Assessment of the Uromonitor TERT/FGFR3/KRAS urine mutation test in over 500 surveillances of patients with non-muscle invasive bladder cancer

Authors:

Pedro Ramos1, 2, Luís Pacheco Figueiredo1, 2, 5, João Paulo Brás3,4, Carolina Dias3,4, Mafalda Bessa-Gonçalves3,4, Carlos Martins-Silva1, 2, Francisco Botelho1, 2

Affiliations:

1 Serviço de Urologia do Hospital de São João,
2 Faculdade de Medicina do Porto
3 Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
4 Instituto de Patologia e Imunologia Molecular, Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
5 Escola de Medicina, Universidade do Minho
ABSTRACT

Introduction: Bladder cancer (BC) remains the most common malignancy of the urinary tract, with non-muscle invasive BC (NMIBC) representing the vast majority of bladder cancer patients. The current standard of care (SOC) follow-up in NMIBC patients demands an intensive schedule and requires costly and burdensome methods, driving the development of alternative, non-invasive, cost-effective methods that may complement or serve as alternatives to cystoscopy and cytology. Uromonitor is a urine biomarker test that detects hotspot mutations in three genes (TERT, FGFR3, and KRAS) for the evaluation of disease recurrence. The aim of the current study was to assess its performance comparing it to the current SOC methods.

Materials and Methods: A total of 528 NMIBC surveillances from 490 individual patients were enrolled from December 2021 to June 2023. All subjects underwent SOC methods and provided a urine sample before undergoing cystoscopy for Uromonitor analysis. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for recurrence and compared to the gold-standard trans-urethral resection (TURBT) pathology.

Results: Uromonitor displayed a positive predictive value (PPV) of 93.18% and a negative predictive value (NPV) of 98.76%. Cystoscopy showed a total of 22 (31.88%) false positives not confirmed by TURBT, while there were only 3 urine positive tests where no suspected lesions were found in cystoscopy. Sensitivity, specificity and NPV values for Uromonitor remained high across all NMIBC grades and stages. Uromonitor missed detecting mutations in urine of 6 cases which, nonetheless were all detected in TURBT tissue, confirming extensive coverage of the biomarkers and highlighting need for rigorous collection and filtration procedure for adequate sampling of mutations in urine.

Conclusion: In the present trial, we confirmed that the Uromonitor biomarker test represents a reliable tool in the detection of NMIBC recurrence in patients undergoing routine surveillance, regardless of stage and grade. It offers either an alternative or a complement to the current SOC methods, providing rapid results and a non-invasive option, potentially improving patients quality of life and helping reduce the burden of NMIBC follow-up. To our knowledge, this is the largest single-center study assessing Uromonitor performance and thus validating its usefulness in clinical practice.

Keywords: urinary biomarkers; bladder cancer; cystoscopy; cytology; follow-up; non-muscle-invasive bladder cancer; recurrence; progression.
1. INTRODUCTION

Bladder cancer (BC) remains the most common malignancy of the urinary tract. Data from 2018 shows 549,393 patients diagnosed with the disease, and 199,922 succumbed to the disease worldwide (1), ranking 13th in terms of yearly cancer mortality (2). The risk of BC increases with age, with age-specific curves steeply increasing after the age of 50 yr (3). The increasingly aging world population will presumably have a major impact on BC over the next decades. Currently, people aged over 60 represent approximately 13% of the world population and 25% of the population in Europe. Half of the increase in world’s population will be reflected in a rise in the population aged over 60 years, rising from 960 million to 1.4 billion by 2030 and 2.1 billion by 2050 (4). These demographic changes will have an enormous impact on BC incidence (as well as on most other late-onset diseases), and therefore also on prevalence and mortality. This will lead to an increasing burden on clinical care and society as a whole. BC is stratified into two major subtypes: non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). At the initial diagnosis, approximately 75% of the patients present with NMIBC. The majority of these patients will develop disease recurrence (5). Less frequent, yet more ominous, is the progression to muscle-invasive disease in patients previously diagnosed with NMIBC. Progression occurs in up to 20% of the patients, with carcinoma in situ (CIS) and/or T1 high-grade (HG) patients representing the highest risk subgroup (6,7).

