Genome-wide risk prediction of primary open-angle glaucoma across multiple ancestries

Puya Gharahkhani1, Weixiong He1, Xikun Han1, Jue Sheng Ong1, Miguel E Rentería1, Janey L Wiggs2, Anthony P Khawaja3, Maciej Trzaskowski4, David A. Mackey5, Jamie E. Craig6, Alex W. Hewitt7, IGGC International Glaucoma Genetics Consortium, Stuart MacGregor1*, Yeda Wu1*

1QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4029, Australia
2Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
3NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
4Max Kelsen, Brisbane, QLD, Australia.
5University of Western Australia Centre for Ophthalmology and Visual Science, Perth, WA, Australia.
6Flinders University, Adelaide, SA, Australia.
7University of Tasmania, Hobart, TAS, Australia.
*Correspondence to Yeda Wu (yeda.wu@uq.net.au) and Stuart MacGregor (Stuart.MacGregor@qimrberghofer.edu.au)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background
Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide. The disease is often only diagnosed after retinal ganglion cell damage has occurred, with current treatments unable to restore lost vision. Developing risk identification tools for POAG will help enable timely diagnosis and prevent irreparable damage from occurring, especially for ancestry groups (such as African (AFR)) where the disease prevalence is high. Given the heritable nature of POAG, we aim to develop a polygenic score (PGS), which could facilitate earlier POAG risk detection for timely prevention and diagnosis.

Methods
We applied a multi-ancestry multi-trait approach to build powerful PGS for POAG. We first integrated the new and existing genetics data on POAG and two key endophenotypes, intraocular pressure (IOP) and vertical cup-to-disc ratio (VCDR). We then leveraged the shared POAG genetic information across European (EUR), AFR and Asian ancestries and between POAG and each of IOP and VCDR to develop PGS for POAG risk prediction. We systematically assessed the PGS prediction power and risk stratification ability in POAG cohorts of different ancestries.

Results
Our newly developed PGS showed improved accuracy compared to previous PGS for POAG risk prediction in EUR ancestry. We showed the transferability of PGS based on EUR ancestry in the prediction of POAG status in AFR and Asian ancestries. Utilizing the shared genetic information across ancestries further improved PGS prediction power for POAG in AFR and East Asian (EAS). For individuals with South Asian ancestry, those in the top PGS decile were diagnosed ~18 years earlier than those in the bottom decile. For AFR ancestry, individuals in the top percentile had an odds ratio of 4.08 (95% CI: 2.33-7.45) compared with the remainder of the population using the newly developed AFR-specific PGS.

Conclusions
In the current study, we developed PGS for POAG risk prediction in EUR, Asian and AFR populations. These PGS, to our best knowledge, are the most powerful PGS currently for POAG risk screening and stratification. We believe that our study will lead to improved POAG detection across diverse populations in the future by enabling targeting clinical screening of people at high levels of genetic risk.

Keywords
Primary Open Angle Glaucoma, UK Biobank, Canadian Longitudinal Study of Aging (CLSA), Multi-trait Analysis of GWAS, Prediction
INTRODUCTION

Glaucoma is a heterogeneous group of diseases characterized by cupping of the optic nerve head and visual-field damage\(^1\). The estimated global prevalence of glaucoma for those aged 40-80 years is 3.5%\(^2\). It has become the most frequent cause of irreversible blindness worldwide\(^1\). The number of people aged 40-80 years and affected by glaucoma worldwide is predicted to increase, from the estimated 64.3 million in 2013 to 112 million in 2040\(^2\). Primary open-angle glaucoma (POAG) is the most common subtype and is more prevalent in Africans (AFR) and Europeans (EUR) with a global prevalence of 3.1% for those aged 40-80 years\(^2,3\). POAG is characterized by an open iridocorneal angle and abnormal cupping of the optic nerve head with the corresponding loss of visual field and no other underlying disease\(^4\). Elevated intraocular pressure (IOP) is an important risk factor and is considered a causative factor even though POAG can occur without an elevated IOP\(^4,5\).

The diagnosis of POAG involves multiple assessments of clinical features and the mainstay is the optic nerve head examination with neuro-retinal rim loss indexed by an increased vertical cup to disc ratio (VCDR)\(^1,6\). Once the diagnosis is made, the general treatment is to lower IOP through drug, laser therapy or surgery, reducing the risk of or slowing glaucomatous optic neuropathy progression. However, given the asymptomatic nature of POAG in the early stages, patients often get diagnosed at later stages of POAG when the lost vision cannot be restored by current treatments. It has been estimated that a large proportion of patients with glaucoma remain undiagnosed\(^7,8\). Hence, earlier detection of POAG is crucial. Screening of POAG in the entire population is currently not recommended given the time, cost, and precision of diagnostic measures. However, given the high heritability of POAG, sufficiently accurate polygenic scores (PGS) have the potential to make screening more feasible by adding an additional layer of risk stratification\(^9\).

Utilizing information from the genetic relationship between POAG and each of IOP and VCDR, we previously developed a POAG PGS, which enables effective risk stratification in random samples\(^10\). However, both the discovery cohorts for obtaining genetic variants effect sizes and the target cohorts for PGS calculation and prediction were mainly of EUR ancestry\(^10\). Previous work has shown that EUR-based PGS across multiple traits has greatly reduced (78%) predictive performance in AFR relative to EUR ancestry\(^11\). Moreover, PGS based on non-EUR ancestries are less well developed than those based on EUR ancestry because cohorts of non-EUR ancestry are relatively small\(^12\). The uncertainty about the utility of PGS in non-Europeans is particularly problematic given that POAG prevalence is higher in populations with AFR ancestry than in those with EUR ancestry\(^3\). Therefore there is an urgent need to develop genetics-based risk prediction tools that work across a range of ancestries.

