Running head: aberrant mood dynamics in adolescent suicidal patients

Mood computational mechanisms underlying increased risk behavior in adolescent suicidal patients

Zhihao Wang¶1, Tian Nan ¶2, Ting Wang3, Yinzhao Liu4, Fengmei Lu5, Yue Yu4, Xiao Cai5, Zongling He5*, Yuejia Luo2*, Bastien Blain1,6
1CNRS - Centre d'Economie de la Sorbonne, Panthéon-Sorbonne University, France
2School of Psychology, Sichuan Center of Applied Psychology, Chengdu Medical College, Chengdu, China
3Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
4University of Groningen, Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neuroscience, University Medical Center Groningen, Groningen, The Netherlands
5The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China,
6Department of Experimental Psychology, University College London, London, United Kingdom

*Corresponding authors:
Zonglin He, Ph.D. Yuejia Luo, Ph.D.
The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China, Email: hzl_811015@126.com; E-mail: luoyj@bnu.edu.cn

¶These authors contributed equally to this work.

Number of pages: 33
Number of figures: 3, Tables: 3
Number of words for abstract: 219, introduction: 631, discussion: 1131

1 The authors declare no competing financial interests.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract (219)

Suicidal thoughts and behaviors (STB) are one of leading causes of death worldwide. Although literature has consistently reported increased risk behavior in patients with STB and has proposed mood problems as the core of STB, cognitive and affective computational mechanisms underlying increased risky behavior remain unclear. Here, we asked 83 adolescent inpatients with affective disorders, where 58 patients with STB (S+) and 25 without STB (S-), and 118 gender/age-matched healthy control (HC) to make decisions between certain vs. gamble option with momentary mood ratings. After identifying increased risk behavior in S+ than S- and HC, we used approach-avoidance prospect theory model and momentary mood model to quantify patients’ behavior and mood. Choice data analysis showed that heighted approach motivation mediated an increase in gambling choices with STB severity, suggesting impaired Pavlovian approach system in STB resulting in higher gambling in gains. Mood model showed lower mood sensitivity to certain reward in S+ than S- and HC, which further explained increased gambling decisions in STB, offering a mood computational account for increased risk behavior in STB. These results remain significant after controlling for demographic and clinical variables and medication factors. Overall, our findings revealed cognitive and affective computational mechanisms underlying increased risk behavior in STB. This work has important implications for prevention and intervention of suicide, especially for clinical populations.

Keywords: suicide; adolescent; affective disorder; momentary mood; prospect theory; risk
Introduction

Every 40 seconds, a life is lost due to suicide(1). Suicidal thoughts and behaviors (STB) are one of leading causes of death worldwide that have devastating impacts on individuals, families, and societies. STB occurs from adolescence(2,3), especially in the context of mood disorders, e.g., major depressive disorder (MDD), anxiety disorder (AD), and bipolar disorder (BD)(4). Despite the progress made during the last 50 years for identifying risk factors(5) and developing preventing strategies(6), death rate from STB has not declined(5,7). The lack of understanding of cognitive and affective mechanisms leaves a huge gap in identifying targets for the early prediction, screening, detection, and intervention in case of suicidal behavior. Recently, extensive literature has consistently reported increased risky decision making in patients with STB(8–11). Improvement of these decision-making skills could boost the efficacy of cognitive behavior therapy in reducing STB(12,13), highlighting the importance of better understanding its underlying mechanisms. However, why patients with STB adopt a riskier behavior and how decisions relate to mood dynamics remain unclear.

Although meta-analyses have shown increased risk behavior in patients with STB(8,10,11), the underlying cognitive computational mechanism is still unknown. Specifically, some studies found heightened loss aversion in STB(14,15), while others observed the opposite pattern(16). This can result from the use of underspecified models. A growing literature shows that behavior can be far better explained after adding Pavlovian approach and avoidance components to prospect theory(17,18), that is by including a decision bias in favor of the highest gain and another decision bias in favor
of the lowest loss (above and beyond options value difference). This class of models highlights the important role of motivation components in decision making in addition to traditional reward sensitivity (e.g., loss/risk aversion)(19). Importantly, STB has been proposed in theoretical work to result from abnormal Pavlovian motivation system(20–23). Therefore, consideration of Pavlovian motivation components may facilitate understanding why STB is associated with increased risk-taking behavior. We therefore hypothesized that heightened approach motivation, or weaken avoidance motivation, would account for increased risk behavior in STB.

While suicide is a decision process per se, atypical mood dynamics has been thought at the core of STB(3). Various suicidal-related theories, including the interpersonal theory(24), integrated motivational-volitional model(25), and three-step theory(26), have proposed that STB is initially caused by low mood experience. Some official organizations, e.g., National Institute of Mental Health, have also listed mood problems as warning signals(5). Interestingly, within the framework of decision making under risk, gamble with outcome has been found to induce high mood variance(27), providing an opportunity to assess the relationship between deficient mood and increased gambling decision in STB. Specifically, in a gambling task with momentary mood ratings, where participants were asked to make decisions between certain vs. gamble option (2 possible outcomes, 50% probability for each), Rutledge et.al., (2014) found that mood was sensitive to certain reward (CR), reward 2expectation (EV), and reward prediction error (RPE; the difference between experienced and expected outcome)(27). Here, we investigated which mood component (among CR, EV and RPE) is associated with STB.
We expect the relative mood response to certain reward versus to gamble related quantities (EV and RPE) would lower in STB. Given that STB patients display lower expected value related BOLD signal compared to control participants or depressed patients(28), we hypothesized that lower mood sensitivity to reward expectation, or higher mood sensitivity to RPE (as expected value is negatively signed in RPE which is equal to the outcome minus expectations), would relate to increased risk behavior in STB. In contrast, riskier decision may result from aversion to certain reward in STB. Therefore, the alternative hypothesis was that lower mood sensitivity to CR would relate to increased risk behavior in STB.

