Country wide surveillance reveals prevalent artemisinin partial resistance mutations with evidence for multiple origins and expansion of sulfadoxine-pyrimethamine resistance mutations in northwest Tanzania

Jonathan J. Juliano1+, David J. Giesbrecht2+, Alfred Simkin2, Abebe A. Fola2, Beatus M. Lyimo3,4, Dativa Pereus3, Catherine Bakari3, Rashid A. Madebe3, Misago D. Seth3, Celine I. Mandara3, Zachary R. Popkin-Hall1, Ramadhan Mosh3, Ruth B. Mbwambo3, Karamoko Niare2, Bronwyn MacInnis5,6, Filbert Francis3, Daniel Mbwambo7, Issa Garimo7, Frank Chacky7, Sijenunu Aaron1, Abdallah Lusasi7, Fabrizio Molteni8, Ritha Njau9, Samwel Lazaro7, Ally Mohamed7, Jeffrey A. Bailey2,*, Deus S. Ishengoma3,5,10#

1 University of North Carolina, Chapel Hill, NC, USA
2 Brown University, Providence, RI, USA
3 National Institute for Medical Research, Dar es Salaam, Tanzania.
4 Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
5 Harvard T.H Chan School of Public Health, Boston, MA, USA
6 Broad Institute, Boston, MA, USA
7 National Malaria Control Programme, Dodoma, Tanzania
8 Swiss Tropical Public Health Institute, Dar es Salaam, Tanzania
9 World Health Organization, Country Office, Dar es Salaam, Tanzania
10 Faculty of Pharmaceutical Sciences, Monash University, Melbourne, Australia

+: co-first author
*: co-senior authors

#Corresponding author: deusishe@yahoo.com
Abstract

Background: Emergence of artemisinin partial resistance (ArtR) in *Plasmodium falciparum* in East Africa is a growing threat to the efficacy of artemisinin combination therapies (ACT) and the global efforts for malaria elimination. The emergence of *Pfkelch13* R561H in Rwanda, raised concern about the impact in neighboring Tanzania, despite contemporary surveys suggesting limited 561H in the country. In addition, regional concern over resistance affecting sulfadoxine-pyrimethamine (SP) which is used for chemoprevention strategies is high.

Methods: To enhance longitudinal monitoring, the Molecular Surveillance of Malaria in Tanzania (MSMT) project was launched in 2020 with the goal of assessing and mapping the profile of antimalarial resistance across transmission zones. Community and clinic samples were assessed for resistance polymorphisms using a high throughput molecular inversion probe platform.

Findings: Genotyping of 6,278 samples collected in 2021 revealed a focus of *Pfkelch13* 561H mutants in North-western Tanzania with prevalence of 7.7% (50/649) in Kagera. A small number of 561H mutants (about 1%) were found as far as 800 km away in Tabora, Manyara, and Njombe. Genomic analysis suggests some of these parasites are highly related to previous isolates collected in Rwanda in 2015, supporting regional spread of 561H. However, a novel haplotype was also observed, likely indicating a second origin in the region. Other validated resistance polymorphisms (622I and 675V) were also identified. A focus of high sulfadoxine-pyrimethamine drug resistance was also identified in Kagera with a prevalence of *dhfr*164L of 15% (80/526).

Interpretation: These findings demonstrate *Pfkelch* 561H resistant mutation is entrenched in the region and that multiple origins of ArtR, similar as to what was seen in Southeast Asia, are likely to occur. Mutations associated with high levels of SP resistance are increasing. These results raise concerns about the long-term efficacy of artemisinin and chemoprevention antimalarials in the region.
Research in Context

Evidence before this study

We did a literature search via PubMed for research articles published from January 2014 to October 2023 using the search term “Africa” and “Artemisinin resistance” linked to “R561H” or “A675V” or “R622I”, returning 32 studies. The published literature shows the emergence and establishment of these three validated Plasmodium falciparum kelch13 (pfkelch13) mutations associated with partial artemisinin resistance in Africa. Large molecular studies of 675V in Uganda and 622I in Ethiopia have defined the regional spread of these mutations. However, limited data is available from recent studies about the spread and origins of the 561H mutation in the Great Lakes region of East Africa. In particular, detailed studies of the regions of Tanzania that border Rwanda have not been carried out since the mutation was detected in Rwanda. These data are needed for malaria control programs to define and implement strategies for controlling the spread of artemisinin resistance in Africa, a potential global public health disaster and the potential obstacle to the ongoing elimination strategies.

