Genetic discovery and risk prediction for type 1 diabetes in individuals without high-risk HLA-DR3/DR4 haplotypes

Carolyn McGrail¹,#, Joshua Chiou¹,* , Ruth Elgamal¹, Amber M Luckett², Richard A Oram²,⁴, Paola Benaglio³, Kyle J Gaulton³,#

¹. Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA
². University of Exeter College of Medicine and Health, Exeter, UK.
³. Department of Pediatrics, UC San Diego, La Jolla, CA
⁴. Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
Corresponding authors

* Present affiliation: Internal Medicine Research Unit, Pfizer Research and Development, Pfizer, Cambridge, MA, USA

Contact: Carolyn McGrail, cmcgrail@health.ucsd.edu; Kyle J Gaulton, kgaulton@ucsd.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Over 10% of individuals with type 1 diabetes (T1D) do not have high-risk HLA-DR3 or -DR4 haplotypes, and whether they carry distinct genetic risk is unknown. To identify genetic drivers of T1D in the absence of DR3/DR4, we performed T1D association and fine-mapping analyses in 12,316 non-DR3/DR4 samples. We identified risk variants at the MHC locus and genome-wide with evidence for heterogeneity in effects on T1D compared to DR3/DR4. T1D-associated variants in non-DR3/DR4 individuals were enriched for loci, regulatory elements, and pathways related to antigen presentation, innate immunity, and beta cells, and depleted in T cells, compared to DR3/DR4. Most non-DR3/DR4 T1D cases are poorly classified based on the existing T1D GRS2, and we created a new GRS which highly discriminated non-DR3/DR4 T1D from non-diabetes and T2D and outperformed GRS2. In total we identified heterogeneity in T1D genetic risk dependent on high-risk HLA haplotype which revealed distinct disease mechanisms and enabled more accurate risk prediction for T1D a non-DR3/DR4 background.
Type 1 Diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin producing beta cells1,2 and which has complex etiology2. T1D is highly polygenic with over 90 known risk loci3–8 and the largest genetic risk factors map to the Major Histocompatibility Complex (MHC) locus7–9 which encodes cell surface receptors that present antigenic peptides to CD4+ and CD8+ T cells10. Haplotypes of the class II HLA-DR and -DQ genes DRB1*0301-DQA1*0501-DQB1*0201 (DR3) and DRB1*04:01/02/04/05/08-DQA1*03:01-DQB1*03:02/04 (DR4)7,11 confer substantial risk of T1D11 and are detected in 90% of European T1D cases12,13. These high-risk DR3/DR4 haplotypes are thought to increase T1D risk by altering peptide binding to class II MHC and presentation of autoantigens to T cells14.

The remaining 10% of individuals of European ancestry that develop T1D without high-risk non-DR3/DR4 haplotypes have lower rates of T1D autoantibody positivity15 and later onset of disease with lower insulin dependence, which can be misdiagnosed as type 2 diabetes (T2D) or latent autoimmune diabetes in adults (LADA)16–22 leading to mismanagement and complications16. In addition, the preventative therapy Teplizumab is most effective in at-risk individuals who are DR4-positive and DR3-negative, and it is less established if it effectively delays onset in non-DR3/DR4 individuals23. Furthermore, existing genetic risk scores (GRS) for T1D heavily weigh DR3/DR4 haplotypes due to their large effect, and thus T1D in non-DR3/DR4 individuals is often poorly predicted by these scores. There is increasing evidence that adult onset T1D, which has a lower rate of DR3/DR4 haplotypes24, is more prevalent than previously estimated25,26, further underscoring the need to understand T1D in the absence of DR3 and DR4.

To address these gaps, we performed T1D association analyses in individuals without high-risk DR3/DR4 haplotypes (\textbf{Figure 1}). We obtained genotype data for 29,723 T1D and control individuals from five European ancestry cohorts (\textbf{Supplementary Table 1}), and imputed genotypes into 308M variants in TOPMed v2 and 56,310 variants in Michigan HLA reference panels27,28. We partitioned individuals by HLA-DR and -DQ haplotype resulting in 8,808 T1D and 8,199 controls with DR3/DR4 and 1,292 T1D and 11,424 controls without DR3/DR4 (\textbf{Supplementary Table 1}). We then tested for T1D
association in the non-DR3/DR4 group, as well as the DR3/DR4 group for comparison. Six non-MHC loci PTPN22, INS, IFIH1, PTPN2, IKZF4, and OSTN, as well as the MHC locus, reached genome-wide significance (p<5x10^{-8}) for T1D in non-DR3/DR4 (Figure 1b, Supplementary Table 2). Through conditional analysis (see Methods), we identified 12 additional signals at locus-wide significance (p<1x10^{-5}), all of which were at the MHC locus (Figure 1d, Supplementary Table 3). For all signals we then generated 99% ‘credible sets’ of variants likely causal for T1D (Figure 1c,e, Supplementary Table 4).

We compared the effects of T1D associated variants at these loci between non-DR3/DR4 and DR3/DR4 using a Breslow-Day (BD) test (see Methods). Of the six significant non-HLA loci, five are known while one locus near OSTN is previously unreported (Fig. 2a). At the OSTN locus, the lead variant had moderate effect in non-DR3/DR4 and limited effect in DR3/DR4 (b=0.4871, b=0.0281, BD test p=1.29x10^{-4}) (Fig. 2b). We also observed a stronger effect in non-DR3/DR4 for lead variants at the IFIHI (b=-0.35, b=-0.091, p=3.88x10^{-5}) and PTPN2 (b=-0.37, b=-0.21, p=0.018) loci (Fig. 2c), both of which are implicated in beta cell function^{29,30}, and this heterogeneity remained after conditioning on other known signals at these loci (Supplementary Table 5). We further examined lead variants of primary signals at all 88 known T1D loci^{3}, and observed heterogeneity (p<0.05) at 9 additional loci. At 5 loci there was evidence for larger effects in non-DR3/DR4 including PRR15L, RAD51B, PRF1, PRKD2, and 6q27, several of which have been implicated in both immune cells and beta cells. By comparison, 4 loci had evidence for smaller effect in non-DR3/DR4 14q32, IL2RA, IL2, and CD69 (Supplementary Fig. 1, Supplementary Table 6), which are loci largely implicated in T cell function.

