Title: Assessing Risk Factors for Cognitive Decline Using Electronic Health Records: A Scoping Review

Authors: Liqin Wang, PhD¹*, Richard Yang, MS¹*, Ziqin Sha², Anna Maria Kuraszkiewicz³, Conrad Leonik⁴, Li Zhou, MD, PhD¹, Gad A. Marshall, MD⁵

Affiliations:
1 Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA (lwang@bwh.harvard.edu; ryang9@bwh.harvard.edu; lzhou@bwh.harvard.edu)
2 Lexington High School, Lexington, MA (ziqinsha@gmail.com)
3 University of Massachusetts Amherst, Amherst, MA (akuraszkiewi@umass.edu)
4 LSU School of Medicine, New Orleans, LA (cleonik@bwh.harvard.edu)
5 Department of Neurology, Brigham and Women’s Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (gamarshall@bwh.harvard.edu)

*Authors with equal contribution

Corresponding author:
Liqin Wang, PhD
Division of General Internal Medicine and Primary Care
Brigham and Women’s Hospital
399 Revolution Dr, Suite 1315
Somerville, MA 02145
Tel: 857-282-4089 | Fax: 857-282-5754 | E-mail: lwang@bwh.harvard.edu

Conflict of Interests: Authors have nothing to disclose.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Funding sources: LW and RY are supported by the National Institutes of Health grants K99AG075190 and Alzheimer’s Association Research Fellowship grant AARF-22-924992. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Content:

Word Count: Abstract 228; Manuscript 5047
Tables: 2
Figures: 2
Supplementary files: 2
References: 108

Highlights
1. Electronic health records are increasingly analyzed to discern dementia risk factors.
2. Eighty articles have been published and most of them were retrospective cohort studies.
3. Most risk factors addressed were related to medical conditions and interventions.
4. A few articles studied lifestyle, socioeconomic status, and environmental factors.
ABSTRACT

Background: Electronic health records (EHR) provide rich, diverse, longitudinal real-world data, offering valuable opportunities to study antecedent risk factors for cognitive decline. However, the extent to which such records have been utilized to understand the risk factors of cognitive decline remains unclear.

Methods: We conducted a systematic review following PRISMA guidelines. We retrieved relevant articles published between January 1, 2010, and April 30, 2023, from PubMed, Web of Science, and CINAHL. Inclusion criteria were studies utilizing EHR to study risk factors for cognitive decline, including subjective cognitive decline, mild cognitive impairment, and dementia. Each article was screened by at least two reviewers. Data elements were manually extracted based on a predefined schema. The studied risk factors were reported.

Results: Of 1,593 articles identified, 80 research articles were selected. Seventy (87.5%) were retrospective cohort studies, 53 (66.3%) used datasets with greater than 10,000 patients, and 69 (86.3%) used EHR datasets from the United States or United Kingdom. Furthermore, 39 (48.8%) targeted medical conditions, 23 (28.8%) related to medical interventions, and 14 (17.5%) related to lifestyle, socioeconomic status, and environmental factors. The majority of studied medical conditions were associated with an elevated risk of cognitive decline, whereas medical interventions addressing these conditions often reduced the risk.

Conclusion: EHRs have significantly advanced our understanding of medical conditions, interventions, lifestyle, socioeconomic status, and environmental factors related to the risk of cognitive decline.

Keywords: Electronic health records; Alzheimer’s disease; dementia; mild cognitive impairment; risk factors; medical condition; intervention
INTRODUCTION

Alzheimer’s disease (AD), characterized by chronic or progressive cognitive and functional decline, is a major cause of disability and dependency among older adults, causing great challenges for public health worldwide.\(^1\) Based on the degree of cognitive impairment, AD is often divided into three stages: the preclinical stage, characterized by normal cognitive ability with or without subtle cognitive concerns but with biological evidence of underlying AD, prodromal stage, characterized by mild cognitive impairment (MCI), and dementia stage with significant functional impairment interfering with daily activities.\(^2,3\) In 2023, it is estimated that 6.7 million Americans are living with AD at the stage of dementia in the US, and this number is expected to increase to 88 million by the year of 2050.\(^4\) This alarming statistic is not only significant in financial terms, but also underscores the profound impact on the affected individuals and families and the healthcare system at large. Understanding the risk factors that might contribute to dementia and identifying potential prevention or treatment strategies that might reduce the risk are of utmost importance.