Added value of this study

This analysis reports the first large-scale analysis of antimalarial resistance in Tanzania, with a focus on the regions bordering Rwanda since the 561H mutation reached high frequency in the area. Using 6,278 P. falciparum positive samples sequenced using molecular inversion probes (MIPs), we show that the mutation has become frequent in the districts of Kagera bordering Rwanda. Importantly, we provide evidence for the separate emergence of a different extended haplotype around 561H in Tanzania. This is the first evidence that multiple emergences of partial artemisinin resistance may occur in Africa, as was seen within the last two decades in Southeast Asia.

Implications of all the available evidence

These findings highlight that, similar to 622I and 675V in other parts of Africa, we can expect the 561H mutation to continue to spread in the region. In addition, it highlights that we need to be watchful for new origins of mutations beyond the spread of existing resistant parasite lineages. Partial artemisinin resistance appears to now be well established in multiple areas in Eastern Africa. Intensive control in these regions to prevent spread and monitoring for partner
drug resistance emergence in affected areas will be critical for preventing further reversal of malaria control efforts in the region and support progress to the elimination targets by 2023.
INTRODUCTION

Resistance to drugs used for treatment and prevention of malaria poses one of the greatest threats to global control and is of grave concern in Africa where the vast majority of cases and deaths occur.1 Historically, the emergence and spread of chloroquine and sulfadoxine-pyrimethamine (SP) resistance resulted in the collapse of effective treatment of malaria with significant increases in morbidity and mortality.2 Antimalarial combination therapies, consisting of an artemisinin derivative and a partner drug (artemisinin-based combination therapy - ACTs), are currently the predominant therapeutic options for treating uncomplicated falciparum malaria. Given gains in malaria control have already plateaued and are reversing in some countries, the emergence of artemisinin partial resistance (ArtR) in Africa could be a global public health disaster if partner drug resistance emerges in concert resulting in frank ACT failure.3

Over a decade has passed since the detection of the emergence of ArtR in SouthEast Asian P. falciparum populations leading to decreased drug efficacy.4 Clinical ArtR was first demonstrated in the late 2000s in studies conducted in Western Cambodia. The emergence of ArtR in Western Cambodia set the stage for the eventual failure of ACTs, as resistance to the partner drugs also emerged, indicated by upsurge in treatment failures, parasite clearance times and partner drug IC50s over a very short timeframe.3 Early in the emergence of ACT resistance, many areas of SEA experienced more than 50% failure in patients treated with ACTs due to the combined effect of artemisinin and partner drug resistance.3

Mutations in the gene Plasmodium falciparum kelch 13 (pfkelch13) (PF3D7_1343700) are the key mediator of artemisinin partial resistance. These mutations were originally identified through drug pressure experiments and validated in the field and by genetic engineering studies.5 They are thought to alter ubiquitination patterns and help parasites to resist accumulation of polyubiquitinated proteins.5 A number of key mutations in pfkelch13 propeller domain mutations are now validated markers of artemisinin partial resistance. Unfortunately, validated pfkelch13 mutations have now been found extensively in Eastern Africa, particularly in the Horn of Africa (R622I), Uganda (C469Y, A675V), Rwanda (R561H), and Tanzania (R561H).6–10
The regional spread of these mutations appears to be developing as the norm rather than the exception. In the Horn of Africa, the validated 622I mutation was first reported in 2014. Since that time, these mutations have spread across Eritrea and Ethiopia. In Uganda, longitudinal molecular surveillance at 16 sites has painted a clear picture of spread within Uganda of the 469Y and 675V variants. It is important to note that all three of these mutations have been associated with prolonged parasite clearance, day 3 positivity by microscopy, increasing prevalence over time, and are in regions that now meet WHO criteria for ArtR.