The high rates of NMIBC recurrence and the lifetime risk of progression make intensive follow-up mandatory. The current follow-up schedule of patients with an NMIBC diagnosis includes regular surveillance with cystoscopy combined with urine cytology, as well as upper-tract surveillance with imaging. This follow-up regimen should be maintained years following diagnosis and may even continue throughout life (8).

These extensive schemes lead to high costs, making BC the most expensive cancer when considering patients’ lifetime expenses. BC is accountable for 3% of all cancer costs within the European Union (9,10). Cystoscopy remains the follow-up method with higher sensitivity for detecting recurrence/progression during follow-up in patients with NMIBC. White light cystoscopy (WLC) is widely used and is an adequate and reliable tool for detecting papillary lesions. However, it lacks adequacy in the detection of flat lesions, such as CIS or microscopic lesions(6). Methods to enhance tumor detection through cystoscopy were then developed including blue light cystoscopy (BLC) and narrow-band imaging (NBI) as promising tools to offset this drawback. However these methods have failed to obtain wide clinical practice acceptance (11,12). Another major downside of the current follow-up strategy is that, due to its invasive nature, frequent cystoscopic surveillance might be perceived as highly uncomfortable and anxiety-inducing, as well as carrying a risk of infection (13).

The main advantage of urinary cytology, besides its lower cost, is its noninvasive nature. Although it provides high specificity (86%), the low sensitivity of urine cytology is a significant limitation, especially in patients with low-grade disease. Sensitivity in urine cytology ranges from 16% in low-grade patients up to 84% in patients in high-grade disease, and is only recommended as a complement to cystoscopy in patients with high-grade disease (14). Additionally, cytology prone to interobserver and intraobserver variability, and results can take up to a few days to be reported.
Therefore, there is a growing interest in research for new, more cost-effective, less invasive, and accurate follow-up tools in patients with NMIBC. One potential way to enhance the current regime is by introducing urinary biomarkers, either as an addition to the current standard practice or as a (partial) replacement of the current methods.

A high negative predictive value (NPV) is mandatory for urinary biomarker methods to serve as a promising alternative to (partially) replace cystoscopy. A high NPV provides assurance to physicians that no malignant lesions are left undiagnosed. Several biomarker-based urine tests have been developed and received FDA approval over the years. However, tests like the NMP22 BladderCheck, UroVysion, or BTA stat have not been successfully implemented into clinical practice due to insufficient NPV and low specificity. A meta-analysis regarding the performance of urinary biomarkers exhibit insufficient sensitivity, particularly in low-stage and low-grade tumors (15).

In recent years, a wide range of biomarker-based tests with significantly higher NPV have emerged. While promising, these tests need validation in a clinical setting before implementation (16). Among them is a new urine test called Uromonitor®, U-monitor. This test evaluates a subset of hotspot alterations in three different genes, including some of the most common genetic events in NMIBC(17).

Genetic alterations in the promoter region of telomerase reverse transcriptase (TERT) can lead to increased gene expression or constitutive telomerase expression. This can disrupt the cell division control system and, resulting in uncontrolled cell growth (18) It has been widely demonstrated that telomerase activity is enhanced in 85–90% of tumor cell types, making TERT gene mutations a promising biomarker for a malignant disease (19). In NMIBC, specifically, TERT promoter have been reported in up to 80% of cases across different stages and grades (20,21). Two TERT hotspot mutations, occurring mainly at positions −124 bp and −146 bp upstream of the transcription starting site, are associated with BC at higher frequency. Furthermore, evidence shows that TERT hotspot mutations occur in both low and high grades, as well as carcinoma in situ lesions, with similar frequency across each subgroup of NMIBC, unaffected by patient characteristics such as age, sex and smoking habits (22,23). These mutations have also been detected in BC histological variants such as squamous cell carcinoma, adenocarcinoma, and small cell carcinoma (24–26). Therefore, the widespread presence of TERT promoter mutations across different stages and grades qualifies it as a valuable "all-around" biomarker for clinical practice in detecting NMIBC recurrence/progression(27,28).