While traditional research methodologies, focusing on in-depth studies of small cohorts over extended periods\(^5,6\) have indeed provided insights into certain aspects of the disease, there is a growing consensus in the scientific community about the need to broaden our scope and explore larger, more diverse datasets.\(^2\) The widespread adoption of electronic health records (EHRs) over recent decades has yielded a vast amount of longitudinal patient data. By sifting through these real-world datasets, we can gain deeper insights into the onset and evolution of AD and related dementias (ADRD), especially among populations that have been consistently engaged with the healthcare system. EHRs can be valuable in identifying potential risk factors for ADRD that might be missed in smaller convenience sample datasets. Moreover, they can highlight interventions that target certain medical problems that potentially affect the risk of dementia, particularly during early stages such as preclinical AD and MCI. However, the extent to which EHR data have been harnessed for such research remains unclear.
Previous literature review articles have primarily focused on specific areas related to ADRD risk. However, to our knowledge, none have specifically addressed how studies are using EHR data for analyzing ADRD risks. The current study aims to highlight the risk factors being studied through large-scale EHR data. Specifically, with this systematic review, we aimed to comprehensively consolidate existing literature on the use of EHR data in studying risk factors for cognitive decline ranging from MCI to dementia, and to identify unexplored areas of research for potential future investigations.

METHODS
Search Strategy
This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. We employed Boolean search strategies to identify studies written in English and published between January 1, 2010 and April 30, 2023. The databases used were PubMed, Web of Science, and CINAHL. The keyword-based search of the databases consisted of two parts, one for the outcomes and the other for the EHR. For the outcome, we aimed to encompass studies targeting all stages of cognitive impairment; therefore, we did not only include dementia as the keyword, but also relevant words related to the early stages of cognitive decline, such as MCI and normal cognition. The final included keywords were “dementia”, “mild cognitive impairment”, “cognitive dysfunction”, “preclinical Alzheimer”, “cognitive decline”, “normal cognition”, and “Alzheimer”. For the EHR, we included keywords like “electronic health records”, “electronic medical records” and “EHR”. The specific queries for individual databases can be found in eTable 1.

Study Selection
We restricted our selection to studies that utilized EHR data as an essential data source to explore the association of potential risk factors with dementia outcomes. Studies were excluded if they were review articles without original data, were written in a non-English language, focused on patients who already had cognitive impairment at the time of enrollment, had an extremely small sample size (n<100) or short follow-up time for outcomes (<1 year), were non-epidemiology study (e.g., focused on algorithm
evaluation), or were of low quality with missing or unclear components (e.g., unclear diagnostic criteria for outcomes).

Screening Process
Abstracts from the search results were retrieved after removing duplicates and those deemed ineligible by automation tools. Two reviewers independently assessed the titles and abstracts of the remaining articles against the inclusion and exclusion criteria. Discrepancies were resolved through discussion until consensus was reached. Articles that passed the title and abstract screening then underwent full-text screening. Two reviewers independently analyzed these articles, with a senior reviewer addressing any disagreements.

Data Extraction
From these articles, we extracted articles assessing risk factors for the onset of cognitive decline, including MCI, AD, and other dementias. The methodological quality was assessed, and a data extraction schema was developed, based on the STROBE checklist for observational studies. Extracted data elements included article information (authors and year), objectives, study design (e.g., cohort or case-control), sample size, age of the study participants, follow-up duration, data sources, explored risk factors, confounding variables, outcomes and measurement, statistical methods, main findings, and interpretation. Each article was assigned to two reviewers who independently extracted the information. Discrepancies were addressed through discussions or consultation with a third reviewer.

Article Classification
After we extracted specific risk factors from individual articles, we grouped them into major categories, including medical conditions, medical interventions, lifestyle, socioeconomic, psychosocial, and environmental factors. These major categories were further divided into subcategories, such as cardiovascular and metabolic conditions and psychiatric conditions under medical conditions. Since some articles investigated
multiple risk factors, a single article might fall under more than one major category or subcategory.

RESULTS

Figure 1 shows the PRISMA flow diagram. The initial search resulted in 1,593 articles, comprising 565 from PubMed, 538 from Web of Science, and 490 from CINAHL. A total of 496 duplicate articles were removed. Automated tools marked 74 articles as ineligible; these consisted of 3 case reports, 28 review articles, and 43 articles lacking abstracts. An additional 95 records were eliminated, including 42 datasets, 25 preprints, 13 articles without authors, 9 patents, 3 generic publications, 2 books, and 1 thesis. Subsequently, 832 articles were excluded during the title and abstract screening phase for not meeting the inclusion and exclusion criteria. The remaining 96 articles underwent full-text screening by at least two reviewers. After excluding additional 16 articles for various reasons—such as not using EHR as a major data source, being an atypical epidemiology study, or having extremely small sample size—80 articles remained and were included in the final analysis. A detailed list of these articles and extracted data elements are available in eTable 2 in the supplement.