We next determined whether individuals with T1D in the absence of HLA-DR3/DR4 may carry a greater burden of polygenic risk. We first determined whether known risk variants for T1D broadly had stronger effects in non-DR3/DR4 compared to DR3/DR4. An increased proportion (60.2%) of lead variants at 88 known T1D loci had stronger effect in non-DR3/DR4, although this was not significant (binomial P=0.069). We next determined whether non-HLA heritability differed between groups, and there was only a small increase in estimated heritability for T1D in non-DR3/DR4 compared to DR3/DR4 (non-
DR3/DR4 $h^2=0.2846$, se=0.0795; DR3DR4 $h^2=0.2693$, se=0.0428). Finally, there was only a marginal increase in the ability to distinguish T1D from control samples in non-DR3/DR4 (AUC=0.709) compared to DR3/DR4 (AUC=0.694) using non-MHC variants from the T1D genetic risk score GRS2. These results support that there is limited difference in non-MHC polygenic risk in T1D without high-risk DR3/DR4 haplotypes.

We next investigated the extent to which other variants within the MHC locus contribute to heterogeneity in T1D risk between non-DR3/DR4 and DR3/DR4 (see Methods). Of the 12 MHC signals identified in non-DR3/DR4 T1D, the lead variants of 8 signals exhibited heterogeneity between groups after conditioning on preceding signals from stepwise regression (Fig. 2a, Supplementary Table 7). Most signals were in linkage disequilibrium (LD) with known T1D-associated alleles, except for two apparent novel signals linked to HLA-DRB1*09:01-DQA1*03:01-DQB1*03:03 and B*44:02, respectively (Fig. 2a, Supplementary Table 8). Among a larger set of 40 known MHC T1D risk alleles, 22 two-digit class I and class II alleles had evidence for heterogeneity (p<0.05) (see Methods, Fig. 2g,h, Supplementary Table 9). In class I, HLA-B*39:06 had increased risk in non-DR3/DR4 (p=8.27x10^{-3}), HLA-A*01:01 was more protective in non-DR3/DR4 (p=2.7x10^{-4}), and HLA-B*18:01 had opposed effects in non-DR3/DR4 and DR3/DR4 (p=5.41x10^{-6}) (Fig. 2g,h). In class II, DRB1*15:01-DQB1*06:02 was more protective in DR3/DR4 (DRB1*15:01 p=8.187x10^{-8}, DQB1*06:02 p=8.62x10^{-7}) (Fig. 2g,h), DRB1*13:01-DQB1*06:03 was more protective in non-DR3/DR4 (p=6.3x10^{-3}) (Fig. 2g,h), and DPB1*03:01 had increased risk in DR3/DR4 (p=0.035) (Fig. 2g,h). Together this reveals MHC alleles with heterogeneity in effect on T1D in a non-DR3/DR4 background.

As a higher proportion of individuals without DR3/DR4 haplotypes have later onset of disease, we next examined whether heterogeneity in T1D risk between non-DR3/DR4 and DR3/DR4 was consistent across age of onset. We compared the effects of non-DR3/DR4 signals in each individual cohort included in our meta-analysis, including the WTCCC and T1DGC cohorts where all cases had age of onset <17 (Supplementary Table 1). Among loci significant in non-DR3/DR4 that also exhibited heterogeneity with DR3/DR4, we observed no difference in T1D effects in WTCCC and T1DGC compared
to other cohorts (Cochran Q p>0.05). (Supplementary Table 2, Supplementary Fig. 2).

In addition, signals with heterogeneity between non-DR3/DR4 and DR3/DR4 were largely distinct from those with age-dependent association from a separate study17, and HLA-B*39:06 had larger effect in non-DR3/DR4 and was associated with younger age of onset (Supplementary Fig. 1). This supports that heterogeneity in non-DR3/DR4 appears distinct from T1D age of onset-related effects.

Given heterogeneity in effects at individual T1D loci in non-DR3/DR4 and DR3/DR4, we next determined if there were broader differences in T1D association patterns between groups. We first tested T1D associated variants in each group for enrichment of candidate cis-regulatory elements (cCREs) in immune cell types using stratified LD score regression32–34. In the non-DR3/DR4 group, there was enrichment (FDR<0.10) of T1D associated variants in memory B-cells, bulk B cells, mature NK cells, and unstimulated T regulatory cells (Fig. 2d, Supplementary Table 10). Dendritic cells and monocytes were also enriched in non-DR3/DR4 but did not pass multiple test correction. By comparison, the DR3/DR4 group was most enriched for cCREs in T cell populations including T follicular helper, naive T regulatory, central memory CD8+ T, and effector CD4+ T cells (Supplementary Table 10). We next performed gene set enrichment in each group using MAGMA (Supplementary Table 11). The strongest enrichments (p<0.05) in the non-DR3/DR4 included regulation of lipid storage, macrophage stimulating factor, stress-induced apoptotic signaling, and complement activation. By comparison, DR3/DR4 was most enriched for T cell-related pathways including IL-2 signaling, and T cell differentiation, activation, and proliferation. Collectively, this suggests a greater APC, innate immune and beta cell contribution, and lower T cell contribution, to T1D in non-DR3/DR4 compared to DR3/DR4.