The picture of what is happening with the 561H mutation in the Great Lakes Region of East Africa is not yet as clear when compared to other mutations. Originally described in Rwanda in samples from 2014 and 2015, this mutation has appeared to emerge within the country over the past 7 years. In 2015, 7.4% of samples collected in Masaka harbored the 561H mutation. By 2018, 561H prevalence had increased to 19.6% in Masaka and 22% in Rukara during a therapeutic efficacy study. In this study, 50% of isolates with delayed clearance (day 3 positive parasitemia) carried 561H. On this basis, Masaka met the WHO criteria for endemic ArtR as defined by >5% of patients carrying pfkelch13 resistance-confirmed mutation for which they had persistent parasitemia by microscopy on day 3. Genome sequencing of isolates from 2015 also confirmed a single haplotype of 561H in Rwanda that was not of Asian origin, suggesting de novo mutation within Africa.

Importantly, pfkelch13 mutations should never be studied in isolation as it requires partner drug resistance to lead to clinical failures of ACTs. Further, mutations to drugs no longer used for therapy, but that remain in use for chemoprevention (e.g. SP), are also important to characterize for malaria control programs. Molecular surveillance of antimalarial resistance should therefore rely on platforms that can broadly detect different resistance mutations. Highly multiplex amplicon deep sequencing is one approach that has shown promise. Another approach is molecular inversion probes (MIPs), which have now been used extensively to characterize drug resistance and population structure in parasites in Africa. The ability of MIPs to create and
combine different highly multiplexed panels for antimalarial resistance mutations, copy number variation, gene deletions and other genomewide polymorphism to study complexity of infection, parasite relatedness or population structure makes the platform a highly flexible and cost effective means of conducting malaria molecular surveillance (MMS).

The Molecular Surveillance of Malaria in Tanzania (MSMT) project was developed to provide nationwide longitudinal surveillance of parasite populations to understand key aspects of parasite biology that may impact malaria control and interventions. The emergence of 561H is a prime concern for Tanzania given its proximity to Rwanda and previous studies documenting isolated cases across the country, with 2 cases in the Chato district and one on the Eastern coast. Here we describe the initial assessment of 6,278 successfully genotyped samples collected across 7,782 malaria positive individuals in the first year of the project. The goal was to assess the status of antimalarial resistance in Tanzania, and in particular with a focus on the border of Rwanda, to understand the distribution of the 561H mutation, partner drug resistance, and resistance to chemoprevention drugs, using high throughput MIP analysis. This was supported by targeted sequencing of specific isolates using whole genome sequencing to understand the origins of 561H mutations in Tanzania, given to date there is no evidence for multiple origins of the same mutation as was hypothesized to occur in Southeast Asia. To date, the haplotype distribution of pfkelch13 mutations remains unclear with the potential for multiple origins of the 561H mutation (Rwanda) and a single origin of 675V mutation (Uganda) based on microsatellite analysis.
MATERIALS AND METHODS

Study Design and Participants

Dried blood spot (DBS) samples were collected among patients with a positive test by malaria rapid diagnostic test in a cross sectional surveys that involved 100 health facilities in 10 regions (n=7,148) and asymptomatic individuals in community studies (n=634) in three additional regions (Figure 1). Details of the study sites’ selection, sampled subjects and sampling in the 10 regions have been provided elsewhere. The three community surveys were conducted in regions of Tanzania which were involved in previous studies undertaken by the National Institute for Medical Research (NIMR). Four regions (Kagera, Mara, Tabora, and Kigoma) were deemed high priority areas for antimalarial resistance surveillance due to their proximity to Rwanda and to their location in the Lake zone of the country with higher transmission (Figure 1). Informed consent was obtained for each patient and de-identified DBS samples were processed at NIMR in Tanzania and Brown University and University of North Carolina (USA) according to IRB requirements of the Tanzanian Medical Research Coordinating Committee (MRCC) of NIMR.

