Faltering survival improvements at young-middle ages in high-income English-speaking countries: population-level period and cohort analyses

Sergey Timonin1*, David A. Leon2, Emily Banks3, Tim Adair4, Vladimir Canudas-Romo5

1 School of Demography, RSSS, CASS, The Australian National University. Email: sergey.timonin@anu.edu.au, ORCID ID: 0000-0001-6651-2023.

2 Department of Non-Communicable Disease Epidemiology, The London School of Hygiene & Tropical Medicine. Email: david.leon@lshtm.ac.uk, ORCID ID: 0000-0001-9747-1762.

3 National Centre for Epidemiology and Population Health, The Australian National University. Email: emily.banks@anu.edu.au, ORCID ID: 0000-0002-4617-1302.

4 Nossal Institute for Global Health, Melbourne School of Population and Global Health, The University of Melbourne. Email: timothy.adair@unimelb.edu.au, ORCID ID: 0000-0002-1562-4452.

5 School of Demography, RSSS, CASS, The Australian National University. Email: vladimir.canudas-romo@anu.edu.au, ORCID ID: 0000-0001-6532-0089.

*Correspondence to Sergey Timonin (sergey.timonin@anu.edu.au)
ABSTRACT

Objective
To quantify mortality trends in six high-income English-speaking countries (Australia, Canada, Ireland, New Zealand, UK, USA) - including by age, sex, period, cohort and major cause - and compare them with other high-income countries (HICs).

Design
Period and cohort analysis using population-level demographic data.

Setting
6 high-income Anglophone countries and the average for 14 other HICs.

Participants
All-cause mortality data from the Human Mortality Database (1970-2021) and cause-specific death counts from the WHO Mortality Database (2017-19), disaggregated by sex, age group and major cause of death.

Main outcome measures
Trends in longevity measures (period life expectancy at birth, 0-50 years, and at age 50 years) and lifespan inequality were estimated for 1970-2021. The contribution of causes of death was measured by calculating life-years lost and decomposing differences in life expectancy between each Anglophone country and the average for other HICs in the pre-pandemic period. The impact of differential cohort survival on current differences in longevity was assessed by calculating the gap in truncated cross-sectional average length of life.

Results
Having improved consistently from the 1970s, life expectancy in all English-speaking countries except Ireland stalled in the pre-pandemic decade, mainly due to stagnating or increasing mortality at young-middle ages. Relative to other HICs, those born in Anglophone countries since the 1970s experienced relative mortality disadvantage, largely attributable to injuries, including suicides, substance-related and cardiovascular mortality. In contrast, older cohorts enjoyed advantages for females in Australia and Canada and for males in all Anglophone countries except the USA.

Conclusions
The striking disadvantage of young adults in English-speaking countries relative to other HICs should be seen as an emerging and avoidable threat to efforts to improve health equity. Population health policies should be adapted to meet this challenge. Post-pandemic mortality and life expectancy trends in Anglophone countries require further monitoring.

Key words
English-speaking countries, life expectancy, adverse mortality trends, cohort analysis, injuries and substance-related deaths.
WHAT IS ALREADY KNOWN ON THIS TOPIC

In the decade before the Covid-19 pandemic, many high-income countries (HICs) experienced a slowdown in longevity improvements.

The UK and especially the US have seen some of the most unfavourable trends in life expectancy in recent times.

Socio-economic inequalities and the impact of austerity policies, the high prevalence of obesity and long-term cohort effects of smoking, together with an ongoing epidemic of opioid overdose mortality, are identified as the possible determinants of the adverse mortality trends in individual countries.

WHAT THIS STUDY ADDS

Each of the English-speaking countries, except for men in Ireland, has experienced a marked mortality disadvantage for those under 50 years (born since the early 1970s) relative to the average of other HICs.

In 2017-19, losses in life expectancy at birth due to elevated mortality at younger ages relative to other HICs ranged from 0.15 years for Australian women to 2.06 years for US men.

This contrasts with the generally better performance of the English-speaking countries at older ages, particularly for men.
Introduction

Global life expectancy has shown a dramatic increase over the last century in most high-income countries (HICs) even though these mortality declines have not been universal between and within populations. In the years preceding the Covid-19 pandemic, there were observed slowdowns in longevity improvements or even mortality reversals in some HICs corresponding to warning signs for both longstanding and emerging health problems. The Covid-19 pandemic has had a further dramatic impact on longevity globally including in HICs.