To summarize, the aim of this study is to examine cognitive and affective computational mechanisms underlying increased risk behavior in adolescent patients with STB, as adolescent period might provide a developmental window for opportunities for early intervention(2). Regarding choices, we hypothesized heightened approach motivation, or weaken avoidance motivation, in STB, which would account for increased risk behavior. Regarding mood dynamics, we hypothesized that higher mood sensitivity to RPE, lower mood sensitivity to EV, or lower mood sensitivity to CR, would explain increased risk behavior in STB.

Methods and materials

Participants

We recruited 95 adolescent patients with mood disorder from the Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of
China (The Mental Health Center of Chengdu, Sichuan, China). According to medical records and information from family and friends, patients with suicidal thoughts and behaviors were categorized as suicidal group (S^+), while patients without suicidal thoughts and behaviors were identified as control group (S^-). As baseline control, we also recruited 124 gender- and age-matched healthy adolescents (HC). The study was approved by the ethical committee of The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China and performed in full compliance with the latest Declaration of Helsinki. Informed written consent was obtained. Patients were included if 1) they were diagnosed with major depressive disorder (MDD), anxiety disorder (AD), or bipolar disorder (BD) by two experienced psychiatrists using the Structured Clinical Interview for DSM-IV-TR-Patient Edition (SCID-P; 2/2001 revision); 2) their ages were from 12 to 19 years old; 3) they had no organic brain disorders, intellectual disability, or head trauma; 4) they had no history of substance abuse; 5) they had no experience of electroconvulsive therapy. In addition, participants were excluded if they failed more than 1/4 of the catch trials. The final sample consisted of 25 patients for S^-, 58 patients for S^+, and 118 HC participants. See Table 1 and Table S1 for demographic, clinical and psychological information.

Table 1. Demographic, clinical, psychological characteristics of patients with and without suicidal thoughts and behaviors.

<table>
<thead>
<tr>
<th>Group</th>
<th>Gender (female/male)</th>
<th>Age (mean±SD)</th>
<th>BSI-C (mean±SD)</th>
<th>BSI-W (mean±SD)</th>
<th>Group contrast</th>
<th>S^+ vs. S^-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HC (n=118)</td>
<td>S$^-$ (n=25)</td>
<td>S$^+$ (n=58)</td>
<td>F/χ2</td>
<td>p</td>
<td>χ2</td>
</tr>
<tr>
<td>Gender</td>
<td>75/43</td>
<td>16/9</td>
<td>41/17</td>
<td>0.912</td>
<td>0.634</td>
<td>0.363</td>
</tr>
<tr>
<td>Age</td>
<td>15.31±2.15</td>
<td>15.68±1.75</td>
<td>14.83±1.80</td>
<td>1.868</td>
<td>0.157</td>
<td>1.997</td>
</tr>
<tr>
<td>BSI-C</td>
<td>1.29±3.62</td>
<td>2.84±2.66</td>
<td>18.02±7.56</td>
<td>224.230</td>
<td><0.001</td>
<td>-9.754</td>
</tr>
<tr>
<td>BSI-W</td>
<td>3.58±6.60</td>
<td>4.04±3.22</td>
<td>27.98±6.02</td>
<td>326.242</td>
<td><0.001</td>
<td>-18.723</td>
</tr>
<tr>
<td></td>
<td>S-</td>
<td>S+</td>
<td>t-value</td>
<td>p-value</td>
<td>Effect Size</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>CTQ</td>
<td>13.98±11.29</td>
<td>22.64±12.34</td>
<td></td>
<td><0.001</td>
<td>-2.743</td>
<td></td>
</tr>
<tr>
<td>ERQ-R</td>
<td>14.77±4.38</td>
<td>13.08±6.34</td>
<td></td>
<td><0.001</td>
<td>3.376</td>
<td></td>
</tr>
<tr>
<td>ERQ-S</td>
<td>6.86±3.64</td>
<td>8.80±3.77</td>
<td></td>
<td><0.001</td>
<td>-2.200</td>
<td></td>
</tr>
<tr>
<td>Suicidal attempts</td>
<td>---</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illness duration</td>
<td>---</td>
<td>31.76±18.80</td>
<td></td>
<td>0.085</td>
<td>0.933</td>
<td></td>
</tr>
<tr>
<td>Family history</td>
<td>---</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis</td>
<td>---</td>
<td>2/16/7</td>
<td></td>
<td>1.172</td>
<td>0.557</td>
<td></td>
</tr>
<tr>
<td>Medication</td>
<td>---</td>
<td>25</td>
<td></td>
<td>0.436</td>
<td>0.509</td>
<td></td>
</tr>
<tr>
<td>SSRI</td>
<td>16</td>
<td>39</td>
<td></td>
<td>0.082</td>
<td>0.775</td>
<td></td>
</tr>
<tr>
<td>SNRI</td>
<td>0</td>
<td>2</td>
<td></td>
<td>0.883</td>
<td>0.347</td>
<td></td>
</tr>
<tr>
<td>Trazodone</td>
<td>6</td>
<td>16</td>
<td></td>
<td>0.115</td>
<td>0.734</td>
<td></td>
</tr>
<tr>
<td>Antipsychotics</td>
<td>14</td>
<td>32</td>
<td></td>
<td>0.005</td>
<td>0.945</td>
<td></td>
</tr>
<tr>
<td>BZDs</td>
<td>20</td>
<td>45</td>
<td></td>
<td>0.060</td>
<td>0.807</td>
<td></td>
</tr>
<tr>
<td>Other anxiolytics</td>
<td>12</td>
<td>13</td>
<td></td>
<td>5.434</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>Mood stabilizer</td>
<td>---</td>
<td>13</td>
<td></td>
<td>3.282</td>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>TAI</td>
<td>43.49±8.54</td>
<td>50.38±12.19</td>
<td></td>
<td><0.001</td>
<td>-6.276</td>
<td></td>
</tr>
<tr>
<td>PSWQ</td>
<td>44.75±10.94</td>
<td>50.67±15.17</td>
<td></td>
<td><0.001</td>
<td>-5.990</td>
<td></td>
</tr>
<tr>
<td>BDI</td>
<td>31.45±9.43</td>
<td>39.62±15.11</td>
<td></td>
<td><0.001</td>
<td>-6.573</td>
<td></td>
</tr>
<tr>
<td>CESD</td>
<td>32.96±11.09</td>
<td>42.86±15.66</td>
<td></td>
<td><0.001</td>
<td>-6.347</td>
<td></td>
</tr>
</tbody>
</table>