Research Trend Over Time

Figure 2 illustrates the spread of the articles analyzed based on their year of publication. The chart reveals an increasing number of publications related to our topic over the past decade, indicating a rising trend in the use of EHR data to examine ADRD risk factors. While our search criteria included articles published between 2010 and 2023, all the final included articles were published after 2014. Over one-quarter (n=22, 27.5%) of the articles were published in the year 2022. Our search was conducted up to April 2023; therefore, the total number of articles for that year does not represent the full annual count.

Study Design

Of the 80 articles reviewed, 77(96.3%) were longitudinal studies: 70 were cohort studies, six were case-control studies, and one was a randomized control trial. The remaining
three were cross-sectional studies. The longitudinal studies had a median EHR duration of 16 years. The EHR duration for each study was determined from the initial year to the final year of the EHR records utilized, regardless of the actual follow-up time for individual patients. Among them, 16 studies (20%) had an EHR duration of under 10 years, 39 studies (48.8%) ranged between 10 and 20 years, and 22 studies (27.5%) had data duration exceeding 20 years.

Methods for Statistical Analyses

In the statistical analysis, 76.3% of the studies (n=61) predominantly used survival analysis to model and estimate the outcome-free times and identify various risk or protective factors. Among these, a substantial majority (n=54, 88.5%) chose the Cox proportional-hazards regression model,\(^\text{12}\) while a minority (n=13, 21%) used the Fine-Gray model,\(^\text{13}\) with some studies employing both. The Fine-Gray model was selected specifically for its capability to handle competing risks like death. Additional statistical analysis methods employed included logistic regression, chi-squared test, and analysis of variance (ANOVA).

EHR Datasets Sources

The included articles utilized various EHR datasets from different geographical locations to examine risk factors for ADRD. A majority of these studies used EHR data from the United States, constituting 46.3% (n=37) of the total. The most commonly used EHR database is that of Kaiser Permanente, with 11 studies, followed by the Veterans Health Administration (VHA), with 6 studies. The remaining 21 articles used databases from other large healthcare systems across the US, as well as some commercial databases, such as TriNetX,\(^\text{14-16}\) IBM Explorys,\(^\text{17}\) and Optum.\(^\text{18}\) Datasets from the United Kingdom (UK) made up 40% (n=32) of the studies. Cohorts from the Whitehall II study\(^\text{19-24}\) (n=8) and UK biobank\(^\text{25-31}\) (n=7) were frequently analyzed for dementia risk factors, during which the datasets were linked to various EHR datasets across the UK, including the Hospital Episode Statistics in England,\(^\text{32}\) the Scottish Morbidity Record data in Scotland,\(^\text{33}\) and the Patient Episode Database in Wales,\(^\text{25, 26, 31}\) to extract a more detailed medical history of patients. Other commonly used databases in the UK studies...
included the Clinical Practice Research Datalink (n=6)34-38 and the Health Improvement Network (THIN) (n=4).39-41 Additional countries of databases represented in this review included Australia (n=3),42-44 China (n=3),45-47 Denmark (n=3),41, 48, 49 the Netherlands (n=3),41, 49, 50 Taiwan (n=2),51, 52 Canada (n=2),53, 54 and Sweden (n=2).55, 56

EHR Dataset Sample Size

The studies utilized datasets with sample sizes ranging from several hundred to millions of patients. Only one study used a sample of less than 1000 patients.53 Twenty-six (32.5\%) studies used datasets ranging from one thousand up to 10 thousand patients; 46 (57.5\%) studies had datasets between 10 thousand and one million; and 7 (8.8\%) studies used datasets with more than one million patients.

Outcomes and Measurements

Most studies (n=67) examined multiple dementia subtypes, including AD, vascular dementia, Lewy body dementia (LBD), frontotemporal dementia (FTD), and mixed dementia. While the specific dementia subtypes considered in these studies varied, all studies included AD. Additionally, nine studies exclusively analyzed AD. To define those outcomes, the majority of these studies used codes from standard coding systems, including ICD codes, Read codes, SNOMED-CT, or a combination thereof. ICD codes were the most prevalent, featuring in 81.3\% (n=65) of the studies, followed by Read codes in 11.3\% (n=9). In addition to these coding systems, several other methods were used to define the outcomes, including prescriptions for dementia medications,18, 45, 47, 54 cognitive function tests,27, 53, 57 referencing the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition),50, 58, 59 conducting screening interviews,43, 57 and neuroimaging.27

Risk and Protective Factors

We summarized the risk factors analyzed in the reviewed articles. For medical conditions and interventions, we have further classified them into broad disease categories (Table 1). For the remaining risk factors, we classified them under the categories of lifestyle, socioeconomic, environmental, and others (Table 2).
Medical conditions

Out of the 80 articles reviewed, 39 (48.8%) examined the interplay between medical conditions and ADRD. Of them, 16 articles focused on cardiovascular and metabolic conditions, 8 addressed infections, inflammatory and immune-related conditions, 7 articles tackled neurological/ophthalmological conditions, 5 examined issues related to physical function and frailty, 4 delved into psychiatric conditions, and the remaining 7 articles investigated other risk factors, such as cancer, kidney disease, osteoarthritis, and hip fracture.