Much of the recent discourse on life expectancy has concentrated on the growing challenge of mortality in old age in rapidly ageing societies. For example, in a set of 18 OECD countries, a comparative study showed a substantial although transient decline in life expectancy in the majority of HICs in 2014-15 which was likely related to a particularly severe influenza season that was predominantly driven by trends at older age. The subsequent Covid-19 pandemic has also had the largest mortality impact on elderly populations in HICs with the exception of Eastern Europe and the USA where the working age adults also experienced serious mortality increase. In addition to the direct and indirect effects of respiratory viruses, weaknesses of health and social care systems including underperforming primary care and disease prevention together with the growing socio-economic disparities within the countries are considered to be the key challenges for further longevity improvements.

The faltering and even reversals in life expectancy in the USA and the UK, the two worst affected high-income countries, are largely, though not exclusively, related to negative mortality trends in midlife. Though the causes of adverse health trends in these two Anglophone countries are rather distinct, one of the similarities is the growing burden of the so-called ‘deaths of despair’ (mortality due to drugs and alcohol, and suicides) which was first considered as a US-specific phenomenon, but was then observed in the UK. Examining the drug overdose mortality in the USA, Ho noticed similar and troubling patterns of drug-related mortality in other English-speaking countries (Australia and Canada) which was further elaborated by Dowd et al. The opioid death crisis in Canada has been highlighted elsewhere. It has also been shown that the USA and Australia have some of the highest adult obesity prevalence rates among high-income countries, which is likely to be a key driver in the recent slowdown or reversal of CVD mortality decline in both countries.

These observations have led us to hypothesise that high-income English-speaking countries, given their closely shared historical, cultural, political and institutional characteristics and connections, may have some common patterns in recent mortality changes and also some fundamental similarities (as well as distinct features) in long-term longevity trends. In this study we aim to examine mortality patterns in six English-speaking countries in comparison with a group of 14 other HICs. Firstly, we examine long-term time trends in life expectancy and lifespan inequality (i.e. variation in age-at-death). Next, we assess the contribution of causes of death to these trends for the most recent pre-pandemic period. Finally, the contribution of differences in cohort survival between English-speaking and 14 other HICs is assessed.
Methods

Study design

Our analysis focuses on six high-income English-speaking countries (Australia, Canada, Ireland, New Zealand, the UK, and the USA) in comparison with an average for 14 other HICs. The comparator group includes high-income, low-mortality countries from Western Europe and Japan (Supplementary Table S1), following a similar approach to others. This is a retrospective cross-country study that employs both period (calendar years) and cohort (birth cohorts) approaches.

Data sources

We used the Human Mortality Database (HMD) for all-cause mortality data and the WHO Mortality Database (WHO MB) for cause-specific death counts. The HMD is a well-established, comprehensive source of high-quality mortality data, ensuring comparability between countries and over time; the WHO MB is a compilation of cause-specific mortality data as reported by the countries from their vital registration systems. The analysis of all-cause mortality was carried out for 1970-2021 (or 2020 if data was not yet available); the cause-of-death analysis was performed for the most recent pre-pandemic period, i.e. 2017-19. The three-year average was used to avoid random fluctuations and to ensure the robustness of our estimates.

All-cause analysis for 1970-2021: period and cohort

We estimated annual life expectancy at birth, between ages 0 and 50, and remaining life expectancy at age 50 for each English-speaking country and the comparator group. Lifespan disparity (e-dagger or e†), which assesses the variation in age-at-death, was used to identify trends associated with the deterioration in mortality at younger ages.

To assess the temporal dynamics of life expectancy at birth, we calculated its mean annual changes for historical periods (1970-90, 1990-2010), pre-pandemic decade (2010-15, 2015-19) and the first year of the pandemic (2019-20). We further decomposed these changes into the contributions of mortality below and above the threshold age of 50 years, and additionally separated the very young ages (from 0 to 4 years).

To explore the long-term differences in cohort survival between Anglophone and other HICs, we calculated the gap in the truncated cross-sectional average of life (TCAL). From a public health perspective, this approach allowed identifying birth cohorts exposed to higher/lower historical mortality.

Cause-of-death analysis for 2017-19

Seven major groups of causes of death were analysed for 2017-19 (Supplementary Table S2). We assessed the age and cause contributions to total life-years lost (LYL) between ages 0 and 95 years for each Anglophone population. We then decomposed the differences in life expectancy at birth between each English-speaking country and the comparator group.
into age- and cause-specific contributions.32 While LYL quantifies the magnitude of cause-of-death burden, the decomposition analysis allowed us to assess the impact of causes of death on the life expectancy gap between Anglophone populations and other HICs.