Note: For main results, we included gender, age, illness duration, family history, diagnosis, and various medications for control analysis. For anxiety/depression-related questionnaires (TAI, PSWQ, BDI, and CESD), due to time limitation, data from 8 participants in the S+ group and 4 participants in the S- group was not collected. Abbreviations: HC, healthy control; S+, patients without suicidal thoughts and behavior; S-, patients with suicidal thoughts and behavior; BSI-C, Beck Scale for Suicidal Ideation at the current time; BSI-W, Beck Scale for Suicidal Ideation at the worst time; CTQ, Childhood Trauma Questionnaire; ERQ-R, Emotion Regulation Questionnaire-Reappraisal; ERQ-S, Emotion Regulation Questionnaire-Suppression; AD, anxiety disorders; MDD, major depressive disorders; BD, bipolar disorders; SSRI, Selective Serotonin Reuptake Inhibitor; SNRI, serotonin-norepinephrine reuptake inhibitors; BZDs, Benzodiazepines; TAI, Trait Anxiety Inventory; PSWQ, Penn State Worry Questionnaire; BDI, Beck Depression Inventory; CESD, Center for Epidemiologic Studies Depression Scale.

Self-report questionnaires

Participants completed a set of Chinese-version suicidal-, emotion regulation-, and depression/anxiety-related questionnaires. These measurements included the Beck Scale for Suicidal Ideation at the current time (BSI-C, 19 items) and at the worst time (BSI-W,
19 items)(29), the Childhood Trauma Questionnaire (CTQ, 28 items)(30), Emotion Regulation Questionnaire-Reappraisal (ERQ-R, 6 items) and Suppression (ERQ-S, 4 items)(31). In addition, as patients were available for a limited duration, anxiety/depression-related scales from only 50 participants in the S^+ group and only 21 participants in the S^- group were collected. Specifically, patients filled the Trait subscale of the State-Trait Anxiety Inventory (TAI; 20 items)(32), the Penn State Worry Questionnaire (PSWQ; 16 items), the Beck Depression Inventory (BDI; 21 items)(33), and the Center for Epidemiologic Studies Depression Scale (CESD; 20 items)(34).

Experimental Procedure

Participants were asked to make a choice between a certain option and a gamble (50% probability for each outcome) to maximize their points and to rate their momentary moods(17,27). Before the task protocol, participants were asked to rate their current happiness that we consider as their initial mood. At the beginning of the task, participants were endowed with 500 points. Each trial started with two options (a gamble option and a certain option) that presented randomly on each side (Figure 1A). Upon response, the chosen option would be highlighted in yellow for 0.5 s. Note that Rutledge et al., (2014) displayed the chosen option for about 6 s(27), a delay we shortened for the sake of time. Then the corresponding outcome at the screen center was presented for 1 s, followed by a fixation cross with a random duration (0.6~1.4 s). If the gamble was chosen, participants had equal probability to obtain each outcome. The obtained outcome would be accumulated to their total score, which was presenting at the top-right concern. Every 2~3 trials, participants rated “how happy are you at this moment” from 0 (very unhappy)
to 100 (very happy) by moving a slider anchoring at midpoint (i.e., 50). Upon identifying
their current mood, a fixation cross was presented with a random duration (0.6~1.4 s).
This task consisted of 90 randomly presented trials, including 30 mixed trials, 30 gain
trials, and 30 loss trials. In mixed trials, participants made a choice between a certain
amount 0 and a gamble with a gain amount \{40, 45, or 75\} and a loss amount determined
by a multiplier \{0.2, 0.34, 0.5, 0.64, 0.77, 0.89, 1, 1.1, 1.35, or 2\} on the gain amount. In
gain trials, there was a certain gain amount \{35, 45, or 55\} and a gamble with 0 and a
gain amount determined by a multiplier \{1.68, 1.82, 2, 2.22, 2.48, 2.8, 3.16, 3.6, 4.2, or 5\}
on the certain gain amount. In loss trials, there were a certain loss amount \{-35, -45, or -55\}
and a gamble with 0 and a loss amount determined by a multiplier \{1.68, 1.82, 2, 2.22, 2.48, 2.8, 3.16, 3.6, 4.2, or 5\} on the certain loss amount. Many amounts and
multipliers were used to accommodate a wide range of risk and loss sensitivity, as in
previous literature. We also set 4 trials embedded in the entire task for attentional checks.
For example, participants were asked to make a choice between a certain gain 20 and a
gamble 35/55, where the correct response for this trial was the gamble choice. All
experimental procedures were programmed using Psychopy3 (2021.2.3).
Figure 1. Task design, outcome and time effects on mood, and group differences in mood. A) Gambling task with mood ratings. On each trial, participants were asked to choose between a certain option and a gambling option (self-paced). Once selected, the chosen option would be highlighted in yellow for 500 ms. Then the corresponding outcome was resolved in the center of the screen for 1000 ms. The cumulative score was always shown in the right-upper corner. Every 2 or 3 trials, participants were asked to complete a self-paced rating of “How happy are you at the moment” on a slider from 0 (very unhappy) to 100 (very happy). B) Patients feel happier after winning than losing. C) Mood drift over the task. D) Group difference in mood before the task. E) Group difference in the mean mood across the task. The grey dot represents the winning model prediction. Abbreviations: HC, healthy control; S−, patients without suicidal thoughts and behavior; S+, patients with suicidal thoughts and behavior; *p<0.05.