Here we integrate new and existing data to assemble a multiple ancestry training set for a new POAG PGS. Although the sample sizes for the non-EUR ancestry discovery cohorts are much smaller than those of EUR ancestries, we derived PGS by combining genetic information across ancestries, an approach that has previously shown to improve accuracy for other complex traits by leveraging shared genetic correlation across ancestries\(^13\). Our first aim was to leverage the increased sample size to develop a PGS with improved prediction performance in EUR. Secondly, we systematically assessed the predictive
accuracy of the newly derived PGS in SAS, EAS and AFR ancestries. We compared the prediction accuracy of these PGS derived from combined ancestries with PGS derived from single ancestry and further characterized the risk stratification ability for PGS with the highest prediction accuracy in non-EUR ancestries.

METHODS

Study design

A schematic plot showing our study design is in Fig. 1. Our study derived POAG PGS and investigated the within-ancestry and cross-ancestry prediction accuracy of the PGS. We first conducted a single-trait GWAS meta-analysis for POAG using different EUR ancestry-based cohorts and obtained the summary statistics. Previous studies have suggested that utilizing information from genetically correlated traits could improve the prediction accuracy of focal trait-derived PGS. Intraocular pressure (IOP) and vertical cup-to-disk ratio (VCDR) are two key endophenotypes of POAG and are known to be genetically correlated with POAG. Hence we also obtained EUR ancestry-based GWAS meta-analysis summary statistics for IOP and VCDR respectively and then performed a multi-trait GWAS meta-analysis, taking POAG as the focal trait and leveraging the genetic correlation of IOP and VCDR to produce an effect size estimate for each SNP on POAG risk.

Using the multi-trait-based POAG summary statistics, we further applied different methods to derive PGS in multiple independent cohorts of EUR, EAS, SAS, and AFR ancestry. We systematically assessed the prediction accuracy of POAG PGS in these cohorts and selected the PGS with the best prediction performance for each ancestry. Considering the higher prevalence of POAG in AFR ancestry, we also used the selected PGS to conduct risk stratification analyses in other independent cohorts with matched ancestry to show the future clinical utility of PGS. The workflow plot of this study is in Fig. S1.

Multi-ancestry discovery cohorts

Data from multiple discovery cohorts were used for single-trait and multi-trait GWAS meta-analyses. Table S1 gives a summary of all the discovery cohorts. Descriptive information of these cohorts is as follows:

The United Kingdom Biobank (UKB)

Approved by the North West Multi-centre Research Ethics Service Committee, the UKB (https://www.ukbiobank.ac.uk/) cohort is a population-based longitudinal study with deep genetic and phenotypic data collected on ~500,000 individuals. The informed consent was obtained from each of the UKB participants. Genotype data from UKB participants were obtained from genotyping arrays and further imputed using the Haplotype Reference Consortium (HRC) and UK10K as the reference sample. Details about the study and quality control (QC) are described in Bycroft et al. To be consistent with our previous study, we applied the same procedure to include 438,614 participants of genetically defined “white-British” ancestry (Accessed date: 2021 Sep). For identifying individuals of non-EUR ancestries, UKB participants were projected onto the genetic principal components (PCs) 1-20 calculated using HapMap3 SNPs in 1KGP individuals. The ancestry of UKB participants was predicted based on the 1KGP individual
information and R package "randomForest". A total of 10,375 individuals with South Asian (SAS) ancestry, 2,539 individuals with East Asian (EAS) ancestry, and 9,282 individuals with AFR ancestry were identified.

We generated the broad definition of primary open-angle glaucoma (POAG) using a combination of several UKB data fields (Accessed date: 2021 Sep). Using the ICD10 diagnoses (data field: 41270), individuals with records H401 (primary open-angle glaucoma), H408 (other glaucoma), and H409 (glaucoma, unspecified) were assigned as cases. Using the data field 131187, individuals with a primary care record (UKB data coding: 30, 31) were assigned as cases. Those self-reported with a glaucoma status (data field: 20002 and data coding: 1277) were also assigned a case status. Individuals were asked if they have specific eye problems (data field: 6148) and those who reported glaucoma (UKB data coding: 2) were also assigned as cases. For controls, we used the same 6148 data field, and those who reported none of the specific eye problems in that data filed at the first instance were assigned as controls. However, given that individuals who reported none of the specific eye problems at first instance may still develop eye disease diagnoses, we further removed individuals who reported eye disease diagnoses using other instances of that field and individuals with a case status across all eye and adnexa disorders using data filed 131129-131221. Finally, there were a total of 15,431 cases and 80,044 controls of white-British ancestry. Case-control GWAS analyses were conducted using BOLT-LMM (v2.3.4) with sex, age and 20 PCs fitted as covariates. 368,802 single nucleotide polymorphisms (SNPs) were used as model SNPs to control for population structure and polygenic effects, including genetic relatedness between individuals.

The effect size for SNPs from BOLT-LMM on the observed 0-1 scale were transformed to the odds ratio (OR) using the following equation:

$$OR = \frac{(k+\beta(1-p)) \times (1-k+\beta p)}{(k-\beta p) \times (1-k-\beta(1-p))}$$

where k is the proportion of the sample that are cases, and p is the allele frequency in the UKB EUR ancestry. The standard errors ($s.e.$) for OR were then calculated based on the OR and P value from the initial GWAS using the formula $s.e. = \left| \ln(OR) \right| \phi^{-1}(0.5)$ for SNPs with minor allele frequency (MAF) ≥ 0.01 were analysed.

We also used the previously published UKB IOP and VCDR GWAS summary statistics. Briefly, IOP information was obtained based on corneal-compensated measurements. Association analyses between the genotype and IOP phenotype of 103,914 white-British-ancestry individuals were performed using BOLT-LMM (v2.3.4), with sex, age and genetic principal components 1-10 fitted as covariates. VCDR and vertical disc diameter (VDD) measurements of the optic nerve head were derived based on ~70,000 fundus images and a convolutional neural network model trained on clinical assessments. The derived VCDR measurements and genotype information of 68,240 participants of white-British ancestry were used for association analyses. Sex, age and principal components 1-10 and the derived VDD measurements were included as covariates. Details about data QC and analysis settings are provided in ref.