Finally, we evaluated the ability of genetic risk scores (GRS) to predict T1D in non-DR3/DR4 individuals. Over half (55\%) of non-DR3DR4 T1D individuals fall below the 5th percentile for T1D in the published GRS235 and are thus unlikely to be classified as T1D. In line with this finding, when comparing non-DR3/DR4 T1D cases to all control samples (both non-DR3/DR4 and DR3/DR4) using GRS2, there was limited ability to distinguish
T1D (AUC=0.709) (Fig. 3a,e). When sub-setting both cases and controls to non-DR3/DR4 individuals, GRS2 had improved predictive ability (AUC=0.830, p=6.09x10^{-39}) (Fig. 3a,f). We next generated a non-DR3/DR4 specific T1D GRS using the 18 risk signals identified in non-DR3/DR4 individuals in our study (see Methods, Supplementary Table 12), and this GRS significantly improved discrimination of non-DR3/DR4 T1D compared to GRS2 (AUC=0.871; p=6.20x10^{-7}) (Fig. 3b,g). We further generated a combined 45-variant non-DR3/DR4 T1D GRS by including 27 additional non-MHC known T1D risk variants (Supplementary Table 12), and this GRS further improved on the 18-variant non-DR3/DR4 GRS (AUC=0.882; p=0.198) (Fig. 3c,d,h). Finally, we tested the non-DR3/DR4 GRS on an independent test set of 100 T1D and 300 control non-DR3/DR4 samples excluded from the initial T1D association analyses, and there was consistent ability to predict T1D (AUC=0.878) (Supplementary Fig. 3a,b).

Since non-DR3/DR4 T1D individuals tend to have later onset and a lower dependence on insulin therapy leading to potential misdiagnosis as T2D^{16,17,24,37}, we next evaluated the ability of the GRS to differentiate T1D from T2D using the WTCCC1 cohort (Supplementary Fig. 4). When using GRS2, there was limited ability to distinguish non-DR3/DR4 T1D from all T2D (AUC=0.650) (Supplementary Fig. 4a,e,f). In contrast, the non-DR3/DR4 GRS strongly discriminated non-DR3/DR4 T1D from all T2D and was significantly improved over GRS2 (18-variant AUC=0.890, p=1.17x10^{-66}, 45-variant AUC=0.898, p=8.02x10^{-95}) (Supplementary Fig. 4b,c,d,g,h). These predictions were consistent when using an independent test set of T1D samples (AUC=0.898) (Supplementary Fig. 3c,d). The improved ability of the non-DR3/DR4 GRS to distinguish T1D from T2D is likely driven by the improved estimation of effects at the MHC locus (T1D vs control HLA AUC=0.851, T1D vs T2D HLA AUC=0.885), as the extensive HLA combinations included in GRS2 still did not differentiate non-DR3DR4 T1D from T2D (T1D vs T2D HLA AUC=0.571).

We finally determined the diagnostic value of a GRS for non-DR3/DR4 T1D. When T1D GRS2 is subset to only non-DR3/DR4 and re-scaled (Table 1), a score of 11.45 at the 50th percentile of T1D has a sensitivity of 49.5% and specificity of 91.0% and just reaches
the minimum requirement for diagnostic criteria (Youden index=0.505) at the 22nd T1D percentile. When comparing T1D to T2D using GRS2, there is limited ability to distinguish T1D from T2D (maximum Youden index=0.223). By comparison, the 18 variant non-DR3/DR4 GRS has a score of 12.50 at the 50th percentile for T1D with a sensitivity of 50.0% and specificity of 95.2% (Table 1) and a peak Youden index of 0.607 at a score threshold of 11.05. Similarly, in the combined 45-variant non-DR3/DR4 GRS, the 50th percentile of T1D has a sensitivity of 50.0% and specificity of 96.0% and a peak Youden index of 0.620 at a score threshold of 13.50 (Table 1). There was also diagnostic value of the non-DR3/DR4 GRS in differentiating non-DR3/DR4 T1D from T2D (max Youden index=0.678). Overall, our results provide a GRS that can be used to distinguish non-DR3/DR4 T1D from both non-diabetes and T2D and expands the capacity to accurately predict T1D across a wider breadth of individuals.

Discussion

In the absence of high-risk DR3/DR4 haplotypes, we observed heterogeneity in T1D risk for class I and class II MHC alleles as well as other loci genome wide. Multiple genes at loci with larger effects in non-DR3/DR4 such as *PTPN2, IFIH1, PRR15L*, and *RAD51B* are implicated in inflammatory signaling\(^{38,39}\) and survival\(^{29,40,41}\) in immune cells and beta cells. We also identified a novel T1D locus in non-DR3/DR4 near *OSTN*, which has been linked to diabetic cardiomyopathy in mouse models\(^{42}\). Conversely, loci such as *IL2RA, IL2* and *CD69* with reduced effect in non-DR3/DR4 impact T cell function and activation\(^{43,44}\). More broadly, there were distinct patterns of enrichment in non-DR3/DR4 T1D where genomic annotations and molecular pathways related to B cells, NK cells, and beta cells were more enriched, and T cells less enriched, compared to DR3/DR4. These results collectively suggest that mechanisms of T1D in non-DR3/DR4 may depend more on inflammation and beta cell dysfunction than T cell activation\(^{16–20}\). Given the later age of onset and similar levels of polygenic risk outside of the MHC locus, environmental interactions may play a larger role in T1D in non-DR3/DR4 individuals.