Choice computational models

In line with literature(17,18), our choice model space included expected value model (M1), prospect theory model (M2)(35), and approach-avoidance prospect theory model (M3)(17). For M2 (Equations 1-4), there were 3 parameters, including risk aversion (α_{gain}, range: 0.3-1.3), loss aversion (λ: 0.5-5), and inverse temperature (μ: 0-10).

\[U_{\text{gain}} = 0.5(V_{\text{gain}})^{\alpha} - 0.5\lambda(-V_{\text{loss}})^{\alpha} \] \hspace{1cm} (1)

\[U_{\text{certain}} = (V_{\text{certain}})^{\alpha} \text{ if } V_{\text{certain}} \geq 0 \] \hspace{1cm} (2)
\[U_{\text{certain}} = -\lambda(-V_{\text{certain}})^2 \text{ if } V_{\text{certain}} < 0 \]

\[P_{\text{gambie}} = \frac{1}{1 + e^{-\mu(V_{\text{gambie}} - V_{\text{certain}})}} \]

where \(V_{\text{gain}} \) and \(V_{\text{loss}} \) are the objective gain and loss from a gamble, separately. \(V_{\text{certain}} \) is the objective value for the certain option. \(U_{\text{gambie}} \) and \(U_{\text{certain}} \) are subjective utilities of the gamble and the certain option, respectively. Choice probability for gamble (\(P_{\text{gambie}} \)) is determined by the softmax rule.

Based on M2, M3 additionally considered Pavlovian motivation components when making decisions (Equations 1-3 & 5-8). That said, choice probability for \(P_{\text{gambie}} \) in M3 is jointly determined by the softmax rule and Pavlovian approach/avoidance parameters (\(\beta_{\text{gain}} : 0-1, \beta_{\text{loss}} : 0-1 \)).

For gain trials,

\[P_{\text{gambie}} = \frac{1 - \beta_{\text{gain}}}{1 + e^{-\mu(U_{\text{gambie}} - U_{\text{certain}})}} + \beta_{\text{gain}} \text{ if } \beta_{\text{gain}} \geq 0 \]

\[P_{\text{gambie}} = \frac{1 + \beta_{\text{gain}}}{1 + e^{-\mu(U_{\text{gambie}} - U_{\text{certain}})}} \text{ if } \beta_{\text{gain}} < 0 \]

For loss trials,

\[P_{\text{gambie}} = \frac{1 - \beta_{\text{loss}}}{1 + e^{-\mu(U_{\text{gambie}} - U_{\text{certain}})}} + \beta_{\text{loss}} \text{ if } \beta_{\text{loss}} \geq 0 \]

\[P_{\text{gambie}} = \frac{1 + \beta_{\text{loss}}}{1 + e^{-\mu(U_{\text{gambie}} - U_{\text{certain}})}} \text{ if } \beta_{\text{loss}} < 0 \]

Mood computational models

To best quantify how different events impacted participants’ momentary mood during the gambling task, we conducted a stage-wise model construction procedure(36). That is, we added or removed each component to the model progressively, based on the best model from the previous stage. In Stage 1, we fit the classic model assuming that momentary
mood depends on the recency-weighted average of the chosen certain reward (CR), expected value of the chosen gamble (EV), and reward prediction error (RPE; M1; Equation 9). RPE was defined as the difference between the obtained and expected value.

\[
\text{Happiness}(t) = \beta_0 + \beta_{CR} \sum_{j=1}^{t} \gamma^{t-j} CR_j + \beta_{EV} \sum_{j=1}^{t} \gamma^{t-j} EV_j + \beta_{RPE} \sum_{j=1}^{t} \gamma^{t-j} RPE_j
\] (9)

Here, \(t\) and \(j\) are trial numbers, \(\beta_0\) is a baseline mood parameter, other weights \(\beta\) capture the influence of different event types, \(\gamma \in [0,1]\) is a decay parameter representing how many previous trials influence happiness. \(CR_j\) is the CR if the certain option was chosen on trial \(j\); otherwise, \(CR_j\) is 0. \(EV_j\) is the EV and \(RPE_j\) is the RPE on trial \(j\) if the gamble was chosen. If the certain option was chosen, then \(EV_j = 0\) and \(RPE_j = 0\).

To verify that mood ratings are best explained by a shared forgetting factor (i.e., the recency-weighted history of different event types), we compared a model with a single decay parameter to an alternative model, including a forgetting factors for each event type, e.g., different decay parameters for CR, EV, and RPE (M2; Equation 10).

\[
\text{Happiness}(t) = \beta_0 + \beta_{CR} \sum_{j=1}^{t} \gamma^{t-j} CR_j + \beta_{EV} \sum_{j=1}^{t} \gamma^{t-j} EV_j + \beta_{RPE} \sum_{j=1}^{t} \gamma^{t-j} RPE_j
\] (10)

Although M1 has been shown to accurately track mood data(27), we also fit other candidate mood models. We fit an alternative model in which mood ratings are explained by the recency-weighted average of CR and the gamble reward (GR; M3; Equation 11). We also fit a model in which different influences decayed for CR and GR (M4; Equation 12).

\[
\text{Happiness}(t) = \beta_0 + \beta_{CR} \sum_{j=1}^{t} \gamma^{t-j} CR_j + \beta_{GR} \sum_{j=1}^{t} \gamma^{t-j} GR_j
\] (11)

\[
\text{Happiness}(t) = \beta_0 + \beta_{CR} \sum_{j=1}^{t} \gamma^{t-j} CR_j + \beta_{GR} \sum_{j=1}^{t} \gamma^{t-j} GR_j
\] (12)

In Stage 2, to identify whether mood can be better influenced by different responses to
better and worse gamble outcomes, we fit a model splitting GR into better and worse GR terms (M5). We also fit a model with different decay parameters for each event based on M5 (M6).