Cardiovascular and metabolic conditions: A clear thread emerging from our analysis is the association of cardiovascular and metabolic conditions with an increased risk for ADRD. Diabetes, for instance, has been spotlighted in several studies. Hypoglycemia, a common complication of diabetes treatment, has also been identified as a risk factor. Extensive research has been done on the relationship between blood pressure and ADRD using EHR data. Hypertension, hypotension, and blood pressure variability have all been shown to contribute to an increased risk for ADRD. Additional risk factors in this category include coronary artery disease, stroke, and hyperlipidemia. Obesity is contradictory with one study showing obesity as a risk factor for dementia, while another study suggesting it might have a protective effect. The age at which obesity is assessed seems to play a role, as midlife obesity has been more consistently linked with an increased risk of dementia later in life. However, obesity in older adults, especially those in their 70s and 80s, might be associated with a decreased risk of dementia. These findings in older adults may be driven by those who are underweight, who may in fact be frailer and have an association with increased dementia risk.

Infections, inflammatory and immune-related conditions: HIV, E. coli, and Covid-19 have been identified as risk factors for ADRD. Contrary to previous findings, several common infections—such as sepsis, pneumonia, other lower respiratory tract infections, urinary tract infections, and skin and soft tissue infections—were not
associated with an increased risk of ADRD. A subtype of infection deserving mention is that involving herpes viruses. One study observed a slightly decreased risk of dementia in individuals with symptomatic Herpes Simplex Virus 1 (HSV-1) infections not treated by antivirals and a pronounced 25% decreased risk in those who were treated with antivirals. Another study found no overall effect of a diagnosis with Herpes Zoster (HZ) on the incidence of dementia. However, it did identify a minor protective association between HZ and dementia, an association observed exclusively in frail individuals and females, and only for mixed or unspecified dementia. Furthermore, a study reported that patients grouped within the inflammatory/autoimmune disease cluster exhibited an elevated ADRD risk. Inflammatory bowel disease was also found as a risk factor. Both high urate and gout were associated with a decreased risk for ADRD, suggesting a protective effect of uric acid. The antioxidant effects of uric acid are a potential mechanism for protective effects of obesity observed in some studies.

Psychiatric conditions: The interplay between depression and ADRD remains unclear. Some view depression as a symptom, while others consider it as a precursor of ADRD. Of the articles included in our final analysis, three explored the relationship between depression and ADRD, with all identifying a depression as a risk factor for ADRD. Psychotic disorders have also been reported as a risk factor.

Neurological/ophthalmological conditions: The eyes and brain also form crucial nodes in the ADRD risk network. Retinal vascular occlusion may be associated with an increased ADRD risk. Visual impairment, determined by visual acuity, has also been linked to an elevated ADRD risk although another study did not find this association. The impact of diabetic retinopathy, a complication from diabetes, remains ambiguous: one study indicated an increased risk, while another observed no effect. Both traumatic brain injury and epilepsy have been identified as risk factors.

Physical function and frailty: Frailty metrics also weigh in on the ADRD risk scales. Being underweight was identified as a risk factor for ADRD, except in one study. Avoidance of the increased risk associated with being underweight is one
potential mechanism for the protective effect sometimes seen with obesity. Low physical function, as measured by grip strength and the Short Physical Performance Battery (SPPB), was also associated with an increased risk. Conversely, another study found that neither physical inactivity nor unintentional low caloric intake was associated with an increased ADRD risk.

Other medical conditions: Several studies have investigated a miscellany of medical conditions and their potential of ADRD linkages. Cancer emerges as a notable example. One study found that patients grouped within the cancer disease cluster had an elevated risk of ADRD. Conversely, another study determined that both malignant melanoma and non-melanoma skin cancers were associated with a decreased ADRD risk, suggesting a protective effect. Kidney disease, hip fracture, and osteoarthritis were also identified as risk factors for ADRD.

Medical interventions
In light of the risk posed by medical conditions to ADRD, researchers have examined various medical interventions to determine if they could mitigate the risk of ADRD. Of the 80 articles assessed, 23 (28.8%) analyzed the association between medical interventions and ADRD. Out of these, 10 were related to cardiovascular and metabolic interventions, 4 to immune, infection, and inflammatory interventions, 4 to psychiatric interventions, 3 to oncology, and 4 to other interventions.