Fibroblast growth factor receptor (FGFR3) mutations are among the most common genetic alterations found in NMIBC. Approximately 60–70% of NIMBC cases harbor these mutations, with the majority occurring at hotspot codons S249C, R248C and Y375C (29). These mutations lead to activation of the FGFR3 signalling pathway, promoting cell proliferation, survival, and angiogenesis (30,31). FGFR3 hotspot mutations have been associated with low-grade disease and favorable clinical outcomes in NMIBC, meaning lower rates of recurrence and progression (32,33). These findings highlight the potential of FGFR3 mutation status as a prognostic marker in NMIBC. Moreover, FGFR3 mutations have also been investigated as potential predictors of response to adjuvant intravesical therapy, such as Bacillus Calmette-Guérin (BCG) immunotherapy. Evidence has suggested that patients with FGFR3-mutant tumors may derive less benefit from BCG treatment due to their inherently favorable prognosis (34).
Furthermore, while FGFR3 was associated with lower risk disease, alterations in FGFR3 were identified in close to 40% of high-grade NMIBC, suggesting that trials testing targeted inhibitors of these kinases should be further explored (34).

Moreover, FGFR3 assumes an important role as a predictive biomarker due to the development of FGFR3-targeted therapies. The use of FGFR3 signalling blockade using FGFR inhibitors, such as erdatifinib and infigratinib, has shown promising results in clinical trials for advanced NMIBC with FGFR3 alterations (35,36). FGFR1-4 inhibitor Erdatifinib has already been approved by the FDA and is in use in patients with metastatic BC (37,38).

Mutations in the RAS oncogenes (HRAS, KRAS, NRAS) are present in 11-13% of bladder tumors and can be found in all stages and grades (39,40). These genetic aberrations do not have a clear correlation with patient prognosis (41,42). Although not as common as some other hotspot mutations, the detection of KRAS mutations could enhance the sensitivity of a urine biomarker panel test, especially when combined with the previously mentioned alterations, in patients with NMIBC.

Recently, a new urine test, Uromonitor® (developed by U-Monitor in Porto, Portugal), has been introduced. This test evaluates a subset of hotspot alterations in three different genes (TERTp, FGFR3, and KRAS) using Real-Time PCR (RT-PCR). These targeted alterations include some of the most common genetic events in NMIBC (17,29,43). Encouraging results have been obtained with Uromonitor®. In the first study, Uromonitor® showed a sensitivity of 73.5% and a specificity of 73.2% in detecting TURBT confirmed recurrences, analyzed among 331 urine samples collected at 18 different centers. With the addition on KRAS hotspot mutation analysis, sensitivity increased to 100% in the detection of TURBT-confirmed recurrence, with a specificity of 83.3% (44). Later, Sieverink et al. performed the first clinical validation study with Uromonitor® incorporating TERT/FGFR3/KRAS full panel. A total of 97 patients with history of NMIBC were included. Uromonitor® presented an overall sensitivity of 93.1%, a specificity of 86.8%, a positive predictive value (PPV) of 75.0%, and an NPV of 96.7% (46). In a recent clinical trial focusing on LG NMIBC, including 171 patients and 380 cystoscopies/Uromonitor® tests, Uromonitor® demonstrated a sensitivity of 89.7%, specificity of 96.2%, a negative predictive value (NPV) of 98.8% (45). Despite these promising results, further evidence and clinical practice validation are still needed for Uromonitor® to establish itself as a reliable alternative tool for early recurrence detection during NMIBC follow-up. In this current study, we aimed to validate these results in an independent cohort of NMIBC patients undergoing follow-up in a large volume single-center prospective study.
2. MATERIALS AND METHODS

2.1 Study Design

This was a prospective, observational, blinded, single-center study. The patients included were patients with previously diagnosed NMIBC under follow-up at São João University Hospital Center in Porto, Portugal. All patients were enrolled in the study and collected urine samples for Uromonitor® testing before undergoing flexible cystoscopy at the hospital’s outpatient clinic. Patients were enrolled form December 2021 to June 2023.

Inclusion criteria were the following: ≥18 years of age; history of NMIBC currently under follow-up; being able to give written consent; being able to provide a minimum of 10 mL of urine prior to undergoing standard-of-care (SOC) cystoscopy.

Exclusion criteria: undergoing cystoscopy for a different diagnosis than BC; previous diagnosis of muscle-invasive bladder cancer (MIBC); previous diagnosis of upper tract urothelial carcinoma (UTUC); providing inadequate material for Uromonitor® testing.