In Stage 3, to verify whether mood data can be better explained by a single event (CR or GR), we compared a CR-mood model (M7) and a GR-mood model (M8).

Model fitting and comparison

We fit model parameters by using the method of maximum likelihood estimation (MLE) with fmincon function of MATLAB (version R2015a) at the individual level. To avoid local minimum, we ran this optimization function with random starting locations 50 times. Bayesian information criteria (BIC) were used to compare model fits.

Statistical analysis

We performed chi-square, independent-sample t-test or repeated measure ANOVA to test group-related differences. Spearman correlations were used to check correlations among suicidal-related questionnaires, choice data, and mood data. Generalized linear model was conducted for control analysis using Matlab R2015a. Mediation analyzes were conducted using R (4.1.0) and the R package ‘mediation’. We used an online calculator (https://www.psychometrica.de/correlation.html) to examine differences between two correlation coefficients. All reported tests are two-tailed. We set the significance level at $p = 0.05$.

Results
Demographic and clinical characteristics

Overall, gender and age were comparable among S+, S−, and HC groups (ps > 0.157), though S+ was significantly younger than S− (t = 1.997, p = 0.049). As expected, S+ scored significantly higher than S− and HC in suicidal-related scales (e.g., BSI-C; ps < 0.001), further validating our group manipulation. There was no significant difference between S+ and S− in illness duration, family history, diagnosis, and various medications use (ps > 0.07), except other anxiolytics (χ^2=5.434, p = 0.020). See Table 1 and Table S1 for details.

For subsequent control analysis for S+ vs. S− contrast, we included gender, illness duration, family history, diagnosis, and various medications use (except other anxiolytics) as covariates, whereas we used to median split to check potential confounds of age and the use of other anxiolytics.

Sanity checks

To ensure engagement and task validation, we performed sanity checks. As expected, we found significant group differences in psychological measurements (ps < 0.001), including childhood trauma, emotion regulation, and anxiety/depression (Table 1 and Table S1). In addition, we replicated the classic mood-related effects(37,38): 1) happier after winning than losing (t = 11.001, p < 0.001; Figure 1B) and 2) mood drift over time (t = -3.254, p = 0.001; Figure 1C). As grouping checks, we found a hierarchical pattern of mood level both before the task and across the task (S+ < S− < HC; for initial mood, F = 53.415, p < 0.001; S+ vs. S−: t = -4.525, p < 0.001; S+ vs. HC: t = -10.427, p < 0.001; S− vs. HC: t = -2.634, p = 0.009; Figure 1D; for mean mood, F = 28.018, p < 0.001; S+ vs. S−: t = -3.773, p < 0.001; S+ vs. HC: t = -7.292, p < 0.001; S− vs. HC: t = -1.458, p = 0.147;
Figure 1E). No significant group difference in mood-related outcome effect, mood drift effect, or earnings was found ($p > 0.276$).

Choice results

To replicate increased risk behavior in suicidal populations, we conducted a two-way ANOVA on gambling rate with group ($S^+/S^-/HC$) as a between-subject factor, trial type (mix/gain/loss) as a within-subject factor. We found significant main effect of group ($F = 3.655, p = 0.028$, partial $\eta^2 = 0.036$; Figure 2A), with more gambling behavior for S^+ than S^- (two-sample t-test, $t = 2.145, p = 0.035$) and HC ($t = 2.465, p = 0.115$) and comparable gambling behavior between S^- and HC ($t = -0.439, p = 0.661$) across the task. We also observed the main effect of trial type ($F = 51.225, p < 0.001$, partial $\eta^2 = 0.206$; gain $>$ mix $>$ loss). We did not observe any significant interaction effect between group and trial type ($F = 0.270$, partial $\eta^2 = 0.003$). Within patients, this group effect on gambling rate remained significant after controlling for gender, illness duration, family history, diagnosis, and various medications use ($p < 0.05$). There was also no significant age/other anxiolytics use difference in gambling behavior ($p > 0.05$; Figure S3). In addition, there was significant correlations of gambling rate with Suicidal Ideation score at current time (BSI-C, $\rho = 0.233, p = 0.034$; Figure 2B) and Suicidal Ideation score at worst time (BSI-W, $\rho = 0.219, p = 0.046$) among patients.
Figure 2. Choice results. A) Group difference in gambling behavior. The grey dot represents the winning model prediction. B) Correlation between Suicidal Ideation score at current time (BSI-C) and gambling behavior in patients. C) The estimated parameters from the winning choice model. D) The mediation model among the BSI-C, β_{gain}, and gambling behavior in the gain condition among patients. The Pavlovian approach parameter mediated the effects of BSI-C on increased gambling behavior in the gain condition. Abbreviations: HC, healthy control; S −, patients without suicidal thoughts and behavior; S +, patients with suicidal thoughts and behavior; BSI-C, Beck Scale for Suicidal Ideation at the current time; *p<0.05.