Cardiovascular and metabolic-related interventions: Treatments targeting cardiovascular and metabolic conditions have been prominently investigated for their potential to reduce ADRD risk. Medications such as rosuvastatin, telmisartan, anticoagulants, and aspirin, which are primarily geared towards cardiovascular health, have all demonstrated efficacy in reducing the ADRD risk. In the context of diabetes management, metformin exhibited no association with incident dementia compared with a lack of initial treatment within the first 6 months post-diagnosis. However, it presented a mild protective effect compared to sulfonylureas. Conversely, thiazolidinedione monotherapy, as well as metformin and thiazolidinedione combined therapy, both displayed a reduced ADRD risk compared to metformin monotherapy.
Another study involving patients with atrial fibrillation and type 2 diabetes found that sodium-glucose co-transporter 2 inhibitors decreased the risk of dementia compared to patients not on this medication class. Among surgical interventions, bariatric surgery was found to be associated with an increased risk of ADRD, while carotid endarterectomy had no discernible impact.

Immune, infection and inflammatory-related interventions: Tumor necrosis factor blocking agent, methotrexate and antitherpetic medications were all found to have protective effects against ADRD. While nonsteroidal anti-inflammatory drugs (NSAIDs) were observed to increase the risk.

Psychiatric-related interventions: Two studies had contradictory conclusions on the effect of the selective serotonin reuptake inhibitor (SSRI) antidepressant class on the subsequent risk of ADRD, with one study identifying it as a risk factor and the other a protective one. Trazodone, another serotonergic antidepressant, which is now more commonly prescribed for insomnia, was reported to be a risk factor.

Oncology and other Interventions: Androgen deprivation therapy was found to be associated with an increased risk for ADRD by two studies published by the same team. Aromatase inhibitor therapy and tamoxifen, both targeting hormone receptor-positive breast cancer, showed no evidence of a difference in dementia risk.

Lifestyle, socioeconomic, psychosocial and environmental factors
EHR data have been utilized to examine the impact of lifestyles, socioeconomic, psychosocial, and environmental factors on ADRD. Out of the articles assessed, 14 (17.5%) were related to this topic. Specifically, 5 articles focused on lifestyles, 5 examined socioeconomic factors, 3 delved into psychosocial factors, and 3 addressed environmental factors.

Lifestyle: Both smoking and alcohol use— as determined by overall consumption and alcohol-induced loss of consciousness— were identified as risk factors for ADRD.
Conversely, a healthy lifestyle, characterized by no current smoking, moderate alcohol consumption, regular physical activity, healthy diet, adequate sleep duration, less sedentary behavior, and frequent social contact, exhibited a protective effect against ADRD in patients with type II diabetes. However, diet alone was not found to be protective against ADRD.

Socioeconomic factors: Higher education is believed to have neuroprotective effects, and such effects were observed in two out of three studies analyzing the association between education and ADRD risk. However, the third study found no significant correlation. Neighborhood disadvantage and low occupational position were associated with higher risk of ADRD.

Psychosocial factors: Psychosocial factors such as social isolation have been identified as risk factors for ADRD. In contrast, frequent social contact appears to be a protective factor. Another metric, the “feeling of loneliness,” was not associated with either an increased or decreased risk.

Environmental factors: EHR data was also used to analyze several environmental risk factors for ADRD. Being born in high stroke mortality states and exposure to Agent Orange among veterans were found to be associated with an increased risk of ADRD. Additionally, lithium levels in drinking water were associated with greater risk of dementia in women.

DISCUSSION

In this systematic review, we searched three extensive databases to identify articles related to the analysis of risk factors for dementia using EHR data. The final selection of 80 articles spans a wide range of risk factors, including medical conditions, interventions, lifestyle, socioeconomic status, psychosocial, and environmental factors. The majority of studied medical conditions were associated with an elevated risk of ADRD, whereas medical interventions addressing these conditions often reduced the ADRD risk. Using
large and diverse EHR datasets has enriched the literature on antecedent risk factors for dementia and confirmed findings from smaller sample studies.

Longitudinal EHR data are suitable for ADRD research, given the characteristically slow and insidious onset of ADRD. The prolonged latency period between exposure to risk factors and the onset of clinical symptoms necessitates extended observation to accurately identify early signs and risk factors, and to determine the chronological order of events, thereby facilitating a possible assessment of causality.