The Canadian Longitudinal Study on Aging (CLSA)

CLSA (https://www.clsa-elcv.ca/) is a national longitudinal cohort study of 51,338 participants across ten provinces in Canada. Baseline data collection was completed in 2015 and participants were followed-up every 3 years. Participants were genotyped using the Affymetrix Axiom array and the obtained genotype
data were further imputed using the HRC data as a reference. Details about the study design and quality control are provided on the CLSA website. In this study, we used the genotype data of 19,669 participants for glaucoma GWAS analyses (2020 Mar). The glaucoma status of participants was collected during in-person interviews. Individuals who answered “yes” to the question “Has a doctor ever told you that you have glaucoma?” were assigned as cases and the remaining individuals were assigned as controls. 1,358 cases and 16,455 controls of EUR ancestry were used for the GWAS analysis. We used REGENIE (v1.0.6.2) to perform Firth logistic regression analyses, fitting age, sex and principal components 1-10 as covariates. SNPs with MAF ≥ 0.01 with EUR ancestry were used.

IOP measurements were available for both baseline and follow-up visits on the left and right eyes. After removing individuals with recorded IOP of < 5 mm Hg or > 60 mm Hg, we further averaged the values across the left and right eye of multiple measurements for each individual. A total of 18,421 individuals of EUR ancestry were retained and BOLT-LMM (v2.3.4) were used to conduct linear mixed model association analyses fitting sex, age, and principal components 1-10 as covariates.

The VCDR GWAS summary statistics from the CLSA cohort were published previously.106,330 retinal fundus images from 29,635 individuals were obtained using a Topcon non-mydriatic retinal camera during the onsite visits. VCDR and VDD information based on these fundus images were derived using the same convolutional neural network model as used in UKB. 18,304 individuals of EUR ancestry with both genetic data and the derived VCDR information were included in the BOLT-LMM(v2.3.4) linear mixed model association analyses, fitting VDD, sex, age, and principal components 1-10 as covariates. More details are in ref21.

The Mass General Brigham Biobank (MGBB)

MGBB (https://biobank.massgeneralbrigham.org/, formerly named Partners Biobank) collected both blood samples and electronic health records from consented patients of Mass General Brigham hospitals for research purpose24. Given our focus on POAG, 1,415 individuals with glaucoma diagnosis from their electronic health records were assigned as cases and 18,632 individuals without a glaucoma diagnosis record were assigned as controls. These individuals were genotyped using Illumina Multi-Ethnic Global Array. Imputation was performed using the HRC (r1.1) reference panel on the Michigan Imputation Server after QC procedures25. We conducted association analyses using PLINK (v2.0) on the imputed genotype data of the remaining EUR ancestry-based individuals after QC. Logistic regression models were applied with genotype batches, age, sex, and genetic principal components as covariates.

The International Glaucoma Genetics Consortium (IGGC)

We used the GWAS meta-analyses summary statistics for POAG from the IGGC13, which is based on 15,229 individuals with POAG diagnoses and 177,473 controls of EUR ancestry that are independent of the UKB samples. We also included the UKB sample-excluded POAG GWAS summary statistics of Asian ancestry (6,935 cases and 39,588 controls) and AFR ancestry (3,281 cases and 2,791 controls). Details regarding the quality control and association analyses of each study contributing to the meta-analyses are provided in Gharahkhani et al.13. In addition to the POAG GWAS summary statistics, we also used VCDR and IOP GWAS summary statistics based on 25,180 and 31,269 individuals of EUR ancestry27.
GWAS meta-analysis

Multi-trait analysis of GWAS (MTAG, v1.0.8) is a software program that leverages the genetic correlation across different GWAS summary statistics of one or multiple traits, to perform inverse-variance-weighted meta-analysis while accounting for sample overlap15. Through joint analysis of multiple GWAS summary statistics, MTAG boosts the statistical power for polygenic score prediction. Two-stage meta-analysis was performed in our study. We first conducted a single-trait meta-analysis for each of POAG, IOP, and VCDR separately using MTAG and the GWAS summary statistics mentioned above. After obtaining the meta-analysis summary statistics for each of POAG, IOP and VCDR GWAS, we further conducted a cross-trait meta-analysis using MTAG and obtained the final multi-trait-based POAG summary statistics. 7,257,750 SNP with MAF ≥ 0.01 were retained in our analyses.

Methods for PGS construction

We applied different methods and meta-analysis summary statistics as discovery data to derive SNP weights, given our different purposes. For validation of the multi-trait approach to boost polygenic prediction power, we used a p-value-based clumping and thresholding method (P+T), together with single-trait-based meta-analysis summary statistics of each of POAG, IOP and VCDR. For prediction accuracy comparison between current and previous multi-trait-based POAG summary statistics of EUR ancestry, we also used the P+T method. For prediction accuracy comparison across different methods, we used the P+T, LDpred28 and SBayes29, together with the current multi-trait-based POAG summary statistics of EUR ancestry as discovery data. For non-EUR ancestry prediction, we used the P+T and PRS-CSx methods, together with current multi-trait-based POAG summary statistics of EUR ancestry and IGGC POAG GWAS summary statistics of Asian and AFR ancestry as discovery data. A brief description of these methods, including parameter settings, is as follows. Unless specified otherwise, we used PLINK (v1.9)26 to calculate the PGS of individuals in the target cohorts, together with the SNP weights obtained from different methods.

P-value-based clumping and thresholding (P+T)

SNPs from the discovery GWAS summary statistics were first matched with SNPs from QC-ed target genotype data. To identify independent SNPs at different association p-value thresholds, we conducted GCTA-COJO analyses (--cojo-slct)30. We selected 5 p-value thresholds, including 5e-8, 1e-5, 5e-5, 1e-4, and 1e-3. A random-sampled 4,990 unrelated individuals of white-British ancestry from UKB were used as linkage disequilibrium (LD) reference. For the identified independent SNPs of each of the 5 p-value thresholds, we further extracted the SNP weights and corresponding allele information from discovery GWAS summary statistics for PGS calculation.