Molecular Inversion Probe Analysis

DNA was extracted from the DBS using a Chelex-Tween protocol and MIP captures and sequencing were conducted as previously described. This study used a panel specific for drug resistance polymorphism detection. Approximately two to three thousand samples were run together on each NextSeq 500 run, and samples lacking sufficient read depth were rebalanced and resequenced. For samples from the high priority regions (Figure 1), an additional MIP capture and high depth sequencing was conducted. Resulting data was analyzed using MIPtools software with freebayes variant calling (https://github.com/bailey-lab/MIPTools). Controls for each MIP capture and sequencing included DNA from 3D7 and 7G8 as well as no template and no probe controls.
Variant calling was conducted as previously described. We kept samples that had at least one haplotype that mapped in the expected portion of the genome for any of our drug resistance MIPs. Antimalarial resistance prevalence was calculated for all variants with a UMI count of 3 or greater and if heterozygous with the alternate allele having 1 UMI or greater using a Python script and maps were created using the sf package. Analysis of haplotypes involves only samples where complete genotypes are available.

Whole Genome Sequencing

Whole genome sequencing of selective whole genome amplification (sWGA) products was attempted for 23 pure 561H, 5 heterozygous R561H, and 45 pure wildtype parasite isolates based on MIP genotyping. sWGA was performed in triplicate for each sample using a previously published protocol and pooled. The pooled sWGA product was sheared using a LE220R-plus Covaris Sonicator and libraries prepared using dual indexing with the Kappa Hyper Prep Kit (Kappa Biosciences, Oslo, Norway). Pooled libraries were sequenced on a NovaSeq6000 using 2 x 150 bp chemistry at the University of North Carolina (UNC) High Throughput Sequencing Facility. We also downloaded the publicly available WGS data (n=25) from the *P.falciparum* isolates collected in 2014/15 in Rwanda.

Whole genome sequencing data was analyzed using GATK4 following previously published methods (https://github.com/Karaniare/Optimized_GATK4_pipeline). Briefly, reads were mapped to the 3D7 reference genome using *bwa* mem, variants were called using GATK and SNPs and indels were filtered using variant quality score recalibration. SNPs and indels passing filters were visualized in R 4.2.1 using the *gt* package. In order to detect patterns of selection signals between Rwanda and Tanzania haplotypes, we did extended-haplotype homozygosity (EHH) statistics focusing 561H drug resistance SNP using filtered biallelic SNPs and with low missingness data from an unphased VCF file. All associated EHH calculations were carried out using the R-package *rehh* (version 2.0.4).
RESULTS

We successfully genotyped 6,278 of the 7,782 (80.7%) samples attempted (Figure 1B).

Sequencing across the pfkelch13 gene revealed three WHO validated artemisinin partial resistance mutations, 561H, 622I, and 675V. The 561H mutations were predominantly found in the Kagera, the Northwest most region bordering Rwanda and Uganda. (Figure 2A, Table 1). The overall prevalence in Kagera was 7.7% (50/649) and most of these mutant parasites were found near the Rwandan border in the districts of Karagwe at 22.8% (31/136) and Kyerwa at 14.4% (17/118) (Figure 2B). Mutant parasites also occurred in Ngara, at a prevalence of 1.4% (2/144) (Figure 2B). Parasites with the 561H mutation were also detected at lower prevalence in 3 other regions, including Tabora at 0.5% (2/438), Manyara at 0.5% (1/179), and Njombe at 0.4% (1/279), as far as 800 km from the Rwanda border. The pfkelch13 622I mutation was found in a single isolate from Njombe in Southwestern Tanzania (Table 1). The 675V mutation was found in one isolate from the Kagera and one isolate from the Tabora. Other pfkelch13 propeller domain mutations not known to be associated with drug resistance were detected sporadically.