2.2 Patient Data Collection

Clinical information were collected from all patients enrolled including: age; gender; smoking history (ever smoker/never smoker); date of NMIBC diagnosis (1st TURBT); symptoms at presentation (hematuria/other symptoms/radiologic incidentaloma via ultrasound or tomography); size of primary BC lesions (<1cm/ 1-3cm/ >3cm); type of lesion (polypoid/sessile/flat); stage at 1st TURBT (pTa/ pT1) plus 2nd look TURBT if applicable; grade of primary lesion (HG/ LG); histology (urothelial carcinoma (UC)/ variant histology (VH)); history of previous recurrence; current follow-up date/cystoscopy date; last collected cytology (positive/negative); proposed adjuvant therapy modality (single post-operative instillation of MMC; ≤1 year adjuvant intravesical BCG or chemotherapy; >1 year BCG); current cystoscopy result (positive/negative); subsequent TURBT data (BC/no malignancy) – if TURBT positive for BC: stage, grade and histology; Uromonitor® result (positive/negative) – if positive: hotspot mutations present (TERT -124/ TERT -146/ FGFR3 248/ FGFR3 249/ KRAS 12/13 / KRAS 61).

All urine collections were performed within the standard clinical NMIBC follow-up program in which all patients came in for a regular follow-up cystoscopy and were asked to provide additional urine in parallel, immediately before cystoscopic evaluation. Following urine collection, all patients underwent a standard of care cystoscopy by a urologist or a urologist in training who inspected the bladder for any abnormalities. Recurrence or progression were defined exclusively as pathologically proven disease following TURBT.

2.3 Urine Collection, Sample Processing and Testing

Specimens were processed using the Uromonitor® IVD Test (U-Monitor, Porto, Portugal). Uromonitor® is composed by three subunits. The “Uromonitor® – Urine filtering kit” (#UrokIt1) provides the components needed for sample collection. The principle of the procedure relies on the filtration of...
urine samples. Using a syringe, urine samples pass through a filter, with a proprietary conservative, where exfoliated bladder cells are trapped and enriched for subsequent procedures. The “Uromonitor® - DNA Extraction and preparation kit” (#Urokit2) provides the reagents for the extraction and purification of genomic DNA. The “Uromonitor® - Real-Time PCR kit for the amplification and detection of TERT, FGFR3 and KRAS hotspot mutations” (#Urokit3) provides an efficient and fast method for the amplification and detection of mutations in the TERT promoter (-124 and -146), FGFR3 codons 248 and 249, and KRAS codons 12/13 and 61, through Real-Time PCR.

2.3.1 Urine filtration

Urine samples collected from patients prior to flexible cystoscopy were filtered using #Urokit1, following their consent. Samples of 10–20 mL were filtered within an hour of collection and stored at 4 °C. Filters containing the samples were sent on a weekly basis to U-Monitor Lab (UPTEC, Porto) for analysis. The company was blinded to the flexible cystoscopy results and received samples with ID numbers, which were stored in a secure database in the Department of Urology in São João University Hospital Center.

2.3.2 DNA Extraction

Urine

Filtered urine samples underwent final analysis in U-Monitor Lab (UPTEC Asprela, Porto). DNA was extracted using #Urokit2 and prepared for Real-Time PCR. Briefly, filters were inverted and placed on top of the cell lysis tubes. Syringes with 400 µL cell lysis buffer were attached to the filter, and the buffer filtered into the cell lysis tube. Cell lysis tubes were then incubated at 60 °C for 30 min under agitation. After this, proteinase K was added, and the mixtures incubated for another 10 min at 60 °C. Then, 450 µL of normalizing solution were added and vortexed for 5 seconds. The lysate mixtures were transferred to the respective spin columns and centrifuged for 1 min at 3300g. After that, 2-step washing centrifugations were performed. Finally, spin columns were transferred to the respective elution tubes, and 50 µL of elution buffer were added. After a 5-minute incubation at RT, tubes were centrifuged, and the eluates containing the DNA stored at -20°C until Real-time PCR analysis.