LDpred2

LDpred2 infers the posterior mean effect size of each SNP while conditioning on the SNP effect size estimates of other LD correlated SNPs26. The random-sampled 4,990 unrelated individuals of EUR ancestry from UKB were used as linkage disequilibrium (LD) reference. We applied ldpred2-auto, ldpred2-grid and ldpred2-inf models to estimate the SNP weights. For ldpred2-grid, we presented the PGS with the highest prediction accuracy in the target cohort.
SBayesR
SBayesR re-scales the GWAS SNP effect estimates based on Bayesian multiple regression. The banded LD matrix downloaded from https://cnsgenomics.com/software/gctb/#Download was used as the LD reference. We set the total number of iterations in MCMC as 25000 and the number of iterations to be discarded as 5000. Other parameters were set as default.

PRS-CSx
PRS-CSx estimates posterior SNP effect sizes using coupled continuous shrinkage priors across different populations to improve cross-ancestry prediction accuracy. We used the pre-computed UKB LD reference panel from https://github.com/getian107/PRScsx. We set the global shrinkage parameter phi as 0.01 given the polygenicity of glaucoma. Other parameters were set as default.

Target cohorts for PGS calculation and prediction
We calculated and assessed the PGS prediction accuracy in a range of target cohorts, which are independent of discovery cohorts used for SNP weights derivation. Table S2 gives a summary of target cohorts used for PGS calculation and prediction. To conduct within-ancestry prediction analyses, we used the QSkin Sun and Health Study as the target cohort to calculate PGS based on the discovery data of EUR ancestry. To conduct cross-ancestry prediction analyses, we used UKB individuals of SAS, EAS, and AFR ancestry, as the target cohort. To assess the risk stratification ability for PGS derived using discovery data of EUR and non-EUR ancestry, we used UKB individuals of SAS ancestry, the African Descent and Glaucoma Evaluation Study, and The Primary Open-Angle African Ancestry Glaucoma Genetics Study.

The QSkin Sun and Health Study (QSkin)
QSkin is a Queensland, Australia-based cohort study with a particular focus on skin-related traits. It also contains other health information reported by the participants as well as linked health record data. We used QC-ed genotype information from 15,725 individuals of EUR ancestry to calculate POAG PGS; 61 individuals self-reported as glaucoma, with the remainder set as controls.

The United Kingdom Biobank (UKB)
The description of UKB, including genotype and phenotype QC process, is mentioned above. Here, we used individuals of SAS, EAS, and AFR ancestry as target cohorts for prediction. The POAG case identification criteria for these ancestries are the same as those of EUR ancestry in the above section. In summary, a total of 453 cases and 9,922 controls of SAS ancestry, 69 cases and 2,470 controls of EAS ancestry, and 581 cases and 8,701 controls of AFR ancestry were used for cross-ancestry prediction analyses.

The African Descent and Glaucoma Evaluation Study (ADAGES)
ADAGES is a prospective and multi-centre observational cohort containing genotype and glaucoma-related phenotype information of participants of AFR (mainly) and EUR ancestry. The genetic ancestry identification process was the same as those of UKB and the QC-ed genotype data were imputed using TOPMed Imputation Server. A total of 1,972 individuals of AFR ancestry (including 176 examined glaucoma cases), together with SNPs with MAF ≥ 0.01, were used to validate the PGS.
The Primary Open-Angle African Ancestry Glaucoma Genetics Study (POAAGG)

The POAAGG study aims to investigate the genetic architecture of POAG in African Americans. We applied the same procedures as in UKB to identify individuals of AFR ancestry. After genotype and phenotype QC, a total of 1,933 POAG cases and 3,190 controls, together with SNPs with MAF ≥ 0.01, were used to validate the PGS.

Assessment metrics

We applied several metrics to assess the prediction accuracy and risk stratification ability for PGS in target cohorts in a similar fashion to a previous study. 1) The P-value of the case-control PGS difference was calculated by logistic regression. 2) The proportion of variance explained (R^2) on the liability scale was estimated by a comparison of different full models (“Phenotype ~ PGS + Covariates” or “Phenotype ~ PGS”) with a null model (“Phenotype ~ 1”). 3) Area under the receiver operator characteristic curve using R package pROC, which can be interpreted as the probability of ranking a randomly chosen case higher than a randomly chosen control. 4) Odds ratio of individuals from high PGS definition against reference group in a logistic regression model. PGS or the predicted value based on the PGS combination model was discretized into deciles or percentiles (1^{st} = lowest and 10^{th} = highest or 1^{st} = lowest and 100^{th} = highest) and we used different high PGS definitions and reference groups to assess the risk stratification ability of PGS. 5) Proportion of POAG cases in each PGS decile or percentile. 6) We considered POAG age of onset and compared the cumulative risk between the 1^{st} decile and 10^{th} decile using Kaplan-Meier in combination with the Log-rank test and Cox-hazard proportional model separately.

RESULTS

PGS validation in the European ancestry cohort

The QSkin Sun and Health Study (abbreviated as QSkin) cohort, which is based on EUR ancestry and independent of the cohorts for obtaining discovery GWAS summary statistics, was used to validate the PGS. We first derived multiple PGS using the p-value-based clumping and thresholding (P+T) method, together with genotype data of QSkin participants and different GWAS summary statistics. Multiple p-value thresholds were set. We then tested the prediction power of these derived PGS using the self-reported glaucoma status from the QSkin phenotype data.

To first validate our multi-trait PGS derivation approach, we calculated the prediction accuracy of PGS derived from either multi-trait-based POAG summary statistics or single-trait-based summary statistics for POAG, IOP, and VCDR. As can be seen in Fig. S2 and Table S3, the PGS derived from multi-trait summary statistics is more powerful, providing evidence for validation of our approach. We previously published multi-trait-based POAG summary statistics using a similar approach, and to compare the prediction accuracy of PGS derived from the current study and previous study, we repeated our prediction analyses. As shown in Fig. 2 and Table S4, the PGS derived from the current study showed small-to-moderate improvement across 5 p-value thresholds (5E-8, 1E-5, 5E-5, 1E-4, and 1E-3) using both AUC and liability scale R^2 as metrics. Given the difference in the total number of SNPs between the previous and current multi-trait summary statistics, we restricted the two summary statistics to the overlapped SNPs and repeated our analysis. The results were similar to those in Table S4. (Fig. S3, Table S5). In addition to the
prediction accuracy comparison of PGS derived under the same P+T method but using different discovery summary statistics, we also calculated the prediction accuracy of PGS derived using current multi-trait-based POAG summary statistics but other methods, including LDpred2 (-inf, -auto and -grid model) and SbayesR. As can be seen in Fig. 2, PGS constructed based on the P+T 5E-5, 1E-4, and LDpred2-grid model showed similar prediction accuracy in our analyses. Taking AUC as the primary assessment metric, the P+T method with p-value 5E-5 showed the highest prediction accuracy (area under the curve (AUC): 0.737, 95% confidence interval (CI): 0.679 – 0.796), though the confidence interval (CI) overlapped with those from P+T method with p-value 1E-4 and LDpred2-grid (Fig. 2 and S4a). Using the PGS derived from the P+T method with a p-value of 5E-5, we compared the PGS means for POAG cases and controls and the means are significantly different (P = 2.2E-10, Fig. S4b).