All data extractions, calculations, analyses and visualisations were performed using R software (version 4.0.2).

Patient and public involvement

We used aggregated demographic data as input and outcome measures to answer the research question. Neither patients nor public were involved in this study.

Results

Long-term trends in life expectancy and lifespan disparity in Anglophone countries

Figure 1 shows the sex-specific trends in life expectancy a) at birth, b) between ages 0 and 50 and c) at age 50 from 1970 to 2021 for English-speaking countries and an average for other HICs. Over the last 50 years, life expectancy at birth has increased substantially in all HICs, though at a different pace (Fig. 1a). The largest overall gain in the pre-pandemic period was for Australian males (13.8 years between 1970 and 2019), while the lowest was for the US females (6.8 years). In the reference group, the increase in life expectancy over the same period was 11.6 and 10.0 years for men and women, respectively. In general, males have seen greater improvements than females, with the sex gap narrowing to 3.7 years in the UK and New Zealand and 5.0 years in the US by 2019 (4.6 years in the comparator group).

Alongside the overall improvements in life expectancy at birth, there has been an increasing divergence between males in Anglophone countries but little change in females. The divergent trends in the group of English-speaking countries have become particularly pronounced since the late 2000s, mainly due to very unfavourable mortality trends in the USA. However, if the USA were excluded, the rest of the English-speaking countries would show strong convergence with each other over the period 2000-15, partly due to the substantial improvements in life expectancy in Ireland. In contrast, convergence trends were observed between the other HICs, particularly in males (Supplementary Fig. S1).

When trends in life expectancy at birth are separated into those at the young-middle (between 0 and 50 years) and older (at 50 years) ages, contrasting patterns emerge (Fig. 1b, c). While the English-speaking countries generally converge with each other and with the comparator group in terms of remaining life expectancy at age 50 (except for both sexes in the USA and for females in the UK), life expectancy trends at young-middle ages have started to diverge from the reference group since the 2010s.

A further comparison of the age-specific trends in life expectancy shows a growing disadvantage below the age of 50 for all Anglophone populations compared to the average for the other HICs. At older ages, the situation is mixed for men and women. While males in all English-speaking countries (except for the USA) perform better than their peers, only females in Australia and Canada enjoy a higher remaining life expectancy at age 50. Supplementary Figure S2 shows the association between life expectancy below and above age 50 for each
English-speaking and other HIC in 2017-19. It further confirms the relative disadvantage of English-speaking countries (except for Ireland) in mortality at young-middle ages.

Figure 2 shows the relationship between trends in average longevity, as measured by life expectancy at birth, and lifespan disparity, which reflects the variation in age at death. In addition to the well-documented increase in lifespan inequality in the USA, other English-speaking countries have recently experienced increases or stagnation in lifespan variation that are much less well documented. Such trends in lifespan disparity point to growing health problems at younger ages in Anglophone populations. In the comparator group, the increase in life expectancy coincides with a further decline in lifespan variation.

Recent stagnation in longevity improvements across the English-speaking countries and diverging trends in 2020

Figure 3 compares the mean annual changes in life expectancy at birth and the contribution of the three age groups (0-4, 5-49, and 50+ years) in recent periods (2010-15, 2015-19, and 2019-20) with the historical periods of 1970-90 and 1990-2010. For each of the Anglophone countries, the smallest gains in life expectancy were recorded in the period between 2010 and 2015 (except for Irish males). In addition, they were smaller than the average for the other HICs. In the period 2015-19, the mean annual increase in life expectancy was higher for all female populations, but remained unchanged or was even lower for males. Only females in Australia and Ireland had greater gains in life expectancy than the comparator group (Supplementary Table S3).

As expected, the contribution of mortality changes in young-middle ages to longevity gains has generally declined over time in all of the populations while the role of older ages has become more important. Importantly, mortality changes between ages 5 and 50 had a negative impact on life expectancy trends in 2010-15 and 2015-19 for the total US population, and in 2015-19 for Canada and New Zealand (males only) and the UK (both sexes).

The first year of the Covid-19 pandemic had a differential impact on life expectancy change in English-speaking countries (Fig 3b). It most affected the populations of the USA, the UK, and Canada, including their young-middle-aged groups. The loss in life expectancy in a group of other HICs was smaller and mainly affected older people. In contrast, the first year of the pandemic had a modest effect on mortality in Ireland and led to a substantial increase in life expectancy in Australia and especially New Zealand.