Outside the pfkelch13 propeller domain, we found several polymorphisms including 189T in 18.3% (397/2,168) of samples country-wide.

Extended haplotypes around antimalarial genes have been used to study the origin and spread of mutations.10 With positive directional selection of resistance by drug pressure, large genomic sections are spread in the population, a selective sweep, which are eventually broken down through recombination. We achieved sufficient depth and quality on 29 of 63 isolates from 2021 in Tanzania to assess the variation surrounding pfkelch13 and used publicly available WGS data from the isolates collected in 2014/15 in Rwanda.10 We identify a shared haplotype between the older Rwandan isolates and the contemporary Tanzanian isolates (n=4 from Tanzania; haplotype RW/TZ1), suggesting cross border spread resulting from a single origin event. However, a second extended haplotype (n=5; TZ2) is also seen within the Tanzanian parasites (Figure 3). The RW/TZ1 and TZ2 differ at single nucleotide polymorphisms within 1kb of the 561H mutation. This can result from either a second origin event, gene conversion, or recombination events adjacent to the mutation. Extended haplotype homozygosity analysis (EHH) shows extended haplotypes for RW/TZ1 and TZ2 relative to wild type parasites (Figure 4).
Markers for resistance to SP were also genotyped, revealing high frequency of many mutations and the emergence of *P. falciparum* dihydrofolate reductase (*pf dhfr*) 164L in Kagera (Table 1, Figure 5). The folate synthesis gene triple mutations *pf dhfr* 51I, 59R and 108N were found to be near fixation with the IRN haplotype at 92.5% (2,893/3,128). Notably, the *pf dhfr* 164L mutation was found in 15.2% (80/526) in the Kagera region, accounting for 80% of the IRNL haplotypes found in the country (100/2,524 nationally) (Figure 5A). In the *P. falciparum* dihydropteroate synthase (*pf dhps*) gene, two markers for elevated SP resistance were found to be above WHO guideline thresholds in some regions. *Pf dhps* 540E was found at 93.06% (3,485/3,745) in Tanzania with little geographic variation (Table 1), while *pf dhps* 581G prevalence ranged from 0.4% (1/239) in Mtwara to 38.5% (25/65) in Tanga (Figure 5B).
DISCUSSION

Drug resistance in malaria parasites has emerged multiple times to every frontline antimalarial, each time with severe consequences for affected populations. The emerging threat of artemisinin partial resistance in Africa has the potential to be a global public health disaster. Thus understanding the emergence and spread of these mutations is critical in making plans to contain this threat. While it is clear that pfkelch13 622I and 675V are spreading in the Horn of Africa and Uganda, respectively, the pattern of origin and spread of the 561H mutation have not been fully defined. Here we demonstrate that the mutation has risen to high frequencies in Kagera (7.7%), a region bordering Rwanda which had little evidence of resistance in 2017 using MIPs to genotype a national schoolkids survey (data not published). This supports the idea that there has been and will continue to be regional spread of the mutation, especially given the shared extended haplotype around some of the Tanzanian isolates and the older reported Rwandan isolates. More concerning is the evidence of a unique origin of the 561H mutation in the region, suggesting that ArtR may follow patterns similar to those seen in Southeast Asia with multiple independent origins. This supports data suggestive of multiple haplotypes. If multiple origins occur, this complicates containment as control efforts need to maintain close monitoring for new haplotypes and spread of specific haplotypes may not become extensive without partner drug resistance.

