-CSF, GM-CSF+IL-4, or no cytokines (Untreated), and then labelled and processed for flow cytometry. All samples were stained for CD45, CD14, CD11b, HLA-DR, CD206 and CD209. N=10. Graphs show Pearson correlation analysis between lung function (FEV₁) of CF donors and CD206 rMFI in CD45+CD14+ cells in fresh blood (A) and after 24 h culture (B). Note differences in the scale of the Y axis for each condition.
Acknowledgements

This study was funded by UKRI-MRC grant [Award number MR/P001033/1] to Luisa Martinez-Pomares, Miguel Camara and Paul Williams, and the National Biofilms Innovation Centre (NBIC) which is an Innovation and Knowledge Centre funded by the Biotechnology and Biological Sciences Research Council, Innovate UK and Hartree Centre [Awards Numbers BB/R012415/1 to MC, LMP and PW and BB/X002950/1 to MC].

Conflict of Interest Statement

The authors declare no conflict of interest.
References