The contribution of causes of death to the recent pre-pandemic differences in life expectancy

Figure 4 and Supplementary Table S4 show the age- and cause-specific contributions to the total life-years lost (LYL) between ages 0 and 95 in 2017-19 (on average). Neoplasms and CVDs were generally the two largest contributors to the total LYL (~56% depending on the country), with the lowest contribution of 48% for US males and the highest of 61% for Irish males, and other countries in between. Mortality before age 50 accounted for about 15% of female LYL and 20% of male LYL in the Anglophone countries. The corresponding
values for the average for other HICs were 12% and 14%. External causes of death and substance abuse disorders were the main contributors in this age group.

The results of the age- and cause-specific decomposition of the gap in life expectancy at birth between English-speaking countries and the average for other HICs are shown in Figure 5 and Supplementary Table S5. In 2017-19, males and females in Australia had a longevity advantage over the other HICs, as did the male populations of Ireland, New Zealand and Canada. However, mortality before the age of 50 contributed negatively to the gap in life expectancy between each of the English-speaking countries and the comparator group (except for Irish males where the difference was close to zero).

The contribution of causes of death to the differences in life expectancy between the Anglophone populations and other HICs was quite diverse (Figure 5). In general, injuries (including suicides) and substance-related deaths as well as CVD (particularly in males) accounted for most of the losses of life expectancy in English-speaking countries at young-middle ages. For old-aged males, lower mortality from both cardiovascular diseases and cancer were the two main contributors to the life expectancy advantage of some English-speaking countries. For females, only CVD mortality had a real positive impact in Australia and Canada, while higher mortality from cancer, dementia, and respiratory diseases (incl. COPD) increased the longevity disadvantage for the rest Anglophone countries.

The differential survival of cohorts and its contribution to the current gap in the truncated cross-sectional average length of life (TCAL).

Differences in cohort survival from 1970 to 2019 between the English-speaking countries and the comparator group are shown in Figure 6. Strong positive cohort effects can be observed for males born in the 1930-40s in Australia and Canada, and for those born around the 1950s in Ireland and the UK. For females, on the contrary, there are strong negative cohort survival effects in Ireland, New Zealand, and the UK, and somewhat weaker effects in Canada (~1930s birth cohorts). In the USA, there has been a growing disadvantage for all cohorts in both sexes, except for the very old populations born in the 1930s.

The red triangles in the bottom right-hand corner of each plot in Figure 6 show the growing disadvantage at young-middle ages observed in the period analysis (Figures 1-5). In each of the English-speaking countries, we observe that the male cohorts born after the 1970s are having a higher mortality than the comparator group. For females, the pattern is quite similar but not as pronounced as for males.

Discussion

Our analysis has uncovered several important aspects of mortality patterns and trends in high-income English-speaking countries compared to other HICs. First, in the decade before the pandemic, most HICs experienced a slowdown in mortality decline, which was particularly marked in English-speaking countries. Anglophone populations (except for Ireland) had a smaller increase in life expectancy in 2010-19 compared with the average for other HICs and also with the trends observed in previous decades. This was largely the result of lessening improvements or even increases (in the USA in 2010-19, and in Canada, the UK
and New Zealand (males only) in 2015-19) in mortality at ages below 50 years. Second, these adverse mortality trends in Anglophone countries have resulted in negative contribution of the under-50 age group to the overall life expectancy gap with the comparator group in 2017-19. The observed health disadvantage of English-speaking countries at this age was mainly due to mortality from injuries (including suicides), substance abuse disorders and cardiovascular diseases. Third, cohort analysis has shown that males born in English-speaking countries since the 1970s have had lower survival rates than the average of the peers. In contrast, older male cohorts have enjoyed lower mortality (except for the USA). For females, with the exception of Australia and Canada at older ages, survival has been lower in English-speaking countries than in other HICs over the whole range of ages and birth cohorts.

To our knowledge, this is the first comparative study examining longevity patterns in a group of high-income English-speaking countries from both a period and a cohort perspective. We have found some key similarities in mortality levels and trends in these populations compared with the average for other HICs. The relative mortality disadvantage of each Anglophone countries (except for Irish males) at young-middle ages is probably the most striking and essential observation. Another common feature is that, compared to the average of the peers, males in Anglophone countries generally performed better than females in terms of the gap in life expectancy at birth. On the contrast, the negative contribution of the ages below 50 years to the overall life expectancy gap was larger for males than for females.