Transferability of PGS from European to other ancestries

To investigate whether the current multi-trait EUR ancestry PGS can predict POAG status in other ancestries, we derived PGS using the P+T method for individuals of SAS, EAS, and AFR ancestry in UKB with the above p-value settings. We tested the predictability of the PGS in POAG status within each ancestry group. The derived PGS statistically significantly predicted the POAG status across these three ancestries (Table S6), implying there are shared genetic components for POAG across ancestries. As presented in Fig. 3, PGS constructed based on EUR ancestry is more predictive of POAG status in SAS and EAS ancestry than AFR ancestry, with a median AUC of 0.6377 for SAS, 0.6158 for EAS, and 0.5707 for AFR; this is consistent with previous studies, where accuracy decreases with the genetic distance between ancestries in UKB. Results of the PGS prediction accuracy in each of SAS, EAS, and AFR of UKB are provided in Table S6.

Joint analyses of multi-ancestry GWAS summary statistics improve prediction accuracy

In addition to investigating cross-ancestry prediction, i.e., PGS derived from EUR-ancestry POAG summary statistics to predict POAG status in other ancestries, we also conducted within-ancestry PGS prediction analyses in each of EAS and AFR ancestry given the availability of POAG GWAS summary statistics of EAS and AFR ancestry. These GWAS summary statistics were conducted using a much smaller sample size compared with multi-trait-based POAG summary statistics of EUR ancestry, with 46,523 (6,935 cases) for EAS and 6,072 (3,281 cases) for AFR from IGGC. As shown in Fig 4, for both EAS and AFR ancestry groups, the multiple PGS constructed using ancestry-specific GWAS summary statistics and the P+T method were not statistically significantly predictive for the corresponding ancestry POAG phenotype from UKB. These results are expected given the limited sample size of the ancestry-specific training sets.

Given the transferability of cross-ancestry prediction (Fig. 3), we applied PRS-CSx to construct the PGS. This method jointly models GWAS summary statistics from populations of multiple ancestries to produce SNP weights, further improving cross-population polygenic prediction. The PGS constructed using PRS-CSx-derived SNP weights from the EAS POAG GWAS summary statistics (abbreviated as PGS_{PRS-CSx-EAS}) significantly predicted POAG in the UKB EAS group (Fig. 4A PRS-CSx section). Similarly, PRS-CSx derived PGS from the AFR POAG GWAS summary statistics (abbreviated as PGS_{PRS-CSx-AFR}) was predictive of POAG in the UKB AFR group (Fig. 4B PRS-CSx section).
multi-trait-based POAG summary statistics of EUR ancestry (abbreviated as PGS\textsubscript{PRS-CS\textsubscript{x}-EUR}) showed similar prediction performance in either UKB EAS or AFR POAG phenotype (yellow segments labelled with "EUR" in Fig. 4). We then combined PGS\textsubscript{PRS-CS\textsubscript{x}-EAS} with PGS\textsubscript{PRS-CS\textsubscript{x}-EUR} to predict the UKB EAS POAG phenotype. We also repeated the same analyses in the UKB AFR ancestry group. The PGS combination (abbreviated as PGS\textsubscript{PRS-CS\textsubscript{x}-combined}), either for PGS\textsubscript{PRS-CS\textsubscript{x}-EAS} + PGS\textsubscript{PRS-CS\textsubscript{x}-EUR} or PGS\textsubscript{PRS-CS\textsubscript{x}-AFR} + PGS\textsubscript{PRS-CS\textsubscript{x}-EUR}, achieved a higher AUC in UKB EAS and AFR POAG phenotype prediction respectively. However, the AUC using the PGS combination in the UKB EAS POAG group did not outperform that using the P+T method with p-value threshold 1E-3 based on multi-trait-based POAG summary statistics of EUR ancestry (Fig. 4A), although the confidence intervals are wide due to the limited size of the UKB EAS dataset (69 cases/2,470 controls). Results of PGS prediction in the UKB EAS and AFR POAG phenotypes using the P+T and PRS-CS\textsubscript{x} methods are provided in Table S7.

Application of cross-ancestry POAG PGS prediction

The above analysis only included PGS as a variable in the POAG risk prediction model. We next incorporated the age at the time of enrolment and sex into the model (defined as the full model) and assessed the prediction accuracy. We excluded those diagnosed with POAG before the date of enrolment. This pseudo-follow-up analysis facilitates assessing the stratification ability of the risk model in a population cohort setting. For SAS ancestry, we used PGS derived from the P+T method with p-value threshold 5E-5, together with multi-trait-based POAG summary statistics of EUR ancestry (PGS\textsubscript{P+T5E-5-EUR}) given the highest AUC it achieved. Similarly, for EAS ancestry, we used PGS derived from the P+T method with p-value threshold 1E-3, together with multi-trait-based POAG summary statistics of EUR ancestry (PGS\textsubscript{P+T1E-3-EUR}). For AFR ancestry, we used PGS derived from the PRS-CS\textsubscript{x} method, together with both AFR POAG GWAS summary statistics and EUR-ancestry multi-trait-based POAG summary statistics (PGS\textsubscript{PRS-CS\textsubscript{x}-combined}). The full model achieved an AUC of 0.758 with 95% CI of 0.731 ~ 0.786 in SAS POAG phenotype and the full model achieved an AUC of 0.739 with 95% CI of 0.673 ~ 0.806 in POAG status of EAS ancestry. For AFR, the full model achieved an AUC of 0.735 with a 95% CI of 0.712 ~ 0.758. Detailed results of prediction accuracy for incorporating age and sex into the PGS model in different ancestries are in Fig. S5 and Table S8.

