Abstract
Background Aging is associated with declines in circadian functions. The effects of aging on circadian patterns of behavior are insufficiently described. We characterized age-specific features of rest-activity rhythms (RAR) in community dwelling older adults, both overall, and in relation, to sociodemographic characteristics.
Methods We analyzed baseline assessments of older adults with wrist-worn free-living wrist-worn actigraphy data (N=820, Age=76.4 yrs, 58.2% women) participating in the Study of Muscle, Mobility and Aging (SOMMA). We applied an extension to the traditional cosine curve to map RAR to activity data, calculating the parameters: rhythmic strength (amplitude); robustness (pseudo-F statistic); and timing of peak activity (acrophase). We also used function principal component analysis to determine 4 components describing underlying patterns of activity accounting for RAR variance. Linear models were used to examine associations between RAR and sociodemographic variables.
Results Age was associated with several metrics of dampened RAR; women had stronger and more robust RAR metrics vs. men (all P < 0.05). Total activity (56%) and time of activity (20%) accounted for most the RAR variance. Compared to the latest decile of acrophase, those in the earliest decile had higher average amplitude (P <0.001). Compared to the latest decile of acroaphase, those is the earliest and midrange categories had more total activity (P=0.02). RAR was associated with some sociodemographic variables.
Conclusions Older age was associated with dampened circadian behavior; and behaviors were sexually dimorphic. We identified a behavioral phenotype characterized by early time-of-day of peak activity, high rhythmic amplitude, and more total activity.
Competing Interest Statement
S Cumming and P Cawthon consult for Biolabs. The authors have no conflicts to interest to report.
Funding Statement
The Study of Muscle, Mobility and Aging is supported by funding from the National Institute on Aging, grant number AG059416. Study infrastructure support was funded in part by NIA Claude D. Pepper Older American Independence Centers at University of Pittsburgh (P30AG024827) and Wake Forest University (P30AG021332) and the Clinical and Translational Science Institutes, funded by the National Center for Advancing Translational Science, at Wake Forest University (UL1 0TR001420). MLE supported in part by K01DK134838.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Study of Muscle, Mobility and Aging (SOMMA) was approved by the Western IRB-Copernicus Group (WCG) Institutional Review Board (#20180764). All participants provided written informed consent.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
This dataset is available upon formally requesting, accepting clinical data use agreements, and receiving approval at https://sommaonline.ucsf.edu/.