Several mutations in the pfkelch13 propeller domain that are associated with delayed parasite clearance are present in East Africa. The most concerning of these, 469Y, 561H, 622I and 675V, have shown clinical and in vitro validation of ArtR. Determining the exact origin of these mutations with certainty is difficult due to the patchy nature of the surveillance data, but one (561H) of the three appears to have originated on the Rwanda - Tanzania border. 561H was first detected in Rwanda in 2015 as part of therapeutic efficacy studies and later in DRC and Tanzania. To date, genotyping efforts to describe the status of pfkelch13 mutations in Tanzania have been limited and do not capture the risk posed by ArtR parasites across the country. The high rate of human movement across the border with Rwanda, where people have close historical ties and One Stop Border Posts (OSPB) routine permit thousands of individuals and hundreds of vehicles to cross, makes this a primary concern for malaria control in
Tanzania. There have been sporadic reports of validated ArtR polymorphisms in the past. However, systematic longitudinal surveillance of these mutations is necessary to identify areas at risk, as has been done in Uganda. The speed at which data is generated and reported to control programs is critical. The Molecular Surveillance of Malaria in Tanzania (MSMT) will provide these nationwide data for Tanzania given the identified threat shown here of 561H in Kagera, by allowing yearly sampling and in-country sequencing and analysis of data as the project develops.

Markers of elevated SP resistance are increasing in Tanzania, which has potential impacts on the use of SP as a chemopreventive antimalarial. The geographic distribution of the \textit{pf}dhps 581G mutations in Tanzania has historically been limited to Tanga and the Lake districts. We confirm that this remains the case with little evidence of expansion into other regions of Tanzania. The reasons for the lack of spread of this mutation in Tanzania remains unclear and warrants further evaluation, especially given the evidence that spread is occurring in the neighboring Democratic Republic of the Congo. Previous work has suggested that multiple origins of parasites bearing 581G have occurred in East Africa, suggesting local origins and limited spread. However, that work was based on five microsatellites and may not take into account the complex stepwise evolutionary history of mutations in \textit{pf}dhps. Importantly, a new focus of the quadruple mutation in \textit{pf}dhfr (51I, 59R, 108N, 164L) was identified in Kagera. In the laboratory, this form of the enzyme binds pyrimethamine 600 times less tightly than the wild type and about seven times less than the triple mutation (51I, 59R, 108N). This results in parasites being resistant to therapy \textit{in vitro} at levels higher than what can be reached \textit{in vivo}. The \textit{pf}dhfr/\textit{pf}dhps sextuple mutation (\textit{pf}dhfr 51I, 59R, 108N / \textit{pf}dhps 437G, 540E, 581G), has been associated with the compromise of intermittent preventive treatment in pregnancy (IPTp) and was found in 11.2% (323/2,894) of samples nationally. Given the regional high prevalence of \textit{pf}dhps 581G and the emergence of \textit{pf}dhfr 164L in Northwest Tanzania, additional studies are warranted to evaluate the benefits of SP based chemoprevention in this region of Tanzania.

A major advantage of this study is the large geographic range and large number of samples available for analysis. However, this also predisposes to some limitations. The large number of samples resulted in overall low levels of coverage for the sequencing for most regions (other
than the 4 high priority regions that received extra depth). The samples collected at the three cross sectional sites performed poorly with our approach, likely due to low parasitemia. The overall coverage in many regions may directly affect the ability to find minority drug resistant variants in the data and we may have filtered out minor variants below 1%.

In conclusion, the detection of pfkelch13 561H at prevalence above 22% in Karagwe district of Kagera, Tanzania, must raise alarms of the emergence of ArtR and that ACTs efficacy is under threat. The independent origin of a new pfkelch13 561H extended haplotype raises concern that multiple origins of ArtR mutations will occur in Africa, complicating control. Evolution of partner drug resistance must be monitored carefully and therapeutic efficacy studies are urgently needed to understand the susceptibility of currently circulating pfkelch13 mutations in the region.
Table 1. Prevalence of antimalarial resistance polymorphisms by region.