We next considered the age of onset. We converted the PGS\textsubscript{P+T5E-5-EUR} into deciles and calculated the cumulative risk of POAG in SAS ancestry between the top quintile and bottom quintile. Compared with the bottom quintile, individuals in the top quintile have a hazard ratio of 4.99 (95% CI: 3.42 – 7.26) for glaucoma onset. Moreover, the age of glaucoma onset for individuals in the top decile at 3% prevalence is ~56 years while individuals in the bottom decile do not reach this prevalence until 73 years, as shown in Fig. 5A. We then focused on AFR ancestry considering the high prevalence. Given the availability of ADAGES (1,796 cases/176 controls) and POAAGG (1,933 cases/3,190 controls) data based on AFR ancestry, which is independent of the cohort for discovery GWAS and PGS validation, we constructed PGS\textsubscript{PRS-CS\textsubscript{x}-combined} and assessed the ability of the PGS\textsubscript{PRS-CS\textsubscript{x}-combined} in POAG risk stratification in these cohorts. The AUC of PGS\textsubscript{PRS-CS\textsubscript{x}-combined} in ADAGES glaucoma status is 0.647 (95% CI: 0.604 ~ 0.691) and in POAAGG is 0.606 (95% CI: 0.590 ~ 0.622), which is slightly higher than that in UKB POAG AFR cohort (0.596, 95% CI: 0.573 ~ 0.619). The prediction metrics in each of the ADAGES and POAAGG cohorts are...
in Table S9. We converted the PGS_{PRS-CSX-combined} into deciles for each of the cohorts and found that individuals from the top decile have an odds ratio of 7.35 (95% CI: 3.21-16.80) POAG in ADAGES and 3.85 in POAAGG (95% CI: 2.95-5.02) to develop POAG (Table S9). To maximize the sample size, we merged the ADAGES and POAAGG and repeated the assessment. The AUC of PGS_{PRS-CSX-combined} in the merged cohort is 0.611 (95% CI: 0.598 ~ 0.624, Table S10). The mean predicted value of the merged cohort showed a significant difference between glaucoma cases and controls using the PGS_{PRS-CSX-combined} (Fig. 5B). We then discretized the PGS_{PRS-CSX-combined} of the merged cohort into deciles and found that compared with the bottom decile, individuals from the top decile have an odds ratio of 3.98 (95% CI: 3.19 – 4.97) (Fig. 5C and Table S10). We further repeated the analyses but discretized PGS_{PRS-CSX-combined} into percentiles. We calculated the proportion of glaucoma cases of individuals from each percentile, as shown in Fig. 5D, the case proportion increased along with the percentile increase. We also calculated the odds ratio of POAG risk using individuals from the top percentile against the remaining percentiles (Table S11). Individuals with PGS from the top percentile had an odds ratio of 4.08 (95% CI: 2.33-7.45) to develop POAG compared with the remaining individuals. The risk was increased if compared with individuals solely from the bottom percentile (14.17, 95% CI: 6.29-31.91).

DISCUSSION

We investigated within and cross-ancestry polygenic prediction by deriving PGS for cohorts of different ancestries based on a large-scale multivariate POAG GWAS of EUR ancestry. Through jointly analysing the GWAS summary statistics of EUR ancestry with those from other ancestries, we further derived more powerful PGS specifically for POAG status prediction in these ancestries. We selected the most powerful PGS for each ancestry and characterized its ability to stratify the risk in each cohort.

Leveraging the genetic correlation among complex traits may improve the accuracy of polygenic prediction15,16. Previously we conducted a multi-trait POAG GWAS by combining the genetic information across POAG, IOP, and VCDR and derived a PGS in a cohort of advanced glaucoma with a prediction accuracy of 0.68 (95% CI: 0.67 – 0.70)10. Here, using considerably larger datasets for POAG, IOP, and VCDR, we conducted a multi-trait POAG GWAS and derived PGS based on the GWAS summary statistics and assessed prediction accuracy in a cohort of individuals with self-reported glaucoma. As a comparison, we also derived PGS in the same cohort but using GWAS summary statistics from the previous study10. The PGS from the current study showed improvement in prediction accuracy compared with PGS from the previous study10. Taken together, the increases in prediction accuracy from the improved PGS, were in keeping with our previously reported projections of these estimates given, by then hypothesised, an increase in effective sample size9.

Previous work has suggested that the genetic architecture of POAG is shared, at least partially, across ancestries13. Our results are consistent with these findings and provide evidence for the utility of POAG PGS based on EUR ancestry to other ancestries' POAG status prediction. However, despite that POAG PGS based on EUR ancestry is predictive of POAG status in other ancestries, the prediction accuracy decreases steadily across EUR, SAS, EAS, and AFR ancestry groups. Compared with the prediction accuracy in EUR ancestry using the mean of R^2 on the liability scale, the percentage of PGS
prediction accuracy is reduced by 31%, 45%, and 77% for SAS, EAS, and AFR ancestry. These results are consistent with findings for other traits and also reflect the genetic distance among these ancestries, including the allele frequency and linkage disequilibrium difference. The decreased prediction accuracy limits the generalizability of POAG PGS derived from one ancestry to other ancestries. Hence our study also highlights the need to accumulate genetic data across diverse populations, especially in AFR ancestries where the POAG burden is highest.