Based on previous GRS percentile scales, most non-DR3/DR4 individuals with T1D would not have been predicted to develop T1D. The GRS reported here enables accurate
discrimination of T1D from non-diabetes and T2D in non-DR3/DR4 individuals. Accurate prediction of T1D in the non-DR3/DR4 population will help prevent ketoacidosis and future complications as well as misdiagnosis of T2D, which is a particular issue in non-DR3/DR4 T1D due to the later onset and lower insulin dependence. While non-DR3/DR4 T1D background has generally later onset, it can occur at any age and our results suggest that the effects of variants on T1D risk in non-DR3/DR4 are consistent across age of onset. In addition, as this study was conducted in individuals of European ancestry, similar studies of T1D in other ancestries may help improve risk prediction of T1D in these populations. Furthermore, the GRS reported here may have value in discriminating T1D in populations where high-risk haplotypes such as DR3/DR4 are uncommon.

The ability to distinguish at-risk individuals is also critical for determining eligibility for clinical trials and therapies. The preventative therapy Teplizumab modulates T cell activity and is most efficacious in individuals with HLA-DR4, and several clinical trials aiming to preserve beta cell function at onset preferentially recruit DR3/DR4 individuals. Given evidence for differences in disease mechanisms, including less prominent contribution from T cells, alternate therapies may be needed to prevent T1D in non-DR3/DR4 individuals. In addition, as autoantibodies are seen at lower rates in non-DR3/DR4 T1D, additional biomarkers are needed for this group.

Finally, our findings are in line with a growing body of literature which support that T1D is a heterogeneous disease consisting of multiple sub-types with distinct pathophysiological features. More broadly, stratifying samples by high-risk genetic background may be an effective strategy to uncover genetic and mechanistic heterogeneity in other complex diseases.

ONLINE METHODS

Research subjects and genotype imputation

We compiled genotype data from 10,100 T1D and 19,623 control individuals of European ancestry from publicly available cohorts (Supplementary Table 1). T1D case cohorts
were matched to control cohorts based on country of origin and genotype array where possible as previously described. We applied the HRC imputation preparation program (version 4.2.9, https://www.well.ox.ac.uk/~wrayner/tools/) and used PLINK (version 1.90) to perform quality control prior to imputation to remove variants with MAF <1%, missing genotypes >5%, in violation of Hardy-Weinberg equilibrium (HWE $P<1\times10^{-5}$ in control cohorts and HWE $P<1\times10^{-10}$ in case cohorts), difference in allele frequency > 0.2 compared to HRC r1.1 reference panel, and variants with allele ambiguity. We then imputed genotypes for all samples into the TOPMed v2 and Michigan Multi-ethnic HLA reference panels using the respective imputation servers. We additionally used SNP2HLA to impute genotypes into the specialized European HLA TDGC reference panel. In the genome-wide imputation, we removed variants with an imputation accuracy score of $r^2<0.3$. In the HLA imputed imputation, we removed variants with an imputation accuracy of $r^2<0.5$ and a standard deviation in control allele frequency >0.055 across cohorts. Variants that passed QC filters in all cohorts were tested for association.

Association testing and meta-analysis

We defined distinct DR3/DR4 and non-DR3/DR4 groups based on HLA-DR and HLA-DQ haplotype status using four-digit HLA alleles imputed from the T1DGC reference panel with SNP2HLA. DR3 was identified by the presence of HLA-DRB1*03:01-DQB1*02:01, while DR4 was identified by the presence of HLA-DRB1*04:01/02/04/05/08-DQB1*03:02/04:02:02. We excluded 23 individuals who were identified as non-DR3/DR4 via SNP2HLA alleles, but had DR3 or DR4 tag SNPs. From the non-DR3/DR4 risk group, 100 cases and 300 control samples we removed prior to performing association analyses. In both non-DR3/DR4 and DR3/DR4 groups, we tested variants for T1D case and control association using firth bias corrected logistic regression in EPACTS. We tested variants with MAF>1% for association using sex and the first 4 genotype PCs as covariates. Summary statistics were combined across cohorts in a fixed effects inverse variance weighted meta-analysis using METAL. The genomic inflation (lambda GC) was 1.069 for non-DR3/DR4 and 1.098 for DR3/DR4. We used LDSC to test for heritability in the summary statistics outside of the MHC for each group using a
population prevalence of 1% for each group, and a sample prevalence of 51% for DR3/DR4 and 10% for non-DR3/DR4.

Fine-mapping of independent signals

We identified 1 Mb regions around the lead variants of all genome-wide significant loci. We performed conditional analysis at each locus using stepwise analysis iteratively including the most significant variant in the regression model and re-performing the meta-analysis until no significant variants remained. In conditional analysis we used a locus wide significance threshold of p< 1x10^-5. We then performed Bayesian fine mapping to create credible sets of likely causal variants for each signal. From the summary statistics, effect size and standard error were used to calculate the approximate Bayes factor (BF) for each variant in r^2>0.1 with the lead variant. We calculated the probability of association (PPA) for each variant by dividing the BF by the total sum of BFs. We then created 99% credible sets by including variants in descending order of PPA until the cumulative posterior probability was at least 99% (Supplementary Table 12).