FFPE

DNA from FFPE was extracted using GRS Genomic DNA Kit - BroadRange (GK06.0100; GRISP, Portugal) and the presence of TERTp, FGFR3 and KRAS mutations analyzed with the “Uromonitor® - Real-Time PCR kit for the amplification and detection of TERT, FGFR3 and KRAS hotspot mutations” (#Urokit3). Briefly, slides containing 20 um thick tissue slices were deparaffinized using xylene and ethanol. Deparaffinized tissue slices were then microdissected at the microscope into a 1.5 mL tube. Samples were incubated overnight at 60°C with Buffer BR1 and Proteinase K. After that, Buffer BR2 was added and homogenized with the samples. Lysates were then centrifuged for 2 min at 16000g and supernatants mixed with absolute pro-analysis ethanol before being transferred to the “genomic mini spin” columns. Lysate mixtures were centrifuged for 1 min at 16000g. After that, 2-step
washing centrifugations were performed. Finally, 25 μL of elution buffer were added, and after a 5-minute incubation at RT, tubes were centrifuged, and the eluates containing the DNA stored at -20°C until Real-time PCR analysis. Real-time PCR analysis was performed as for the urine samples, following #Urokit3 instructions.

2.3.3 Real-time PCR

The extracted DNA was amplified and detected on a qPCR real-time machine (StepOnePlus™, Thermo Fisher Scientific, Waltham, MA, USA) using the proprietary chemistry for amplification and detection, as provided with the #Urokit3. It contains 3 independent assays that use allele-specific primers in a multiplex reaction to identify the presence of TERTp, FGFR3 and KRAS mutations in a total of 6 reactions per sample. Each reaction contains primer sets and probes for detection of the mutations, as well as the endogenous control genes. The list of mutations detected by the Uromonitor is provided in Supplementary Table 1. Multicomponent and amplification signals were analysed using StepOne™ Software 2.3 as recommended by the manufacturer (U-Monitor, Porto, Portugal). If at least one of the screened alterations provided a positive result, then the test was positive.

2.4 Statistical analyses

The assessment of the Uromonitor® accuracy was performed estimating the sensitivity, specificity, and positive and negative prediction values. For assessment of differences between groups, the Fisher exact test, Student's t-test, or Mann-Whitney test, were applied according to variables and groups. A p-value <0.05 was considered as statistically significant, and the Confidence Interval (CI) used was 95%.

2.5 Ethics statement

This study was an observational study, with no interference from the investigators in the standard follow-up procedures. The subjects did not need to have extra visits to the hospital, since the urine collection was performed previously to the cystoscopy. Patients were invited to participate in the study, and they were included only after signing an informed consent form. The patients’ data was stored after anonymisation, and the encryption key remained safely stored in the hospital. All procedures described in this study were in accordance with national and institutional ethical standards and the Declaration of Helsinki. Written informed consent was obtained from the patients participating in the study. Procedures were previously approved by Ethical Review Committee in University Hospital Centre of São João.
553 Urine samples were collected (490 patients undergoing SOC cystoscopy)

19 samples from patients without previous BC/UTUC

528 Urine samples were considered eligible (465 individual patients)

528 cystoscopy evaluations and Uromonitor-V2® tests (465 individual patients)

69 Positive for suspect cystoscopy findings

47 True Positive recurrences confirmed by TRUBT

41 presented Uromonitor-V2® urine positive test

6 presented Uromonitor-V2® tissue positive test

22 False Positive with no malignancy in TURBT

22 presented Uromonitor-V2® negative test

459 Negative for suspect cystoscopy findings

456 presented Uromonitor-V2® negative test

6 presented Uromonitor-V2® tissue positive test

6 samples from patients undergoing UTUC follow-up
3. RESULTS

A total of 553 urine samples were collected from a 490 individual patients throughout the study’s timeline, which ranged from December 2021 to May 2023. Twenty-five samples were excluded: 19 were collected from patients without previous BC/UTUC history and 6 were from patients undergoing cystoscopy during UTUC follow-up. Therefore, 528 samples from 465 patients were deemed eligible for the study. Out of the 528 SOC cystoscopies performed on eligible cases, 69 (13.07%) exhibited suspected recurrence. This suspicion was confirmed in 47 cases by TURBT, and within this group, 2 patients showing progression to MIBC according to the TURBT’s pathology report. Among the 47 pathologically proven recurrence cases, 31 (65.96%) presented pTa lesions, 14 (29.79%) had pT1 tumors, and 2 (4.26%) patients progressed to pT2+ disease. Further stratified by both stage and grade, 4 (8.51%) had pTa low-grade, 27 (57.45%) had pTa high-grade, 14 (29.79%) had pT1 high-grade, and 2 (4.26%) pT2+ recurrence. Carcinoma in situ was not reported in any of the recurrent histologies.