To use genetics to achieve better prevention, diagnosis, and treatment of glaucoma, the IGGC has accumulated POAG cohorts of EAS and AFR ancestry, although the sample sizes are much smaller than those of EUR ancestry. Using IGGC cohorts of EAS and AFR ancestry as discovery data, we derived PGS and conducted prediction analyses in UKB cohorts of EAS and AFR ancestry, respectively. None of these PGS was significantly predictive of POAG status, due to the small size of the discovery sample. However, when we combined the POAG GWAS summary statistics of EUR ancestry with those of AFR ancestry to derive PGS for UKB participants of AFR ancestry, the ancestry-combined PGS was a significant predictor of POAG status. The ancestry-combined PGS leverages the shared genetic correlation across ancestries, allowing better effect size estimation and thus prediction accuracy improvement. Similar results are also observed in UKB participants of EAS ancestry. We couldn’t conduct an analogous analysis for UKB participants of SAS ancestry because we did not have an ancestry-matched POAG discovery GWAS for PGS calculation. POAG GWAS studies of SAS ancestry are needed to allow ancestry-specific PGS prediction analyses in the future.

The optimal POAG PGS for the UKB AFR ancestry group was based on the combined EUR and AFR ancestry training sets; we subsequently used this PGS to characterize the risk stratification ability in two further independent cohorts of AFR ancestry. Individuals from the top PGS decile were four-fold as likely to develop POAG compared with the remaining individuals. To our knowledge, this is the most powerful PGS for POAG risk stratification in cohorts of AFR ancestry. This is particularly important as the prevalence of POAG is very high in individuals of AFR ancestry and in the future, a PGS-based approach may assist in improving the screening of this high-risk population group. Similarly, our findings showed that, in SAS ancestry, individuals from the top decile of the PGS would have met the criteria for screening in their 50s while the individuals from the bottom decile would have not reached that level even 20 years later. Our results support a promising role of polygenic scores in POAG screening across ancestries in the future.

There are some limitations to our study. First, our study focused on within and cross ancestry prediction but the sample sizes for non-EUR ancestries were much smaller than those of EUR ancestries, for both the PGS discovery cohorts and the target cohorts. Larger cohorts of multi-ancestries are needed for better risk variant identification and PGS prediction. Second, we specifically focused on POAG, however, there is a potential influence of misdiagnoses and self-report inaccuracy. Third, we recognized a substantial portion of our data is from UKB, which is a large population study with recognized volunteer bias.

CONCLUSION
In summary, using the largest-scale multivariate POAG GWAS of EUR ancestry, we have derived PGS across different ancestries and the newly derived PGS have shown improved prediction accuracy compared with previous studies. POAG PGS based on a combination of ancestries achieves the highest prediction accuracy for ancestry-specific prediction and enables the risk stratification for POAG in these ancestries. These data will serve as an important building block for improved POAG screening across diverse ancestries in the future.

FIGURE LEGENDS

Fig. 1. Schematic plot of the study.

Fig. 2. Prediction accuracy of POAG PGS in QSKIN cohort using AUC and liability scale R² as metrics. The PGS were constructed based on SNP weights derived from POAG MTAG GWAS summary statistics and different methods (P+T, LDpred2 and SBayesR). For P+T methods, 5 p-value thresholds (5E⁻⁸, 1E⁻⁵, 5E⁻⁵, 1E⁻⁴, 1E⁻³) were set as shown on the left X-axis. For each p-value threshold, PGS were constructed using both previous and current POAG MTAG GWAS summary statistics. For LDpred2, infinitesimal, auto and grid models were attempted as shown on the right X-axis. AUC and R² on the liability scale are presented on the Y-axis of panel A and B separately. The metrics and 95% confidence intervals are presented.

Fig. 3. Prediction accuracy of POAG PGS based on European ancestry in POAG phenotypes of South Asian (SAS), East Asian (EAS) and African (AFR) ancestry. The PGS were constructed using P+T methods and POAG MTAG GWAS summary statistics of European ancestry. 5 p-value thresholds (5E⁻⁸, 1E⁻⁵, 5E⁻⁵, 1E⁻⁴, 1E⁻³) were set for PGS construction in each of SAS, EAS and AFR ancestry, as shown on the X-axis. The Y-axis of each panel represents each assessment metric with panel A for AUC, panel B for liability scale R² and panel C for odds ratio for top 10% vs. bottom 10% decile. The estimated metric and 95% confidence intervals are presented. “*” represents the corresponding p-value < 0.05 while “**” represents the p-value < 0.05/15. For Panel C of EAS ancestry, because of the smaller sample size (69 cases/2,471 controls) than that of SAS (453 cases/9,926 controls) and AFR ancestry (581 cases/8,707 controls), the odds ratio for top 20% vs. bottom 20% decile are presented.

Fig. 4. Prediction accuracy comparison of PGS derived using the P+T and PRS-CSx methods in UKB EAS (panel A) and AFR (panel B) ancestry groups. Y-axis represents AUC. The X-axis represents different methods (P+T or PRS-CSx) and GWAS summary statistics (in the parentheses) used for deriving PGS. AUC estimate (dot) and 95% confidence interval (CI) (segments) are shown. For P+T-derived PGS, the p-value thresholds are annotated above the upper 95% CI. For PRS-CSx-derived PGS, the summary statistics used for PGS construction are annotated above the upper 95% CI. “Combination” means that two PGS (one is based on EUR MTAG POAG summary statistics and the other is based on ancestry-matched GWAS summary statistics) are used in the prediction model.

Fig 5. POAG PGS prediction in South Asian (SAS) and African ancestry cohort. A. Cumulative risk and 95% CI of glaucoma for people in the top quintile and bottom quintile of PGS of UKB SAS participants. The dashed line is the reference cumulative risk at 3.0%. B. Distribution of the predicted value based on the
PGS model for glaucoma status in the combined ADAGES and POAAGG cohorts. C. Odds ratio (OR) by decile of predicted value based on the PGS model for individuals of the ADAGES and POAAGG merged cohort. Error bars represent the 95% confidence interval (CI) of the OR. D. Case proportion by percentiles of predicted value based on the PGS model or individuals of ADAGES and POAAGG merged cohort. The regression line and the 95% CI are shown.