ATAC-seq peak calling

ATAC-seq data for 175 samples from 20 different immune cell types (Bulk B, Mem B, Naïve B, Effector CD4pos T, Follicular T Helper, Memory Teffs, Memory Tregs, Naïve Teffs, Th1 precursors, Regulatory T, Th2 precursors, Th17 precursors, Naïve Tregs, Effector memory CD8pos T, Naïve CD8 T, Central memory CD8pos T, CD8pos T, Gamma delta T, Monocytes, Mature NK) at resting and stimulated conditions were obtained from the NCBI GEO database at the accession GSE118189 and processed to generate peak coordinates. Reads were aligned using STAR to hg19 and duplicate reads, reads mapping to blacklisted regions from ENCODE, and read with mapping quality Q<30 were filtered. Peak calling was performed using MACS2 on BAM files further filtered for read pairs with insert size no larger than 140 bp (macs2 callpeak --nomodel --nolambda --keep-dup all --call-summits -f BAMPE -g hs --q 0.01), combining individual samples for each cell type and treatment, for a total of 40 distinct peak sets. We then used bedtools multiinter to obtain one consensus set of peaks and featureCounts to obtain the peak x read counts in each cell-type.
GWAS enrichment analysis

For each group, we performed partitioned heritability LD-score regression to estimate genome wide enrichment in stimulated and unstimulated immune cell accessible chromatin generated above32–34. We used the summary statistics for each group excluding the MHC locus and formatted it for input to LD score regression using the munge_sumstats.py script. We generated binary annotations from each accessible chromatin bed file and computed cell specific LD enrichment scores for each risk cohort using the version 2.2 1000G baseline model. We then corrected for multiple tests in each group across all cell types using false discovery rate (FDR) and considered FDR<0.10 significant. Additionally, we performed gene set enrichment in GO, KEGG and REACTOME pathways with the summary statistics for each group using MAGMA63 with default parameters and reported the strongest enrichments using uncorrected p-values.

Testing differences in T1D risk between groups

We tested for differences in T1D effect between non-DR3/DR4 and DR3/DR4 using merged PLINK files of Michigan HLA and TOPMed imputed variants for all 29,723 samples. We tested for heterogeneity in marginal effects on T1D using Breslow-Day (BD) tests with the “-bd” flag in PLINK51. We performed BD tests for lead variants for six non-HLA loci identified in non-DR3/DR4 samples, and lead variants for 88 previously known T1D risk loci3. At MHC and other loci with multiple signals, we tested for heterogeneity in effects on T1D conditional or other known variants. We generated regression models with PLINK using the “-glm interaction firth” flag including sex, the first 4 genotype PCs, DR3/DR4 status, and additional variants as covariates and evaluated the interaction with DR3/DR4 status. For the 12 MHC signals identified in non-DR3/DR4 samples, we conditioned on preceding lead variants from the stepwise regression. For the IFIH1 and PTPN2 loci, we conditioned on lead variants for all other known signals at the locus51. For the HLA locus, we conditioned on HLA-DRB1*03:01, HLA-DQB1*02:01, HLA-DRB1*04:01, HLA-DRB1*04:02, HLA-DRB1*04:04, HLA-DRB1*04:05, HLA-DRB1*04:08, HLA-DQB1*03:02, and HLA-DQB1*03:04 to examine heterogeneity in 40
known two-digit HLA risk alleles independent of these 9 DR3 and DR4 alleles. To then obtain the conditional effect of each variant within non-DR3/DR4 or DR3/DR4, we performed logistic regression separately for each group using EPACTS including sex, 4 genotype PCs, and the same variants from the interaction tests above.

Generation and statistical analysis of the GRSs

We calculated GRS1 by using SNP2HLA imputed genotypes to define DR3 and DR4 tag SNPs and TOPMed imputed genotypes for the remaining 28 signals\(^{35}\). We calculated GRS2 by using TOPMED variants where possible (60 variants), Michigan HLA for rs116522341, rs1281934, and the Michigan HLA proxies DQB1*06:02, B*18:01, DPB1*03:01, rs1611547, and rs114170382, for rs17843689, rs371250843, rs559242105, rs144530872, and rs149663102 respectively. We excluded individuals with more than 2 HLA-DR/DQ calls, for GRS2, in line with the published methods\(^{36}\). For each of the 18 signals identified in the non-DR3/DR4 group, we generated a GRS by summation of all signals weighted by the beta \((B)\) for each effect allele \((X)\) (Equation 1, Supplementary Table 12).

\[
GRS = \sum_{i=0}^{N} B_i X_i
\]

We additionally leveraged 27 non-overlapping non-HLA T1D risk loci from GRS2 to generate a 45 variant combined GRS. We determined the ability of GRS2 to discriminate non-DR3/DR4 T1D cases from all control samples as well as to just non-DR3/DR4 control samples. When comparing to other GRS, we used the version of GRS2 including only non-DR3/DR4 cases and controls. We tested the ability of each GRS to discriminate T1D and non-diabetes using the area under the curve (AUC) of the receiver operator characteristic (ROC) statistics\(^{64}\). We calculated the difference between AUCs of each GRS using the deLong test and calculated the diagnostic criteria using the Youden Index. We then generated percentiles for how many non-DR3/DR4 T1D or control individuals fall at various GRS score thresholds. We calculated sensitivity at each GRS score as TP/(TP + FN) and specificity as TN/(TN+FP)\(^{65}\). We further tested the ability to differentiate T1D from non-disease in the 45 variant non-DR3/DR4 GRS using an independent test.
group of 100 cases and 300 control samples removed prior to association analyses. We also compared the ability of each GRS to differentiate T1D from T2D using 1,999 T2D individuals from the WTCCC study. After imputing the T2D genotypes into TOPMed and Michigan HLA reference panels, we calculated the scores for each GRS as described above and derived ROC statistics comparing T1D to T2D. We additionally validated the performance of the 45 variant non-DR3/DR4 GRS to distinguish T1D from T2D using the 100 T1D case test group and all 1,999 T2D samples.

ACKNOWLEDGEMENTS
This work was supported by NIH grants DK120429 and DK122607 to K.J.G.

DCCT/EDIC: The Diabetes Control and Complications Trial (DCCT) and its follow-up the Epidemiology of Diabetes Interventions and Complications (EDIC) study were conducted by the DCCT/EDIC Research Group and supported by National Institute of Health grants and contracts and by the General Clinical Research Center Program, NCRR. The data from the DCCT/EDIC study were supplied by the NIDDK Central Repositories.