<table>
<thead>
<tr>
<th>Region</th>
<th>pfdhfr N51I</th>
<th>pfdhfr C59R</th>
<th>pfdhfr S108N</th>
<th>pfdhfr I164L</th>
<th>pfdhps A437G</th>
<th>pfdhps K540E</th>
<th>pfdhps A581G</th>
<th>pfk13 A675V</th>
<th>pfk13 R561H</th>
<th>pfk13 R622I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kagera</td>
<td>0.987</td>
<td>0.913</td>
<td>1.0</td>
<td>0.1521</td>
<td>0.9408</td>
<td>0.9383</td>
<td>0.2593</td>
<td>0.0015</td>
<td>0.077</td>
<td>0.0</td>
</tr>
<tr>
<td>Mara</td>
<td>0.988</td>
<td>0.926</td>
<td>0.9947</td>
<td>0.0305</td>
<td>0.9701</td>
<td>0.9724</td>
<td>0.0085</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Dodoma</td>
<td>0.9787</td>
<td>0.9149</td>
<td>1.0</td>
<td>0.01</td>
<td>0.9509</td>
<td>0.9369</td>
<td>0.0543</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ruvuma</td>
<td>1.0</td>
<td>0.9856</td>
<td>1.0</td>
<td>0.0</td>
<td>0.9444</td>
<td>0.9275</td>
<td>0.0278</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Manyara</td>
<td>0.9908</td>
<td>0.9679</td>
<td>1.0</td>
<td>0.011</td>
<td>0.9235</td>
<td>0.9174</td>
<td>0.2273</td>
<td>0.0</td>
<td>0.0056</td>
<td>0.0</td>
</tr>
<tr>
<td>Songwe</td>
<td>0.9945</td>
<td>0.9613</td>
<td>1.0</td>
<td>0.0044</td>
<td>0.9254</td>
<td>0.9218</td>
<td>0.0201</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tanga</td>
<td>1.0</td>
<td>0.9483</td>
<td>1.0</td>
<td>0.0</td>
<td>0.9184</td>
<td>0.8571</td>
<td>0.3846</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tabora</td>
<td>0.9902</td>
<td>0.943</td>
<td>0.9977</td>
<td>0.016</td>
<td>0.9725</td>
<td>0.975</td>
<td>0.036</td>
<td>0.0022</td>
<td>0.0046</td>
<td>0.0</td>
</tr>
<tr>
<td>Kilimanjaro</td>
<td>1.0</td>
<td>0.9149</td>
<td>1.0</td>
<td>0.0</td>
<td>0.9524</td>
<td>0.9608</td>
<td>0.3594</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Njombe</td>
<td>0.9951</td>
<td>0.9557</td>
<td>1.0</td>
<td>0.0</td>
<td>0.9524</td>
<td>0.9608</td>
<td>0.3594</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Mtwara</td>
<td>0.8602</td>
<td>0.9462</td>
<td>1.0</td>
<td>0.0</td>
<td>0.8025</td>
<td>0.7857</td>
<td>0.042</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Dar es Salaam</td>
<td>0.9548</td>
<td>0.9266</td>
<td>0.9914</td>
<td>0.0</td>
<td>0.8286</td>
<td>0.8541</td>
<td>0.1198</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Overall</td>
<td>0.9817</td>
<td>0.9378</td>
<td>0.9984</td>
<td>0.0407</td>
<td>0.9365</td>
<td>0.9306</td>
<td>0.1174</td>
<td>0.0006</td>
<td>0.017</td>
<td>0.0003</td>
</tr>
</tbody>
</table>
Figure 1. Tanzania malaria prevalence and study design. Panel A depicts a map of Tanzania showing malaria prevalence in children aged 0-59 months in 2017 as a color gradient (National Malaria Control Program data). Health facilities where sampling occurred for this study are shown as green dots, while community cross sectional collection sites are shown as yellow squares. Panel B shows the study design flowchart showing the number of samples collected at health facilities and cross sectional surveys and the success of genotyping. Priority for genotyping and analysis was given to regions in the Northwest.
Figure 2. *Pfkelch13* 561H mutations in Tanzania by region and by site in Kagera. A regional map is shown Panel A where white areas represent no sampling, gray areas represent sampled areas where no *pfkelch13* 561H was found, and colored areas are shaded by the frequency of samples with the 56H mutation. The red box surrounds the area plotted in Panel B, which is a map of Kagera showing *pfkelch13* 561H prevalence in each health facility sampled, represented as a pie chart.
Figure 3. Extended flanking haplotype plot around *Pfkelch13* 561H mutations. Pure mutant 561H are shown in maroon. Rwandan isolates are in the blue box, while Tanzanian isolates are shown in the red boxes.
Figure 4. Extended Haplotype Heterozygosity (EHH) analysis of 561H haplotypes. Panel A shows the extended haplotype for the RW/TZ1 561H haplotype (red-derived) compared to wildtype parasites (blue-ancestral). Panel B shows the extended haplotype of the TZ2 561H haplotype.
Figure 5. Prevalence of mutations in folate synthesis genes by region of Tanzania. *Pfdhfr* 164L (Panel A) and *Pfdhps* 581G (Panel B) prevalence in sampled regions are shown in color gradients; regions with no sampling are shown in white.
Authors contribution