Utilizing EHR datasets provides several benefits for ADRD research, especially regarding the exploration of diverse medical conditions and interventions to identify risk and protective factors for cognitive impairment and dementia. The extensive data available through EHRs furnish researchers with a wealth of variables, enabling simultaneous exploration of numerous potential risk and protective factors, allowing for comprehensive adjustments for confounders. This, in turn, yields more accurate and holistic insights into the complex aspects of ADRD research. Access to large and diverse EHR datasets not only increases statistical power, enhancing the ability to discern associations between potential risk or protective factors and cognitive decline, but also enables the research of rare events and identification of specific subgroups with unique risk profiles or disease trajectories. Notably, these datasets encompass individuals from various ethnic, socio-economic, and geographical backgrounds, thereby facilitating the study across different populations and allowing the examination of various disease subtypes, trajectories, and clinical presentation variations given the significant clinical heterogeneity within ADRD. Compared to studies using claim data, clinical trials, and convenient sample observational studies, EHR offers rich, detailed clinical data that allows for in-depth studies into the clinical aspects and mechanisms of ADRD. EHR datasets can confirm findings from such studies and also offer unique insights into factors that might be overlooked or absent in them. As part of the current review, we have discovered that several factors have been studied exclusively using EHR data.
To facilitate the investigation of risk factors—including socioeconomic aspects, lifestyle, and environmental factors—EHR data are often linked to other types of datasets using patient identifiers, such as names, social security numbers, and zip codes. This approach aids in examining factors not present in the EHR and also allows for the inclusion of confounding factors from the EHR.

Utilizing EHR datasets for ADRD research has carved out a niche in contemporary scientific exploration, offering valuable insights derived from diverse and substantial patient data. Nonetheless, the navigation through this informational wealth unveils notable limitations that must be acknowledged.

One pivotal constraint revolves around the heterogeneity and quality of outcome measures across EHR-based studies. Despite the commonality of employing dementia as a focal outcome, the definition thereof remains inconsistently applied, varying in the inclusion or exclusion of vascular dementia, LBD, and diverging in the coding systems (ICD, SNOMED CT, READ) utilized for outcome definition. While some studies leverage cognitive tests like the Montreal Cognitive Assessment, they are often restricted by smaller sample sizes. Utilizing diagnostic codes like ICD for outcome measures scales up the sample size, albeit potentially compromising the specificity of dementia diagnoses.

Furthermore, the inherent biases prevalent in observational studies, characterized by potential confounding, selection bias, and information bias, remains a ubiquitous issue. EHR data, notwithstanding its vastness, often encounters challenges related to missing values, which may inadvertently skew results and interpretations. For instance, death is viewed as a competing risk for ADRD, yet this information might be absent from the EHR. While many studies have cross-referenced the EHR with external databases (e.g., state mortality files, social security death index records) to obtain death information, not all of these studies explicitly state whether they have done so.
Methodological concerns also materialize, particularly regarding statistical applications in observational ADRD studies. In observational studies on ADRD with long follow-up time, individuals are often at risk of experiencing competing events, such as death, that can preclude the occurrence of the event of interest (e.g., diagnosis of AD). The Cox model is a widely used method for survival analysis, but it is not suitable for handling competing risks appropriately, as it treats competing events as censored, which can lead to biased and inaccurate results when the assumption of independent censoring is violated. On the other hand, the Fine-Gray model allows for estimating the effect of covariates on the sub-distribution hazard, providing insight into the relationships between risk and protective factors and the event of interest while accounting for competing risks.

Most studies chose to simply adjust for confounders in the survival model. However, this method may not adequately control for confounding, especially when there are many confounders or when there is substantial overlap in covariate distributions between treatment groups. It can also lead to issues such as multicollinearity and overfitting. Under the scenario of high-dimensional confounding, propensity score methods such as propensity score matching (PSM) and inverse probability weighting (IPW) should be used to reduce the dimensionality and balance covariates between groups to reduce bias in the estimation of exposure or treatment effects. It is imperative to note that EHR-based studies, while offering valuable insights, do not conclusively establish causality due to the potential influence of uncontrolled confounding variables. Investigations into the linkage between depression and dementia exemplify this dilemma. Moreover, EHR-based studies are not randomized controlled clinical trials, which are the gold standard for establishing causality.

Lastly, a geographic and demographic constraint arises. Notwithstanding the extensive data embedded in EHR systems, much research is localized to specific healthcare systems or geographic locales, thereby limiting generalizability. Despite the widespread availability of longitudinal EHR datasets across various healthcare systems and regions, such as the Mayo Clinic and Mass General Brigham, research has largely been
confined to particular EHRs, such as those in Kaiser Permanente. While the VHA dataset provides a national scope, its predominant representation of male individuals poses a demographic limitation. Consequently, the paucity of research leveraging expansive populations, especially on a national scale (e.g., via the ENACT network), underscores an imminent need for future endeavors to explore dementia risk utilizing diverse, comprehensive EHR datasets.