GENIE: The Genetics of Nephropathy, an International Effort (GENIE) study was conducted by the GENIE Investigators and supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The data from the GENIE study reported here were supplied by the GENIE investigators from the Broad Institute of MIT and Harvard, Queens University Belfast and the University of Dublin.

GoKinD: The Genetics of Kidneys in Diabetes (GoKinD) Study was conducted by the GoKinD Investigators and supported by the Juvenile Diabetes Research Foundation, the CDC, and the Special Statutory Funding Program for Type 1 Diabetes Research administered by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The data [and samples] from the GoKinD study were supplied by the NIDDK Central Repositories. This manuscript was not prepared in collaboration with Investigators of the GoKinD study and does not necessarily reflect the opinions or views of the GoKinD study, the NIDDK Central Repositories, or the NIDDK.
T1DGC: This research utilizes resources provided by the Type 1 Diabetes Genetics Consortium (T1DGC), a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Human Genome Research Institute (NHGRI), National Institute of Child Health and Human Development (NICHD), and the Juvenile Diabetes Research Foundation International (JDRF) and supported by U01 DK062418. The UK case series collection was additionally funded by the JDRF and Wellcome Trust and the National Institute for Health Research Cambridge Biomedical Centre, at the Cambridge Institute for Medical Research, UK (CIMR), which is in receipt of a Wellcome Trust Strategic Award (079895). The data from the T1DGC study were supplied by dbGAP. This manuscript was not prepared in collaboration with Investigators of the T1DGC study and does not necessarily reflect the opinions or views of the T1DGC study or the study sponsors.

T1DGC (ASP/UK GRID): This research was performed under the auspices of the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Human Genome Research Institute (NHGRI), National Institute of Child Health and Human Development (NICHD), and Juvenile Diabetes Research Foundation International (JDRF).

WTCCC: This study makes use of data generated by the Wellcome Trust Case Control Consortium. A full list of the investigators who contributed to the generation of the data is available from www.wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under award 076113.

CSGNM: We thank the participants of the Trinity Student Study. This study was supported by the Intramural Research Programs of the National Institutes of Health, the National Human Genome Research Institute, and the Eunice Kennedy Shriver National Institute of Child Health and Development.
NIMH Schizophrenia Controls: Funding support for the Genome-Wide Association of Schizophrenia Study was provided by the National Institute of Mental Health (R01 MH67257, R01 MH59588, R01 MH59571, R01 MH59565, R01 MH59587, R01 MH60870, R01 MH59566, R01 MH59586, R01 MH61675, R01 MH60879, R01 MH81800, U01 MH46276, U01 MH46289 U01 MH46318, U01 MH79469, and U01 MH79470) and the genotyping of samples was provided through the Genetic Association Information Network (GAIN). The datasets used for the analyses described in this manuscript were obtained from the database of Genotypes and Phenotypes (dbGaP) found at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000021.v3.p2. Samples and associated phenotype data for the Genome-Wide Association of Schizophrenia Study were provided by the Molecular Genetics of Schizophrenia Collaboration (PI: Pablo V. Gejman, Evanston Northwestern Healthcare (ENH) and Northwestern University, Evanston, IL, USA).

Neurodevelopmental Genomics: Support for the collection of the data for Philadelphia Neurodevelopment Cohort (PNC) was provided by grant RC2MH089983 awarded to Raquel Gur and RC2MH089924 awarded to Hakon Hakonarson. Subjects were recruited and genotyped through the Center for Applied Genomics (CAG) at The Children's Hospital in Philadelphia (CHOP). Phenotypic data collection occurred at the CAG/CHOP and at the Brain Behavior Laboratory, University of Pennsylvania.

eMERGE Network: Group Health Cooperative/University of Washington – Funding support for Alzheimer's Disease Patient Registry (ADPR) and Adult Changes in Thought (ACT) study was provided by a U01 from the National Institute on Aging (Eric B. Larson, PI, U01AG006781). A gift from the 3M Corporation was used to expand the ACT cohort. DNA aliquots sufficient for GWAS from ADPR Probable AD cases, who had been enrolled in Genetic Differences in Alzheimer's Cases and Controls (Walter Kukull, PI, R01 AG007584) and obtained under that grant, were made available to eMERGE without charge. Funding support for genotyping, which was performed at Johns Hopkins University, was provided by the NIH (U01HG004438). Genome-wide association analyses were supported through a Cooperative Agreement from the National Human
Genome Research Institute, U01HG004610 (Eric B. Larson, PI). Mayo Clinic – Samples and associated genotype and phenotype data used in this study were provided by the Mayo Clinic. Funding support for the Mayo Clinic was provided through a cooperative agreement with the National Human Genome Research Institute (NHGRI), Grant #: U01HG004599; and by grant HL75794 from the National Heart Lung and Blood Institute (NHLBI). Funding support for genotyping, which was performed at The Broad Institute, was provided by the NIH (U01HG004424). Marshfield Clinic Research Foundation – Funding support for the Personalized Medicine Research Project (PMRP) was provided through a cooperative agreement (U01HG004608) with the National Human Genome Research Institute (NHGRI), with additional funding from the National Institute for General Medical Sciences (NIGMS) The samples used for PMRP analyses were obtained with funding from Marshfield Clinic, Health Resources Service Administration Office of Rural Health Policy grant number D1A RH00025, and Wisconsin Department of Commerce Technology Development Fund contract number TDF FY010718. Funding support for genotyping, which was performed at Johns Hopkins University, was provided by the NIH (U01HG004438). Northwestern University – Samples and data used in this study were provided by the NUgene Project (www.nugene.org). Funding support for the NUgene Project was provided by the Northwestern University’s Center for Genetic Medicine, Northwestern University, and Northwestern Memorial Hospital. Assistance with phenotype harmonization was provided by the eMERGE Coordinating Center (Grant number U01HG04603). This study was funded through the NIH, NHGRI eMERGE Network (U01HG004609). Funding support for genotyping, which was performed at The Broad Institute, was provided by the NIH (U01HG004424).