Out of the 528 eligible samples tested, 44 (8.33%) yielded a positive result on Uromonitor® (UM+) for one or more hotspot mutations, while the remaining 484 (91.67%) produced negative results. Among the 44 patients in the UM+ group, 41 (93.18%) were confirmed to have pathology proven recurrence. However, the remaining 3 UM+ patients had a previous history of NMIBC, but did not undergo TURBT because SOC follow-up methods did not raise suspicion. All three patients were followed-up for more than 12 months without any recurrence suspicion detected thus far. In terms of Uromonitor®’s overall performance it exhibited a sensitivity of 87.23%, with 6 recurrences remaining undetected, a specificity of 99.23%, a positive predictive value (PPV) of 93.18% and a NPV of 98.76%. We conducted a subset analysis to evaluate the performance of Uromonitor® across different stages and grades of NMIBC: pTa LG – sensitivity 75%, specificity 100%, PPV 100%, NPV 99.2%; pTa HG sensitivity 87.5%, specificity 98.69%, PPV 87.5%, NPV 98.69%; pT1 HG – sensitivity 75% specificity 100% PPV 100% NPV 99.2%. Additionally, in a subset of patients with suspected recurrence in cystoscopy, Uromonitor® demonstrated an overall sensitivity of 87.27%, specificity of 100%, PPV of 100% and NPV of 78.57%. Furthermore, cystoscopy revealed a total of 22 (31.88%) false positives. These patients with suspected recurrence underwent TURBT, where no malignancy was found after pathology analysis. The six positive recurrences that Uromonitor failed to detect in urine samples, were further analyzed to better understand the reasons behind those misses. As such, FFPE tissue samples collected at TURBT were processed and analysed for the presence of TERTp, FGFR3 and KRAS mutations with “Uromonitor® - Real-Time PCR kit for the amplification and detection of TERT, FGFR3 and KRAS hotspot mutations” (#Urokit3) (Supplementary File). Analysis revealed that all 6 out of these 6 samples presented at least one of the mutations analysed within the Uromonitor®, This excludes the hypothesis of these cases being missed at first, because they bear mutations not detected by the Uromonitor®. Instead, these results rather indicate that: (i) there might have been a lack of representative sample due to faulty collection procedure or urine filtration (i.e. low volume of filtered urine (<10 mL), that turned out to provide insufficient detectable mutated material; (ii) or that for these samples, the amount of mutated material present in the 10 mL of urine filtered, is below the detection limit of Uromonitor®.
4. DISCUSSION

The challenging nature of NMIBC follow-up can be attributed to both its high recurrence rates as well and the formidable risk of progression to MIBC. Conversely, the observed recurrence rates in these patients can, in part, be attributed to limitations of current follow-up methods. Urinary cytology, while offering high specificity for high-grade disease and a non-invasive approach with minimal associated morbidity, falls short in terms of sensitivity, especially when detecting low-grade UC, resulting in a high false-negative rate. Additionally, its interpretation is subjective and can introduce significant interobserver variability, compromising its reliability. Moreover, cytology cannot distinguish between benign inflammatory changes and malignancy, leading to false-positive results and unnecessary invasive procedures. Lastly, the accuracy of cytology can be influenced by urine collection and processing techniques, making it susceptible to sampling errors.

Cystoscopy remains a highly sensitive and reliable method for early recurrence detection in NMIBC. It enables direct visualization and accurate assessment of tumor size, location, multifocality, and appearance, while also offering the option for immediate biopsy for histologic characterization. However, it is an invasive procedure that can cause patient discomfort and morbidity. Furthermore, it relies on specialized training and equipment, which can make it costly and less accessible in certain healthcare settings.