Future directions
The analysis of the articles suggests several avenues for future investigation using EHR data. First, the majority of EHR-based studies to date have focused on populations with well-defined medical conditions, such as diabetes, hypertension, cancer, and HIV. There exists an opportunity—and a necessity—to broaden the scope of research to encompass a wider range of specific groups. These should include sexual and gender minorities, indigenous populations, individuals who demonstrate resilience against cognitive decline, and those belonging to various psychiatric cohorts. Second, integrating diverse longitudinal EHR databases could expand the study population and validate findings across different institutions and geographic locations. For instance, UK has shown robust use of national datasets. In contrast, the US and other countries appear to underutilize national-level EHR datasets. The expanded use of such comprehensive data sources could provide a more representative sample and enhance the generalizability of research outcomes. Third, EHRs do not capture all relevant data, necessitating linkage with other datasets, such as Medicare records, genetic data, socioeconomical status, lifestyle, crime data, environmental factors (e.g., air pollution, wildfires, climate change, toxic chemicals). Fourth, there are considerable opportunities to investigate additional risk or protective factors that non-EHR studies have identified but were overlooked in the reviewed articles, including genetic markers (e.g., apolipoprotein E, presenilin 1 and 2, and amyloid precursor protein), environmental toxins (e.g., lead, pesticides), mild traumatic brain injury, endocrine factors (such as hypothyroidism), sleep disturbance (like sleep apnea or chronic sleep deprivation), bilingualism, vitamin and nutritional deficiencies, and the microbiome (e.g., gut microbiome). Fifth, while the existing literature primary focuses on dementia or AD,
fewer studies address the early onset of AD and the initial stages of cognitive decline, such as mild cognitive impairment and subjective cognitive decline. Sixth, almost all the reviewed articles have used data from structured fields of the EHR. Certain conditions and symptoms (e.g., hearing loss, sleep disturbances) that are not consistently captured in structured EHR data may require the examination of clinical notes to identify them, which often require AI and natural language processing. Finally, while a wide array of medical conditions adversely affects long-term cognitive outcomes, the clarity regarding whether receiving medical treatments would reduce risk remains obscure. Compared to the numerous studies exploring the interaction between medical conditions and ADRD, there is a scarcity of studies examining pharmacological treatment and surgical effects. Consequently, future research should pivot towards studying the association of medical interventions with cognitive decline across a more expansive area.

Limitations
Several limitations warrant acknowledgment in this review. Firstly, our search was constrained to three databases, potentially overlooking relevant studies listed elsewhere. Secondly, our article search, confined to a limited set of terms, might have omitted pertinent articles that mentioned specific EHR components (e.g., clinical notes) or utilized alternative terminology, such as “primary care dataset,” instead of EHR. While our search terms primarily targeted titles and abstracts, the term EHR might have been mentioned in the methods section of a manuscript, which we might have overlooked. Thirdly, we abstained from conducting a bias assessment for the observational studies included, such as utilizing ROBINS-E. Given the employment of an EHR database, biases are often present in data collection and outcome measures. Fourthly, while this review meticulously explores EHR-based observational studies, it does not aim to provide a comprehensive overview of the field. Finally, we refrained from conducting a meta-analysis due to the varying confounders adjusted for in different studies, complicating cross-study comparisons.

CONCLUSION
EHR data, with its rich and diverse longitudinal real-world information, provides substantial insights into the medical conditions, interventions, lifestyle, socioeconomic, and environmental factors associated with ADRD risk. Looking ahead, research should focus on diversifying study populations and integrating EHR data across geographical locations and with non-EHR datasets. There is also a need to enhance the extraction of information from unstructured text to explore a broader range of risk factors for ADRD.

ACKNOWLEDGEMENTS

Data Availability
No data was used for the research described in the article.

CRediT authorship contribution statement

Conceptualization: Wang, Yang
Data curation: Wang, Yang, Sha, Kuraszkiewicz, Leonik
Formal analysis: Wang, Yang, Sha, Leonik, Marshall
Investigation: All authors
Methodology: Wang, Yang
Project administration: Wang, Yang
Supervision: Wang, Marshall
Roles/Writing - original draft: Wang, Yang
Writing - review & editing: All authors
Funding acquisition: Wang

Declaration of Generative AI and AI-assisted technologies in the writing process

During the preparation of this work the authors used GPT-4 in order to improve the readability and language. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.
Tables and Figures

Table 1. Summary of medical conditions and interventions from EHR-based studies in related to the risk of Alzheimer’s disease and related dementias.