The cause-of-death analyses used in this study allowed us to determine the contribution of the main causes of death to the total number of life-years lost in each English-speaking country and to the gap in life expectancy at birth between Anglophone populations and the comparator group in the recent pre-pandemic period. External causes of death and substance use disorders were found to be the largest contributors to the loss of life expectancy between the ages of 5 and 50 years in all English-speaking countries. Higher mortality from CVD (particularly in males) as well as from neoplasms and respiratory diseases in the female populations of New Zealand and the UK also played an important role at these ages.

The better performance of Anglophone male populations at older ages (except for the USA and the UK) was mainly due to lower mortality from cancer and cardiovascular diseases. In females, higher mortality from cancer, respiratory diseases and dementia reduced life expectancy in the English-speaking countries compared to the average for the other HICs (except for Australia and partly Canada). Cardiovascular mortality, however, was lower in the female populations of Anglophone countries than in the comparator group (except for the USA and New Zealand). The generally poorer health of the Anglophone women at older ages is likely to be related to the higher prevalence of smoking in the past.

It is also important to note that this group of English-speaking countries is quite heterogeneous, with a clear leader and a laggard in longevity improvements. In 2017-19, Australia enjoyed the highest life expectancy at birth, which was 4.7 and 3.8 years higher than in the USA (for males and females, respectively). These two countries took their leading and lagging positions in the early 2000s. The positions of other English-speaking countries were in between, and varied by time and sex.

Comparison with previous literature
A large number of previous studies have reported stalls in improvement or increases in mortality in the USA2,16,33,34 and the UK13,17,35 and in the years preceding the Covid-19 pandemic. Most of these studies, particularly those on the United States, have highlighted the crucial role played by adverse trends in mortality among young and middle-aged adults, mainly due to drug overdoses, alcohol-related causes, suicides and cardiometabolic diseases. The most recent study of midlife mortality trends (2001-19) from "deaths of despair" in the USA, Canada and the UK found substantial increases in drug-related mortality in these countries, particularly in the USA and Scotland.21 Trends in alcohol-related and suicide mortality were less negative and less consistent across countries. Two studies on Australia have also shown a slowdown in longevity improvements since 2003, mainly because the decline in mortality from cardiovascular disease and cancer has slowed.6,23 In contrast, Ireland has seen accelerated improvements in mortality rates, with large reductions in mortality from cardiovascular and respiratory diseases, particularly among older people.36

The results of our study are consistent with these previous observations of a plateauing of life expectancy in some of the English-speaking countries. They are also in a line with earlier observations of slowing mortality improvements in a larger number of high-income/OECD countries,3,5 and with negative trends in drug overdose mortality in some of the English-speaking countries.20–22 However, our study went further by dissecting a group of English-speaking countries from various angles, rather than just looking at individual populations or the whole range of high-income countries. These countries not only share a common language, but also have deep historical, cultural, political and institutional connections. Even if the USA still looks like an anomaly among rich countries (in terms of adverse mortality trends), the other high-income countries, and especially the Anglophone ones, are not guaranteed to be immune to this American disease.37

Strengths and limitations

In addition to using the most reliable, carefully harmonised and validated mortality data, the main strength of our study was the use of both period and cohort methods to provide a comprehensive analysis of both recent and long-term trends in mortality. We used traditional and widely accepted measures of longevity such as life expectancy at different ages as well as more novel metrics, such as lifespan inequality, life-years lost and truncated cross-sectional length of life, to address the research question. Rather than focusing on a single country, we looked at a group of high-income English-speaking countries, which allowed us to identify striking similarities between them, as well as natural differences. While we did not aim to provide a comprehensive analysis of the potential factors that might explain the observed slowdown in longevity improvements, this paper examined a previously overlooked mortality disadvantage of all high-income English-speaking countries at young-middle ages through the lens of period and cohort analysis.

Our study inevitably has some limitations. Much of our analysis is based on a comparison with the average of 14 other HICs. The peer group is not homogeneous and there is of course some variation between the comparator countries. However, Supplementary Figure S2 confirms that the main conclusions based on the comparison with the average values are generally consistent when looking at individual countries. Although our study included countries with high-quality mortality statistics, the cause-of-death comparisons may
be subject to some inconsistencies related to differences in coding practices across countries.\(^3\) To minimise these potential discrepancies, we used large groups of causes of death and redistributed unknown and ill-defined causes. Rather than analysing time trends in cause-specific mortality, we focused only on assessing the contribution of causes of death to life-years lost and the gap in life expectancy between Anglophone and other HICs in the most recent pre-pandemic period. However, it may be important in the future to examine time trends in cause-specific mortality. Finally, we deliberately didn't focus much on trends during the COVID-19 pandemic because, as briefly shown in our paper and elsewhere, the pandemic had a differential impact on HICs.\(^9,39,40\) We believe that including the pandemic in our analysis would add an additional layer of complexity and obscure the main findings.