AVAILABILITY OF DATA MATERIALS

UK Biobank data are available through the UK Biobank Access Management System https://www.ukbiobank.ac.uk/. Data are available from the Canadian Longitudinal Study on Aging (www.clsa-elcv.ca) for researchers who meet the criteria for access to de-identified CLSA data https://www.clsa-elcv.ca/researchers/data-support-documentation. Samples for this study are obtained from the ongoing African Descent and Glaucoma Study (ADAGES), available via dbGaP accession phs001673.v1.p1. The Primary Open-Angle African American Glaucoma Genetics (POAAGG) Study data are available via dbGaP accession phs001312.v1.p1. The International Glaucoma Genetics Consortium summary statistics are available via the GWAS catalogue https://www.ebi.ac.uk/gwas/home. The files from the above datasets contain all of the data that is needed to replicate the findings of this study.

ACKNOWLEDGEMENTS/FUNDING

The opinions expressed in this manuscript are the author’s own and do not reflect the views of the Canadian Longitudinal Study on Aging or any affiliated institution. This research was made possible using the data/biospecimens collected by the Canadian Longitudinal Study on Aging (CLSA). Funding for the Canadian Longitudinal Study on Aging (CLSA) is provided by the Government of Canada through the Canadian Institutes of Health Research (CIHR) under grant reference: LSA 94473 and the Canada Foundation for Innovation, as well as the following provinces, Newfoundland, Nova Scotia, Quebec, Ontario, Manitoba, Alberta, and British Columbia. This research has been conducted using the CLSA dataset [Baseline Comprehensive Dataset version 4.0, Follow-up 1 Comprehensive Dataset version 1.0], under Application Number 190225. The CLSA is led by Drs. Parminder Raina, Christina Wolfson and Susan Kirkland. This project used data from the UK Biobank under application number 25331. We want to acknowledge Mass General Brigham Biobank for providing samples, genomic data, and health information data. We want to acknowledge the participants and investigators of the FinnGen study. SM is supported by a research fellowship from the Australian National Health and Medical Research Council (NHMRC). SM, DAM, JEC, and AWH acknowledge Program Grant (1150144) and Centre of Research Excellence (1116360) funding from the Australian National Health and Medical Research Council (NHMRC). We thank David Whiteman and Catherine Olsen for providing access to the QSkin samples, supported by NHMRC grants 1063061 and 1185416. The ADAGES study acknowledges NIH support under R01EY023704. The Primary Open-Angle African American Glaucoma Genetics (POAAGG) Study is supported by funding from the National Eye Institute, Bethesda, Maryland (grant # 5R01EY023557-03) and the Department of Ophthalmology at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. Funds also come from the F.M. Kirby Foundation, Research to Prevent Blindness, The Paul and Eva Mina Bell Mackall Foundation Trust, and the National Eye Institute, National Institutes of Health, Department of Health and Human Services, under eyeGENE (contract #HHSN260220700001C and
ETHICS DECLARATION

This study was approved by the QIMR Berghofer Human Research Ethics Committee. In addition, relevant details for each of the participating cohorts are provided as follows: the UKB study was approved by the National Health Service National Research Ethics Service (ref. 11/NW/0382) and all participants provided written informed consent to participate in the study. Information about ethics oversight in the UK Biobank can be found at https://www.ukbiobank.ac.uk/ethics/. The CLSA abides by the requirements of the Canadian Institutes of Health Research (CIHR). The protocol of the CLSA has been reviewed and approved by 13 research ethics boards across Canada. A complete and detailed list is available at: https://www.clsa-elcv.ca/participants/privacy/who-ensures-high-ethical-standards/research-ethics-boards. Participants in the MGBB provided informed consent at sign up and ethics approval was obtained from the Partners Human Research Committee.

AUTHOR CONTRIBUTIONS

SM, XH, PG and YW designed the study. YW, XH, PG, JSO, MER, and SM analysed the data. SM, PG, AWH, JEC, JLW, and DAM obtained funding. SM, XH, PG, MER, AWH, JEC, LRP, DAM, MT, JLW, and APK contributed to data collection and contributed to genotyping. YW, SM wrote the first draft of the paper. All authors contributed to the final version of the paper.

DECLARATION OF INTERESTS

The Authors declare no Competing Non-Financial Interests but the following Competing Financial Interests: SM, JEC and AWH are co-founders of and hold stock in Seonix Pty Ltd.

REFERENCES

Intraocular pressure (IOP) and vertical cup-to-disc ratio (VCDR) are key factors in the diagnosis of Primary open-angle glaucoma (POAG), especially among European ancestry individuals. Genetically correlated discovery cohorts are used to calculate genetic risk scores (PGS) for POAG. The PGS calculation involves selecting traits for different ancestry groups (East Asian, South Asian, African) and estimating prediction accuracy using metrics such as the area under the curve (AUC), R^2 on the liability scale, and odds ratio between PGS strata.

Different methods are utilized to derive PGS, including Pruning and thresholding (PT), SBayesR, LDpred2, and PRS-CSX. Multi-traits GWAS are performed to boost power in genetic association studies.

Selection of PGS for different ancestry is crucial for downstream analyses, ensuring accurate predictions and risk assessments.
A

| 2020 multi-trait based POAG summary statistics | Current multi-trait based POAG summary statistics |

AUC

B

R^2 in liability scale

5E-8 1E-5 5E-5 1E-4 1E-3

LDpred2-inf LDpred2-auto LDpred2-grid SBayesR

CC-BY-ND 4.0 International license
It is made available under a perpetuity.

is the author/funder, who has granted medRxiv a license to display the preprint in (which was not certified by peer review) preprint

The copyright holder for this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.08.23298255

doi: medRxiv preprint
A

Area under the curve (AUC)

B

Proportion of variance explained in liability scale

C

Odds Ratio: Top 10% vs. Bottom 10%

5E-8 1E-5 5E-5 1E-4 1E-3

SAS

EAS

AFR

CC-BY-ND 4.0 International license
It is made available under a
perpetuity.

is the author/funder, who has granted medRxiv a license to display the preprint in
(which was not certified by peer review)
preprint
The copyright holder for this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.08.23298255
doi: medRxiv preprint
A

B

AUC

0.7

0.6

0.5

0.4

EAS

EUR

Combination

AUC

0.7

0.6

0.5

0.4

AFR

EUR

Combination

(AFR POAG SumStats) (EUR POAG SumStats) (Both POAG SumStats)

(AFR POAG SumStats) (EUR POAG SumStats) (Both POAG SumStats)