The winning model to formally quantify mechanisms for gambling behavior is approach-avoidance prospect theory model (M3; mean $R^2 = 0.37$; Table 2). As predicted, we found a (marginally) significant group effect in approach parameter ($F = 2.989, p = 0.053$; Figure 2C), with a significant stronger approach motivation for S^+ than S^- ($t = 2.217, p = 0.029$) and HC ($t = 2.091, p = 0.038$), and comparable between S- and HC ($t = -0.737, p = 0.463$). No other significant group difference in these parameters was found ($ps > 0.135$). Within patients, this group effect on the approach parameter remained significant after
controlling for gender, illness duration, family history, diagnosis, and various medications use ($ps < 0.05$). There was also no significant age/other anxiolytics use difference in gambling behavior ($ps > 0.223$; Figure S3). In addition, we observed significant positive correlations of approach parameter with BSI-C ($\rho = 0.286, p = 0.009$) and BSI-W ($\rho = 0.222, p = 0.044$) among patients, suggesting more gambling in gain (regardless of risk attitude) for patients with high STB severity. Given significant correlations between BSI-C, approach parameter, and gambling rate ($ps < 0.034$), we further conducted a mediation analysis with the assumption of the mediating effect of approach motivation of suicidality on the risk behavior. Result supported our hypothesis ($a \times b = 0.233, 95\% CI = [0.074, 0.40], p < 0.001$; Figure 2D). Taken together, these choice results suggest that suicidal thoughts and behavior increase risk behavior through stronger approach motivation.

Table 2. Choice model comparison.

<table>
<thead>
<tr>
<th>Model #</th>
<th>Model specification</th>
<th># of parameters</th>
<th>Δ BIC</th>
<th>meanR2</th>
<th>Δ BIC for each group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HC</td>
</tr>
<tr>
<td>1</td>
<td>μ</td>
<td>1</td>
<td>3873.16</td>
<td>0.08</td>
<td>2272.48</td>
</tr>
<tr>
<td>2</td>
<td>λ, α, μ</td>
<td>3</td>
<td>3153.79</td>
<td>0.18</td>
<td>1822.07</td>
</tr>
<tr>
<td>3</td>
<td>$\lambda, \alpha, \beta_{\text{gain}}, \beta_{\text{loss}}, \mu$</td>
<td>5</td>
<td>0</td>
<td>0.37</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviations: Δ BIC, Bayesian information criterion relative to the winning model (M3); HC, healthy control; S-, patients without suicidal thoughts and behavior; S+, patients with suicidal thoughts and behavior.

Mood results

We observed inconsistent mood winning models for different groups (Table 3), suggesting an effect of STB on mood dynamics. Given that the focus of the current study was STB effect, especially for the S+ group, with the baseline control of S- and HC groups, we specially focused on the winning model from the S+ group. The winning
mood model from S+ assumed that moods were explained by the recency-weighted average of certain reward (CR) and the gamble reward (GR; M3; mean R^2 = 0.42; Table 3). Overall, both CR and GR weights were significantly higher than 0 (CR: t = 8.033, p < 0.001; GR: t = 9.853, p < 0.001). The baseline parameter β_0 was significant correlated with the initial mood (rho = 0.580, p < 0.001), validating this model. We found significantly lower β_0 in S+ than S- (F = 22.861, p < 0.001; t = -3.513, p < 0.001) and HC (t = -6.606, p < 0.001), which corresponds to the lower initial mood pattern. Importantly, a two-way ANOVA on mood parameters with group (S+/S-/HC) as a between-subject factor, event type (CR/GR) as a within-subject factor showed a significant main effect of group (F = 3.835, p = 0.023, partial η^2 = 0.037), with lower mood sensitivity for S+ than S- (t = -2.080, p = 0.041) and HC (t = -2.758, p = 0.006) and comparable between S- and HC (t = -0.110, p = 0.913). We also observed a significant interaction effect between group and event type (F = 4.283, p = 0.015, partial η^2 = 0.041; Figure 3B). Simple effect analysis revealed that S+ group exhibited significant lower mood sensitivity to CR as compared to GR (F = 4.823, p = 0.029, partial η^2 = 0.024), while there was no significant CR-GR difference in S- (although trendy; F = 2.783, p = 0.097, partial η^2 = 0.014) and HC (F = 0.989, p = 0.321, partial η^2 = 0.005). This interaction was driven by the group difference in CR (F = 6.085, p = 0.003, partial η^2 = 0.058) rather than in GR (F = 0.801, p = 0.450, partial η^2 = 0.008). Specifically, S+ showed lower mood sensitivity to CR than S- (t = -2.661, p = 0.009) and HC (t = -3.381, p <0.001), while S- and HC were comparable (t = 0.450, p = 0.679), suggesting S+ was specifically more insensitive to certain outcome than gamble outcome. No significant main event type (CR vs. GR) effect was found (F=
0.285, \(p = 0.594 \), partial \(\eta^2 = 0.001 \). Within patients, this effect on \(\beta_{CR} \) remained significant after controlling for gambling rate, earnings, mood-related outcome effect, mood drift effect, gender, illness duration, family history, diagnosis, and various medications use (\(ps < 0.032 \)). There was also no significant age/other anxiolytics use difference in gambling behavior (\(ps > 0.582 \); Figure S3). In addition, we observed significant negative correlation between BSI-C and \(\beta_{CR} \) among patients (rho = -0.243, \(p = 0.027 \)). These results indicate decreased mood sensitivity for certain reward in suicidal populations.

Table 3. Mood model comparison.