Vanderbilt University - Funding support for the Vanderbilt Genome-Electronic Records (VGER) project was provided through a cooperative agreement (U01HG004603) with the National Human Genome Research Institute (NHGRI) with additional funding from the National Institute of General Medical Sciences (NIGMS). The dataset and samples used for the VGER analyses were obtained from Vanderbilt University Medical Center's BioVU, which is supported by institutional funding and by the Vanderbilt CTSA grant UL1RR024975 from NCRR/NIH. Funding support for genotyping, which was performed
at The Broad Institute, was provided by the NIH (U01HG004424). Assistance with phenotype harmonization and genotype data cleaning was provided by the eMERGE Administrative Coordinating Center (U01HG004603) and the National Center for Biotechnology Information (NCBI). The datasets used for the analyses described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000360.v3.p1.

This manuscript was not prepared in collaboration with investigators of these studies and does not necessarily reflect the opinions or views of the DCCT/EDIC, GENIE, GoKinD, T1DGC, WTCCC, studies or study groups, the NIDDK Central Repositories, the NIH, or the study sponsors.

AUTHOR CONTRIBUTIONS

K.J.G and C.M. designed the study and wrote the manuscript. C.M. performed genetic association, genomic analyses, and genetic risk score analyses. J.C., R.E. and P.B. contributed to genetic association and genomic analyses. A.L and R.O contributed to genetic association and genetic risk score analyses.
Fig. 1. Genetic Discovery in Non-DR3/DR4 T1D.
a. Overview of genetic discovery and risk prediction for T1D in non-DR3/DR4 individuals.
b. Genome-wide T1D association (log_{10} P values from meta-analysis of n=12,316 samples) in individuals without DR3/DR4 haplotypes. Known T1D loci are colored blue and novel loci are colored purple. All loci are labeled with the nearest gene. c. Number of 99% credible set (CS) variants in fine-mapped non-HLA T1D risk signals. d. T1D association at the MHC locus (log_{10} P values from marginal association in meta-analysis of n = 12,316 samples). Known signals are colored blue and novel signals are colored purple. The location of class I and II HLA genes are shown on the bottom. e. Number of 99% credible set variants in fine-mapped MHC signals.
Fig. 2: Heterogeneity of genetic and biological mechanisms in non-DR3/DR4 and DR3/DR4 T1D

a. Number of known and novel signals with heterogeneity in effect on T1D in non-DR3/DR4 and DR3/DR4 background. b. Locus plots of T1D association at the novel OSTN locus in DR3/DR4 (left) and non-DR3/DR4 (right). c. non-HLA loci with genome-wide significant T1D association in non-DR3/DR4 association analyses with effect sizes for lead variants in each risk haplotype and interaction analysis significance for difference in effect. d. LD-regression enrichment scores for DR3/DR4 and non-DR3/DR4 in stimulated and unstimulated immune cell accessible chromatin. Dark green points are significant at FDR<0.10 in non-DR3/DR4 and DR3/DR4 while light blue points are FDR significant in only DR3/DR4. e. Gene pathway enrichment in non-DR3/DR4 T1D using MAGMA. f. Gene pathway enrichment in DR3/DR4 T1D using MAGMA. g. T1D effect sizes of class I and II HLA alleles in each risk group after conditioning on 9 DR3 and DR4 alleles. h. T1D case and control frequencies of known HLA alleles in non-DR3/DR4 and DR3/DR4.
Fig. 3. Genetic Risk Prediction in non-DR3/DR4 T1D individuals. Receiver operating characteristic (ROC) curves showing the ability of genetic risk scores (GRSs) to differentiate T1D from non-diabetes in the non-DR3/DR4 population and corresponding violin plots. The AUCs are shown for each GRS and the p-values comparing predictive ability of GRS are calculated using the de-Long test.