Conclusions

Although future gains in life expectancy in high longevity societies will increasingly depend on reducing mortality in old age, patterns of mortality in young and middle-aged adults are a cause for concern. The persistence or increase in mortality at these ages may also be an important indicator of other non-fatal health problems, including mental disorders, and requires further investigation. Detailed causes-specific analysis (including multiple causes of death) and examination of socioeconomic inequalities in health in the English-speaking countries are likely to shed further light on some of these issues. There is scope for the English-speaking countries to improve the health of their younger populations and to halt the widening gap in mortality with the other HICs.
Contributors: S.T. and V.C-R. conceived the study. S.T. collected, pre-processed and validated the data. S.T. carried out the statistical analyses with support from V.C-R. S.T. wrote the first draft. All the authors provided critical feedback on the manuscript, contributed to subsequent versions, and to the interpretation of the data and results. All the authors reviewed and approved the final version of the manuscript. S.T. and V.C-R. are the guarantors.

Funding: V.C-R. and S.T. acknowledge support from the Australian Research Council (DP210100401). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Competing interests: The authors declare no conflicting interests.

Ethical approval: Not required.

Data sharing: The raw data originated from the publicly available sources listed in the references. The analytical codes used to perform the statistical analysis, as well as instructions on how to access the data, can be obtained on request to the corresponding author at sergey.timonin@anu.edu.au.
References

26. HMD. Human Mortality Database. Max Planck Institute for Demographic Research (Germany), University of California, Berkeley (USA), and French Institute for Demographic Studies (France). www.mortality.org. (2023).

Figure 1. Time trends in life expectancies at different agesa across English-speaking countries and the mean for other HICs, by sex, 1970-2021b.

Note: a life expectancy at birth is the sum of life expectancies between ages 0 and 50, and remaining life expectancy at age 50 multiplied by the probability of surviving up to age 50 (Supplementary Methods); b HMD, used as the primary data source for the calculations, does not contain the data for 2021 for approximately half of the countries yet (Supplementary Table S1 for more information on data availability).
Figure 2. Associations between changes in average longevity levels (measured by life expectancy at birth) and variation in ages at death (captured by the lifespan disparity metric), across English-speaking countries and the mean for other HICs, by sex, 1970–2021.

Note: a HMD, used as the primary data source for the calculations, does not contain the data for 2021 for approximately half of the countries yet (Supplementary Table S1 for more information on data availability).
Figure 3. Age-specific contributions to the mean annual changes in life expectancy at birth in three pre-pandemic periods (1970-2010, 2010-15, and 2015-19) and the first year of the pandemic (2019-20), across English-speaking countries and the mean for other HICs, by sex.

Note: Positive values correspond to age groups aiding in life expectancy increase, while negative values oppose the growth in this measure. The corresponding values are presented in Supplementary Table S3.
Figure 4. Age- and cause-specific contributions to the total life-years lost (LYL) between ages 0 and 95 years across English-speaking countries, by sex, average for 2017-19.

Note: Total LYL equals the difference of 95 years and truncated life expectancy between 0 and 95. Values at age x correspond to the share of LYL by age and cause. Although few deaths happen at very young ages in high-income countries, their accumulation (from age x to 95) is substantial as the wide base in the first age group shows. The corresponding values are presented in Supplementary Table S4.
Figure 5. Age- and cause-specific contributions to the gap in life expectancy at birth between each of the English-speaking countries and the mean for other HICs, 2017-19, by sex.

Note: positive values correspond to ages and causes that contribute to higher life expectancy in English-speaking countries compared to HICs; negative values contribute to lower than HICs life expectancy.

The corresponding values (for each cause of death and broad age intervals) are presented in Supplementary Table S5.
Figure 6. Cumulative differences in cohort survival between each of the English-speaking countries and the mean for other HICs, by sex, from 1970 to 2019.

Note: positive values correspond to higher cohort survival in English-speaking countries while negative values favour the HICs counterparts. The black diagonal lines indicate different birth cohorts born in 1910, 1930, 1950, 1970, 1990, and 2010.