DSI, JJJ and JB formulated the original idea. DSI, CIM, RAM, MDS and CB conducted the field surveys. DG, AF, AS, BL, ZPH, KN and AL performed data analysis under the guidance of DSI, JJJ and JB. JJJ, AS, AF, DG, BL, ZPH, CB, DP, MDS, JB, and DSI wrote and edited the manuscript. All authors contributed to the article and approved the submitted version.

Acknowledgements:

The authors wish to thank participants and parents/guardians of all children who took part in the surveillance. We acknowledge the contribution of the following project staff and other colleagues who participated in data collection and/or laboratory processing of samples; Raymond Kitengeso, Ezekiel Malecela, Muhidin Kassim, Athanas Mhina, August Nyaki, Juma Tupa, Anangisye Malabeja, Emmanuel Kessy, George Gesase, Tumaini Kamna, Grace Kanyankole, Oswald Osca, Richard Makono, Ildephonce Mathias, Godbless Msaki, Rashid Mtumba, Gasper Lugela, Gineson Nkya, Daniel Chale, Richard Malisa, Sawaya Msangi, Ally Idrisa, Francis Chambo, Kusa Mchaina, Raymond Kitengeso, Neema Barua, Christian Msokame, Rogers Msangi, Salome Simba, Hatibu Athumani, Mwanaidi Mtui, Rehema Mtibusa, Jumaa Akida, Ambele Yatinga, Tilaus Gustav, Oksana Kharabora and Claudia Gaither. The finance, administrative and logistic support team at NIMR: Christopher Masaka, Millen Meena, Beatrice Mwampeta, Gracia Sanga, Neema Manumbu, Halfan Mwanga, Arison Ekoni, Twalipo Mponzi, Pendaia Nasary, Denis Byakuzana, Alfred Sezary, Emmanuel Mnzava, John Samwel, Daud Mjema, Seth Nguhu, Thomas Semdoe, Sadiki Yusuph, Alex Mwakibinga, Rodrick Ulomi and Andrea Kimboi. Management of the National Institute for Medical Research, National Malaria Control Program and President's Office-Regional Administration and Local Government (Regional administrative secretaries of the 13 regions, and district officials, staff from all 100 HFs and Community Health Workers from the 3 community cross sectional regions. Technical and logistics support from the Bill and Melinda Gates Foundation team is highly appreciated. Permission to publish the manuscript was sought and obtained from the Director General of NIMR.

Funding
This work was supported, in whole, by the Bill & Melinda Gates Foundation [grant number 401 002202]. Under the grant conditions of the Foundation, a Creative Commons Attribution 4.0 402 Generic License has already been assigned to the Author Accepted Manuscript version that 403 might arise from this submission. This study was also funded by the National Institute for 404 Allergy and Infectious Diseases (R01AI156267 to JAB, DSI and JJJ; K24AI134990 to JJJ). 405

Data Availability: All sequencing data has been submitted to SRA (# pending). Other metadata 406 is available from the corresponding author upon reasonable request. Code for analysis is 407 available at: https://github.com/bailey-lab/MSMT_2021_DR_analyses.
REFERENCES