a. T1D GRS2 comparing non-DR3/DR4 cases to all (both non-DR3/DR4 and DR3/DR4) controls compared to T1D GRS2 subset to non-DR3/DR4 T1D cases and controls.
b. T1D GRS2 subset to non-DR3/DR4 cases and controls compared to the 18-variant non-DR3/DR4 T1D GRS.
c. T1D GRS2 subset to non-DR3/DR4 cases and controls compared to the combined 45-variant non-DR3/DR4 T1D GRS.
d. The 18-variant non-DR3/DR4 T1D GRS compared to the combined 45-variant non-DR3/DR4 T1D GRS. The violin plots for scores in T1D cases and controls are depicted for e. T1D GRS2 f. T1D GRS2 subset to only non-DR3/DR4 samples g. 18-variant non-DR3/DR4 T1D GRS and h. combined 45-variant non-DR3/DR4 T1D GRS.
<table>
<thead>
<tr>
<th>non-DR3/DR4 only GRS2</th>
<th>T1D Centile</th>
<th>Non-Disease Centile</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Youden Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.752658</td>
<td>5</td>
<td>37.7</td>
<td>95.00</td>
<td>37.70</td>
<td>0.3270</td>
</tr>
<tr>
<td>9.228935</td>
<td>15</td>
<td>63.7</td>
<td>85.00</td>
<td>63.67</td>
<td>0.4867</td>
</tr>
<tr>
<td>9.996297</td>
<td>25</td>
<td>75.1</td>
<td>75.00</td>
<td>75.13</td>
<td>0.5013</td>
</tr>
<tr>
<td>10.541744</td>
<td>35</td>
<td>82.2</td>
<td>65.00</td>
<td>82.17</td>
<td>0.4717</td>
</tr>
<tr>
<td>11.450371</td>
<td>50</td>
<td>91.1</td>
<td>50.00</td>
<td>91.04</td>
<td>0.4104</td>
</tr>
<tr>
<td>12.744567</td>
<td>75</td>
<td>97.8</td>
<td>25.00</td>
<td>97.80</td>
<td>0.2280</td>
</tr>
<tr>
<td>14.354335</td>
<td>95</td>
<td>99.8</td>
<td>5.000</td>
<td>99.83</td>
<td>0.0482</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18 variant non-DR3/DR4 GRS</th>
<th>T1D Centile</th>
<th>Non-Disease Centile</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Youden Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.066980</td>
<td>5</td>
<td>42.0</td>
<td>94.97</td>
<td>41.95</td>
<td>0.3691</td>
</tr>
<tr>
<td>10.585440</td>
<td>15</td>
<td>72.5</td>
<td>84.98</td>
<td>72.60</td>
<td>0.5758</td>
</tr>
<tr>
<td>11.358825</td>
<td>25</td>
<td>84.5</td>
<td>75.00</td>
<td>84.53</td>
<td>0.5953</td>
</tr>
<tr>
<td>11.850600</td>
<td>35</td>
<td>90.3</td>
<td>65.02</td>
<td>90.26</td>
<td>0.5527</td>
</tr>
<tr>
<td>12.497350</td>
<td>50</td>
<td>95.2</td>
<td>50.00</td>
<td>95.20</td>
<td>0.4519</td>
</tr>
<tr>
<td>13.553850</td>
<td>75</td>
<td>98.8</td>
<td>25.00</td>
<td>98.78</td>
<td>0.2377</td>
</tr>
<tr>
<td>15.080665</td>
<td>95</td>
<td>99.9</td>
<td>5.034</td>
<td>99.87</td>
<td>0.04908</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>45 variant non-DR3/DR4 GRS + GRS2</th>
<th>T1D Centile</th>
<th>Non-Disease Centile</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Youden Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.383834</td>
<td>5</td>
<td>45.4</td>
<td>94.97</td>
<td>45.40</td>
<td>0.4036</td>
</tr>
<tr>
<td>12.964629</td>
<td>15</td>
<td>75.3</td>
<td>84.98</td>
<td>75.34</td>
<td>0.6032</td>
</tr>
<tr>
<td>13.729634</td>
<td>25</td>
<td>86.3</td>
<td>75.00</td>
<td>86.38</td>
<td>0.6138</td>
</tr>
<tr>
<td>14.300939</td>
<td>35</td>
<td>92.0</td>
<td>65.02</td>
<td>92.02</td>
<td>0.5703</td>
</tr>
<tr>
<td>14.917295</td>
<td>50</td>
<td>95.9</td>
<td>50.00</td>
<td>95.96</td>
<td>0.4596</td>
</tr>
<tr>
<td>15.999508</td>
<td>75</td>
<td>99.2</td>
<td>25.00</td>
<td>99.12</td>
<td>0.2412</td>
</tr>
<tr>
<td>17.659279</td>
<td>95</td>
<td>99.9</td>
<td>5.034</td>
<td>99.93</td>
<td>0.0496</td>
</tr>
</tbody>
</table>
Supplementary Fig. 1. a. The T1D effect size of lead variants in non-DR3/DR4 and DR3/DR4 at primary signals for 88 known T1D loci. Selected loci with variants that have the largest differences in T1D effect are annotated. b. Table containing the locus and T1D effect size for non-DR3/DR4 and DR3/DR4 and the p-value for heterogeneity in effect using a Breslow Day test for 11 lead variants with nominal p <0.05.
Supplementary Fig. 2. Effects for discovery non-MHC non-DR3/DR4 signals. The effects of lead variants at the *IFIH1, OSTN* and *PTPN2* loci on T1D risk in non-DR3/DR4 and DR3/DR4 stratified by individual cohort included in this study.
Supplementary Fig. 3. ROC curves and examining the ability of GRSs to differentiate T1D from non-disease and T1D from T2D in an independent test population of non-DR3/DR4 T1D and corresponding violin plots.

a. The AUC is shown for the combined 45-variant non-DR3/DR4 T1D GRS in T1D and non-disease and b. violin plot for scores in 100 T1D cases and 300 controls from the test group. c. The AUC is shown for the combined 45-variant non-DR3/DR4 T1D GRS in T1D and T2D. d. violin plot for scores in 100 T1D cases from the test group and 1999 T2D individuals.
Supplementary Fig. 4. ROC curves showing the ability of GRSs to differentiate T1D from T2D in the non-DR3/DR4 population and corresponding violin plots. The AUCs are shown for each GRS and p-value for difference in prediction of T1D from T2D is calculated using the deLong test.

a. T1D GRS2 including all T1D and T2D compared to T1D GRS2 subset to non-DR3/DR4 T1D cases and all T2D.
b. T1D GRS2 subset to non-DR3/DR4 T1D cases and all T2D compared to the 18-variant non-DR3/DR4 T1D GRS.
c. T1D GRS2 subset to non-DR3/DR4 T1D cases and all T2D compared to the combined 45-variant non-DR3/DR4 T1D GRS.
d. The 18-variant non-DR3/DR4 T1D GRS compared to the 45-variant non-DR3/DR4 T1D GRS. The violin plots for scores in T1D and T2D cases are depicted for e. T1D GRS2 f. T1D GRS2 subset to only non-DR3/DR4 T1D and all T2D g. 18-variant non-DR3/DR4 T1D GRS and h. combined 45-variant non-DR3/DR4 T1D GRS.

57. EPACTS - Genome Analysis Wiki. https://genome.sph.umich.edu/wiki/EPACTS.