<table>
<thead>
<tr>
<th>Categories</th>
<th>Medical conditions (n=39)</th>
<th>Medical interventions (n=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of articles</td>
<td>Risk Factors/Exposures</td>
</tr>
<tr>
<td>Cardiovascular and metabolic</td>
<td>16</td>
<td>Diabetes ↑[^20], 51, 54, 61, 82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypoglycemia in diabetic patients ↑[^34, 45, 57, 63]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypertension ↑[^51, 62, 64, 65, 54] ↔[^49]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypotension ↑[^49]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High blood pressure variability ↑[^51] ↔[^66]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coronary artery disease ↑[^51]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke ↑[^51]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyperlipidemia ↑[^51]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dyslipidemia ↔[^54]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Obesity ↑[^38] ↓[^25] ↔[^54]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antihypertensive medications ↔[^54]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statins ↔[^54]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rosuvastatin ↓[^78]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anticoagulant ↓[^13] e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telmisartan ↑[^52]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metformin ↔[^59] ↓[^18] b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thiazolidinedione ↓[^80] c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfonylurea ↑[^18, 80] c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metformin and thiazolidinedione dual therapy ↓[^80] c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium-glucose co-transporter 2 inhibitors ↓[^16]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carotid endarterectomy ↔[^55]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bariatric surgery ↑[^81]</td>
</tr>
<tr>
<td>Infections, inflammatory, and immune-related</td>
<td>8</td>
<td>HIV ↑[^58, 69] E. coli ↑[^70] a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Symptomatic herpes simplex virus infection ↓[^35]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Common infections (sepsis, pneumonia, other LRTIs, UTIs and SSTIs) ↔[^27]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inflammatory/autoimmune conditions ↑[^30]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inflammatory Bowel Disease ↑[^17]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High urate ↓[^25] Gout ↓[^40]</td>
</tr>
<tr>
<td>Neurological/ophthalmologic conditions</td>
<td>7</td>
<td>Retinal vascular occlusion ↑[^39] ↓[^73]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visual impairment ↑[^26] Diabetic retinopathy ↑[^74] ↔[^75]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Traumatic brain injury ↑[^76] Epilepsy ↑[^17]</td>
</tr>
<tr>
<td>Physical function and frailty</td>
<td>5</td>
<td>Low physical function ↑[^93] Physical inactivity ↔[^38]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Underweight ↑[^25, 49, 54] ↓[^38]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low caloric intake (31852815) ↔[^38]</td>
</tr>
<tr>
<td>Psychiatric</td>
<td>4</td>
<td>Depression ↑[^84, 54, 72] Psychotic disorder ↑[^44]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychosocial</td>
<td>3</td>
<td>Social isolation ↑[^31] Social contact ↓[^24]</td>
</tr>
</tbody>
</table>
Table 2. Summary of lifestyles, socioeconomic, psychosocial, environmental and other factors from EHR-based studies in related to the risk of Alzheimer’s disease and related dementias.

<table>
<thead>
<tr>
<th>Categories</th>
<th>No. of articles</th>
<th>Risk Factors/Exposures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifestyle, socioeconomic, psychosocial, environmental risk factors (n=14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifestyle</td>
<td>5</td>
<td>Diet ↔ 22, 87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Healthy lifestyle ↓ 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smoking ↑ 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alcohol consumption ↑ 56</td>
</tr>
<tr>
<td>Socioeconomic</td>
<td>5</td>
<td>High education ↓ 88, 89 ↔ 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neighborhood disadvantage ↑ 54, 90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low occupational position ↑ 23</td>
</tr>
<tr>
<td>Psychosocial</td>
<td>3</td>
<td>Social isolation ↑ 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social contact ↓ 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feeling of loneliness ↔ 31</td>
</tr>
<tr>
<td>Environmental</td>
<td>3</td>
<td>Birth in high stroke mortality states ↑ 91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agent orange ↑ 92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lithium level in drinking water ↑ 93</td>
</tr>
<tr>
<td>Others (n=7)</td>
<td>6</td>
<td>Plasma protein ↑ 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower testosterone ↑ 42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Higher brain age ↑ 106</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Childhood IQ ↑ 107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICU admission ↑ 108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hispanic race ↑ 62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sex ↔ 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRP genotype ↔ 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apolipoprotein E (APOE) genotype ↔ 30</td>
</tr>
</tbody>
</table>

Abbreviations: HIV, human immunodeficiency virus; LRTIs, lower respiratory tract infections; UTIs, urinary tract infections; SSTIs, soft tissue infections; BMI, body mass index; ICU, intensive care unit; CRP, c-reactive protein; APOE, apolipoprotein E.

↑ indicates increased risk for cognitive decline
↓ indicates decreased risk for cognitive decline
↔ indicates no significant impact to cognitive decline
a used aggregate data that did not allow simultaneous adjustments of covariates, causality cannot be inferred
e reference group = vitamin K antagonists
b reference group = sulfonylureas
c reference group = metformin monotherapy
d reference group = tamoxifen
Figure 1. PRISMA flow diagram
Figure 2. Distribution of articles by publication years, by type of risk factors

REFERENCES