<table>
<thead>
<tr>
<th>Model #</th>
<th>Model specification</th>
<th># of parameters</th>
<th>(\Delta \text{BIC})</th>
<th>mean(\eta^2)</th>
<th>(\Delta \text{BIC}) for each group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HC</td>
</tr>
<tr>
<td>1</td>
<td>(\beta_0, \beta_{CR}, \beta_{EV}, \beta_{RPE}, \gamma)</td>
<td>5</td>
<td>-106.77</td>
<td>0.48</td>
<td>-182.04</td>
</tr>
<tr>
<td>2</td>
<td>(\beta_0, \beta_{CR}, \beta_{EV}, \beta_{RPE}, \gamma_{CR}, \gamma_{EV}, \gamma_{RPE})</td>
<td>7</td>
<td>140.00</td>
<td>0.54</td>
<td>-69.40</td>
</tr>
<tr>
<td>3</td>
<td>(\beta_0, \beta_{CR}, \beta_{GR}, \gamma)</td>
<td>4</td>
<td>0</td>
<td>0.42</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>(\beta_0, \beta_{CR}, \beta_{GR}, \gamma_{CR}, \gamma_{GR})</td>
<td>5</td>
<td>-146.81</td>
<td>0.48</td>
<td>-272.15</td>
</tr>
<tr>
<td>5</td>
<td>(\beta_0, \beta_{CR}, \beta_{GR_better}, \beta_{GR_worse}, \gamma)</td>
<td>5</td>
<td>-331.48</td>
<td>0.49</td>
<td>-355.10</td>
</tr>
<tr>
<td>6</td>
<td>(\beta_0, \beta_{CR}, \beta_{GR_better}, \beta_{GR_worse}, \gamma_{CR}, \gamma_{GR_better}, \gamma_{GR_better})</td>
<td>7</td>
<td>-105.40</td>
<td>0.56</td>
<td>-313.09</td>
</tr>
<tr>
<td>7</td>
<td>(\beta_0, \beta_{CR}, \gamma)</td>
<td>3</td>
<td>2395.62</td>
<td>0.18</td>
<td>1379.96</td>
</tr>
<tr>
<td>8</td>
<td>(\beta_0, \beta_{GR}, \gamma)</td>
<td>3</td>
<td>403.46</td>
<td>0.34</td>
<td>228.69</td>
</tr>
</tbody>
</table>

Abbreviations: \(\Delta \text{BIC} \), Bayesian information criterion relative to the winning model in S\(^+\) group (M3); HC, healthy control; S\(^-\), patients without suicidal thoughts and behavior; S\(^+\), patients with suicidal thoughts and behavior.
Figure 3. Effect of Suicidal thoughts and behavior on mood dynamics. A) Group difference in mood baseline, β_0. B) Group differences in mood sensitivity to certain reward (CR) and gamble reward (GR). C) Correlation between Suicidal Ideation score at current time BSI-C and mood sensitivity to CR. D) Correlational difference in S- and S+ between mood sensitivity to CR and gambling behavior. Abbreviations: CR, certain reward; GR, gamble reward; HC, healthy control; S-, patients without suicidal thoughts and behavior; S+, patients with suicidal thoughts and behavior; BSI-C, Beck Scale for Suicidal Ideation at the current time; *$p<0.05$.

In addition to the winning model (M3) from S+ group, we also checked results from the classic mood model (M1; Figure S1). Overall, we replicated previous findings: 1) mood sensitivity to CR, EV, and RPE were all significantly higher than 0 ($ps < 0.001$); 2) higher weight for RPE than EV ($t = 5.760, p < 0.001$). Although no significant group difference between S+ and S- was found in each parameter ($ps > 0.115$), we replicated significant correlation between BSI-C and β_{CR} ($\rho = -0.234, p = 0.037$). Given that M5 (splitting GR into better and worse terms) performed better than our winning model (M3) in the S- and HC groups, we also checked results from this model (Figure S2). Again, we found that S+ had significant lower β_{CR} than S- and HC (for group effect: $F = 44.660, p = 0.011$;
S+ vs. S−: t = -2.659, p = 0.009; S+ vs. HC: t = -2.589, p = 0.010; S− vs. HC: t = 1.059, p = 0.292) and significant correlation between BSI-C and βCR, (rho = -0.297, p = 0.006) among patients, suggesting the robustness of flat mood sensitivity to certain reward in suicidal people.

Associations between choice and mood

To examine the association between risk behavior and atypical mood dynamics in suicidal patients, we conducted correlation between gambling rate and mood βCR in S+. We found significant negative correlation between gambling rate and βCR in S+ (rho = -0.274, p = 0.037), suggesting the lower mood sensitivity to certain reward, the more gambling behavior suicidal patients made. Instead, we did not observe such significant correlation in S− (rho = 0.246, p = 0.237) and there was significant correlational difference between S+ and S− (Z = -2.109, p = 0.017), suggesting the suicidal-specific association of mood and choice.

Discussion

The current study tested cognitive and affective computational mechanisms for increased risk behavior in adolescent patients with suicidal thoughts and behaviors (STB), with the control of adolescent patients without STB and gender/age-matched healthy control (HC). Firstly, we observed an increased gambling behavior and a lower overall mood in STB patients (S+), as compared to non-STB patients (S−) and HC, replicating previous findings(8–11). Secondly, using an approach-avoidance prospect theory model, we found heightened approach motivation in S+ than S− and HC, which explained increased gambling choices for STB, suggesting over-reactivity of Pavlovian system to approach risky
options. Thirdly, using a momentary mood model, we showed lower mood sensitivity to certain than gamble outcomes in S^+ relative to S^- and HC, which was driven by lower mood sensitivity to certain outcome in S^+ than S^- and HC. Importantly, mood hyposensitivity to certain reward specifically correlated to more gambling behavior in S^+, offering a mood computational account for increased risk behavior in STB. These results remained significant after controlling for demographics and clinical variables and medication factors.