Considering all the information discussed above, it becomes evident why there is a growing interest in alternative, cost-effective, non-invasive methods with high sensitivity and specificity for follow-up surveillance in NMIBC patients. These tools can either serve as alternatives to or complement the current follow-up schedule, potentially reducing the need for frequent cystoscopies and replacing urinary cytology. Urinary biomarkers appear to be a promising alternative in this context due to their simplicity, non-invasiveness, and cost-effectiveness. However, currently approved biomarkers have failed to find widespread clinical implementation due to issues such as low specificity and inadequate negative predictive values (NPV), leading to a high rate of false-positive cases attributed to the design of their arrays. Novel urinary biomarker tests have emerged displaying higher accuracy, specificity and NPV in the NMIBC surveillance. These advancements offer a promising and safe tool to alleviate the burden of frequent cystoscopies across all risk groups of NMIBC patients. However, none of the UBTs included in this metanalysis have received recommendations from international guidelines thus far. They have yet to replace or even supplement the current methods used in NMIBC follow-up. Among these innovations, Uromonitor®, a real-time qPCR UBT targeting hotspot mutation commonly observed in BC, was introduced. It has demonstrated highly promising results, particularly in terms of sensitivity and NPV, within this context. In our current study, we aimed to consolidate the evidence behind this data in a large, high volume, single-center, prospective and observational study. Uromonitor® achieved a sensitivity, specificity, PPV, and NPV of 87.23%, 99.23%, 93.18% and 98.76%, respectively across all stages and grades. This data suggested higher specificity and PPV for this biomarker test relative to cystoscopy, with 95.3% and 68.12% specificity and PPV respectively. This translates into almost a thirty percent of TURBT’s pathology reports after suspect cystoscopy
showed no malignancy and thus that 22 invasive procedures performed at the operating room with associated costs and morbidity could have been avoided. Most of these patients, accounting for a total of 22 out of 69 individuals with suspected recurrence in cystoscopy, presented equivocal findings during regular surveillance cystoscopy, which is common after adjuvant treatments such as intravesical instillations of BCG and chemotherapy. In all 22 cases of false-positive cystoscopic evaluations, Uromonitor® presented as negative for NMIBC recurrence. This suggests that 31.88% of TURBTs could have been avoided, sparing these patients from anesthesiologic and surgical morbidity, as well as reducing costs for the healthcare system. These expenses, associated not only with the procedures but also with inpatient hospital stays, could have been obviated if Uromonitor®’s results had been integrated into clinical decision-making when proposing TURBT for each patient.

Out of 44 patients with positive Uromonitor® results, three (6.81%) showed negative cystoscopy evaluations. These results may constitute false positives, but one cannot exclude the possibility that these patients had either a recurrence too small to be observed with cystoscopy or a recurrence in the upper urinary tract. After 6 months or more of surveillance, none of these patients had presented signs of the disease as assessed by SOC methods, which increases the likelihood of the former. A longer follow-up is required to understand the false positive rate of Uromonitor® for late recurrences.

With a sensitivity of 87.23%, specificity of 99.23%, and an NPV of 98.76%, this study highlights Uromonitor® as a promising tool for detecting recurrence patients undergoing follow-up for NMIBC across all stages and grades. The test demonstrates its potential as an alternative or adjunct to the current follow-up schedule, such as alternating between cystoscopy and Uromonitor® for patients without very high-risk characteristics. Additionally, employing this test when dubious or equivocal lesions are observed during cystoscopy - an occurrence that is fairly common in clinical practice and can induce anxiety in both physicians and patients - could aid in deciding whether a patient should undergo invasive procedures such as TURBT.

While UBTs, including Uromonitor®, show the potential for widespread implementation in clinical practice in the near future, cystoscopy cannot be entirely abandoned and will continue to play an essential role during the follow-up of NMIBC. Especially in cases of high-risk lesions, it remains highly unlikely that practitioners would rely solely on biomarkers to assess recurrence and progression. For these patients, Uromonitor® could be used not only as a complement to current methods but also potentially as a risk stratifying tool to assess tumor aggressiveness and guide treatment intensification and planning. Studies evaluating the correlation between hotspot mutations and disease aggressiveness are still scarce, yet some evidence suggests that these genetic aberrations can impact disease behavior in BC (50–52).