These findings provide new insights to the putative dynamics underpinning STB, and offer potential markers for the early prediction, screening, detection, and intervention of suicidal behavior. Our results indeed suggest that STB patients’ mood would be less sensitive to certain outcomes than control without STB, which would lead them to take more risk regardless the gain at stake and therefore to potentially experience more suboptimal outcomes than controls(8). These results would explain the observed increase in risk-taking behaviors in STB such as substance use, early onset of sexual intercourse and physical fighting independent of psychiatric diagnosis.

Interestingly, our results suggest a unique reason for the twofold observations that STB patients display an increase in both risk taking and impulsivity, defined as a tendency to act quickly without planning while failing to inhibit a behavior that is likely to result in negative consequences(39–43). Indeed, we did not observe a difference in risk attitude per se between STB and controls but instead a higher approach behavior towards largest rewards (i.e., the lotteries) in STB patients. This would result from the value-independent term in the model that represent forms of Pavlovian approach in the face of gains(17,44,45). Such Pavlovian
actions are elicited without regard to their actual contingent benefits and therefore corresponds to an impulsive behavior.

The Pavlovian system strongly relates to the dopaminergic system as L-dopa has been shown to increase approach behavior in the context of gambling(17). The modulation of the Pavlovian approach component is consistent with an association between the dopaminergic system and incentive salience(46,47), which provide in principle an account of dopaminergic drug effects on pathological gambling and impulsive behavior in humans(48,49) and rodents(50,51). However, contrary to the proposal of atypical Pavlovian avoidance system(20,23), we did not observe significant group difference in avoidance, which may be attributed to the different involvement of the Pavlovian system in learning and non-leaning contexts(18,52). In our model specification, Pavlovian systems work in a value independent way in the non-learning context.

In line with suicidal-related theories(3), we confirmed lower mood in patients with STB. Many studies have shown that serotonergic system plays crucial role in mood(53). Dysfunctional serotonergic system has shown in patients with STB(54), potentially building a link between mood and STB. This association corresponds to various suicidal-related theories, holding that mood problems are at the core of STB(3). Recently, pharmacological treatment of serotonin has been found to enhance the impact of mood on decision making(55), providing a promising target for prevention and intervention of suicide.
Surprisingly, mood model-based analysis did not support the effect of expectations and prediction errors on mood in healthy people (the “CR-EV-RPE model”(17,27,56)), but a dissociation between certain outcomes and lottery outcomes (the “CR-GR model”). These two models differed with respect to the inclusion of reward expectation terms, the former including it unlike the latter. This difference may be explained by the lower expected value signal in patients with STB(28), resulting in insufficient expectation representations of the gamble option to influence mood dynamics. An alternative explanation could be the duration of the chosen option display which was considerably lower in our design than in other mood studies (e.g., 0.5 s in our study versus 6 s in (27)), which would not let enough time for expectation to be built. Within the winning CR-GR model, we observed that S^+ specifically exhibited lower mood sensitivity to CR than GR, which was driven by mood hyposensitivity to CR in S^+ than S^- and HC. This mood insensitivity was associated with STB severity, which was replicated when using the CR-EV-RPE model. Importantly, we found that mood hyposensitivity to certain reward was specifically correlated to increased gambling behavior in patients with STB, suggesting the potential mood computational mechanism for increased risk behavior in STB. This result might imply the potential interplay between dopaminergic and serotonergic systems in STB, with low serotonin levels reducing mood sensitivity to certain rewards and with high dopaminergic levels resulting in approach behaviors.

Given that STB is a challenging multifactorial phenomenon, the development of a formal theory to quantify suicide seems necessary(20,21,57). Our cognitive and affective
computational insights may pave the way for such a formal theory. Although previous literature has shown various cognitive impairments (11), e.g., executive function, in STB (58), our work is the first to quantify mood dynamics impairment and their behavioural consequences, providing insight into potential target to prevent and intervene STB. Our results indeed provide a computational mechanism for the main theories of suicide, linking low mood to suicidal behaviors. Suicide behavior is conceived to result from an intention shaped by various motivational factors (e.g., feeling of entrapment, belongness, burdensomeness (59)). The suicidal intent may then progress to suicidal behavior, which is thought to be moderated by impulsive decisions (e.g., (60)). A possibility is that the Pavlovian approach component becomes excessive as the suicidal intent emerges.

Several limitations are worth mentioning. First, although we found that aberrant mood sensitivity explained increased risk behavior in STB, the mutual relationship between mood and risk behavior remains to be tested. For example, does mood really influence risk behavior, does risk behavior influence mood, or is there a loop between them? Second, our cross-section findings are in correlational nature. Causal relationships remain to be tested in a longitudinal study.

To conclude, this study examined cognitive and affective computational mechanisms underlying increased risk behaviors in adolescent patients with suicidal thoughts and behaviors. Given very limited predictive abilities of suicide from previous risk-factor investigations (5), our study offers a new perspective of mood, at the core of STB, and
reveals a relationship between low mood sensitivity to certain reward and an increased risk behavior in STB and possibly suggesting dysfunctional dopaminergic and serotonergic systems. Our work has important implications for prevention and intervention of suicide, especially for clinical populations.
Acknowledgements

This study was funded by the National Natural Science Foundation of China (31920103009,62173069,62006038), the Major Project of National Social Science Foundation (20&ZD153), Shenzhen-Hong Kong Institute of Brain Science – Shenzhen Fundamental Research Institutions (2019SHIBS0003), Science and Technology Bureau of Chengdu Program (2022-YF09-00023-SN), Sichuan Province Science and Technology Support Program (2022YFS0180).

Conflict of interest

The authors have indicated they have no potential conflicts of interest to disclose.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.
References

Biol 26: 1634–1639.