In low- and intermediate-risk NMIBC patients, Uromonitor® could significantly alleviate the burdensome impact of follow-up by reducing patient discomfort, morbidity, and substantial costs associated with cystoscopy. This could be achieved by implementing an alternating approach between cystoscopy and Uromonitor® testing, thus reducing the overall frequency of cystoscopies at the urologist’s discretion without compromising patient’s safety. Given the lower probability of
progression in these subgroups, an acceptable threshold for recurrence can be established in agreement with individual patients.

Another advantage provided of this test is its reproducibility, as it relies on qPCR, a methodology that is well-established in most laboratories. This enables in-house testing using readily available technology, user-friendly components, and affordable equipment, without the need for specialized technicians. The test delivers same-day results within a short six-hour timeframe and provides a clear binary positive-negative result, when appropriately collected sample with sufficient DNA is provided.

The authors acknowledge the following limitations in the current study: 1. the relatively low number of histological confirmed recurrences compared to the performed cystoscopies may have limited study’s statistical power; 2. despite encompassing over five hundred NMIBC follow-up outpatient visits, which included cystoscopy and Uromonitor® testing for 490 individual patients, the overall sample size remain limited; 3. the single-center design of the study may have influenced its results, as each center may have unique clinical practices and treatment protocols; consequently the results may reflect specific institutional practices rather than a representing broader standard of care, making the potentially less applicable to other healthcare settings with different patient populations and practices.

Specifically, the study highlights that in clinical implementation, rigorous collection and filtration procedures are required for adequate mutation sampling in urine, as some cases resulted in false negatives which, nonetheless, harboured at least one of the tested mutations (as confirmed through the analysis of tissue obtained by TURBTs). One alternative to avoid the risk of poor sampling of mutations through urine filtration is to use direct precipitation of urine cells (through centrifugal), potentially capturing higher amount of cells and increasing likelihood of sampling mutations above the analytical detection limit.

Further research, involving a larger cohort of high-grade NMIBC patients through multicenter trial, should be conducted to determine whether Uromonitor® could serve as a (partial) replacement the current follow-up schedule. Additionally, there is a need for new evidence regarding quality-of-life analyses and the cost effectiveness of this biomarker. Nevertheless, the current study represents an important step towards validating and thus integrating Uromonitor® into daily clinical practice. It has the potential to reduce the overall burden of NMIBC follow-up for both patients and the healthcare system.

5. CONCLUSION

In the present trial, we have confirmed that the Uromonitor® biomarker test, with its high sensitivity, specificity and NPV, represents a reliable tool in the detection of NMIBC recurrence in patients undergoing routine surveillance, regardless of stage and grade. It offers both an alternative or a complement to the current SOC methods, as it provides rapid results and a non-invasive option, potentially improving patients’ quality of life by reducing the need for uncomfortable cystoscopies and unnecessary TURBTs. An analysis of cost-effectiveness appears to be the next logical step for wide clinical practice integration.
Table XX – Performance of different tools in detection of recurrence in NMIBC follow-up in all stages/grades

<table>
<thead>
<tr>
<th>Stage and grade at diagnosis</th>
<th>Uromonitor-V2® (Urine)</th>
<th>Cystoscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL (Including CIS)</td>
<td>Sensitivity 87.23%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>Specificity 99.23%</td>
<td>95.43%</td>
</tr>
<tr>
<td></td>
<td>PPV 93.18%</td>
<td>68.12%</td>
</tr>
<tr>
<td></td>
<td>NPV 98.76%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Figure 01 – Hotspot mutations identified by Uromonitor-V2®

- TERT 124
- TERT 146
- FGFR3-248
- FGFR3-249
- KRAS 12x/13x
- KRAS 61x
- TERT 124 + FGFR3-249 + KRAS 61x
- TERT 124 + FGFR3-249
- TERT 124 + FGFR3-248
- TERT 124 + TERT 146
Funding: This research received no external funding.

Institutional Review Board Statement: The study protocol was approved by the Ethics Committee

Informed Consent Statement: Patient consent was waived according to the permission obtained from Ethical Committe.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflict of interest.
REFERENCES

