Coarctation duration and severity predict the likelihood of hypertension precursors in a preclinical model and hypertensive status among patients

Arash Ghorbannia PhD1,2,3, Hilda Jurkiewicz BS1, Lith Nasif MD4, Abdillahi Ahmed MD4, Jennifer Co-Vu MD5, Mehdi Maadooliat PhD5, Ronald K. Woods MD PhD5, John F. LaDisa, Jr. PhD1,2,7

1Department of Pediatrics - Division of Cardiology, Herma Heart Institute, Children’s Wisconsin and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
2Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
3Pratt School of Engineering, Duke University, Durham, NC USA
4Pediatric Cardiology, University of Florida Health Congenital Heart Center, Gainesville, Florida, USA
5Department of and Statistical Sciences, Marquette University, Milwaukee, Wisconsin, USA
6Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Medical College of Wisconsin, Herma Heart Institute, Children’s Wisconsin, Milwaukee, Wisconsin, USA
7Departments of Physiology, and Medicine - Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA

Short Title: Duration and severity of CoA predict hypertension

Address for correspondence: John F. LaDisa, Jr., PhD, 8701 W Watertown Plank Rd., Milwaukee, WI 53226, phone: 414 456-2205, email: jladisa@mcw.edu

Word count: 7560
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest
Abstract

Coarctation of the aorta (CoA) often leads to hypertension (HTN) post-treatment. There is limited evidence for the current ≥20 mmHg peak-to-peak blood pressure gradient (BPGpp) guideline, which can cause aortic thickening, stiffening and dysfunction. This study sought to find the BPGpp severity and duration that avoids persistent dysfunction in a preclinical model, and test if predictors identified translate to HTN status in CoA patients.

Rabbits (N=75; 5-11/group; 10 weeks-old) were exposed to mild, intermediate or severe CoA (≤12, 13-19 & ≥20 mmHg BPGpp) for ~1, 3 or 22 weeks using dissolvable and permanent sutures with thickening, stiffening, contraction and endothelial function evaluated via multivariate regression analysis. The relevance of findings to CoA patients (N=239; age=0.01-46 years; mean 3.44 years) was similarly tested by retrospective review of predictors (pre-operative BPGpp, age at surgery, etc) vs follow-up HTN status.

CoA duration and severity were predictive of remodeling and dysfunction in rabbits and HTN likelihood in CoA patients. Interaction between patient age and BPGpp at surgery were significant contributors to HTN, suggesting preclinical findings translate to human. Machine-learning decision tree analysis uncovered duration and severity values for precursors of HTN in the preclinical model, and HTN at follow-up in CoA patients.

These findings suggest the current BPGpp threshold is likely too high to limit activation of processes leading to persistent aortic changes associated with HTN. The resulting decision tree provides a foundation for revising CoA treatment guidelines by considering the interaction between CoA severity and duration to limit the chance of HTN.

Key Words: Coarctation of the aorta, machine learning, echocardiography, severity assessment, intervention guidelines
Abbreviations and acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>Area under the receiver operative curve</td>
</tr>
<tr>
<td>AUD</td>
<td>Area under the dose response curve</td>
</tr>
<tr>
<td>BP</td>
<td>Blood Pressure</td>
</tr>
<tr>
<td>BPG</td>
<td>Blood Pressure Gradient</td>
</tr>
<tr>
<td>BPgpp</td>
<td>Peak-to-peak trans-coarctation blood pressure gradient</td>
</tr>
<tr>
<td>CoA</td>
<td>Coarctation of the Aorta</td>
</tr>
</tbody>
</table>

2 Introduction

Coarctation of the aorta (CoA) is a constriction of the proximal descending thoracic aorta and is a common form of congenital heart disease affecting 5,000-8,000 births annually in the U.S.\(^2\). For unknown reasons, treated CoA patients often have a reduced life expectancy from cardiovascular morbidity, primarily hypertension (HTN)\(^3\).

The blood pressure gradient (BPG) induced by CoA is a primary indication for treatment and is often greatly reduced or eliminated after surgical resection. Unfortunately, there is a lack of data for the current \(\geq20\) mmHg peak-to-peak BPG (BPgpp) treatment value\(^4\). A 2015 review\(^5\) called the prior evidence (Level C - limited data and no clinical trials) for this BPG in the treatment guideline\(^6\) suboptimal. More recent guidelines\(^7\) indicate level B-NR based on non-randomized studies, which still suggests clinicians stay abreast of new information\(^8\). This BPG dates back to surgical outcomes from several decades ago\(^9\), but persists despite notable surgical advances. Perhaps not surprisingly when considering the facts above, experimental results implementing the current treatment guideline (\(\geq20\) mmHg BPgpp)\(^9\) in rabbits has revealed arterial changes within the proximal region exposed to high BP. These included medial thickening and stiffening, a phenotypic shift in smooth muscle cells to the dedifferentiated proliferating state, and endothelial dysfunction, which all persisted after treatment\(^10\). This persistence is a paradigm shift from the dogma of complete vascular plasticity, and indicates \(\geq20\) mmHg BPgpp is not the ideal treatment threshold since it likely contributes to long-term HTN via pathologic aortic stiffening\(^11\).

The objectives of this study are to identify the severity and duration of BPgpp that avoids persistent arterial remodeling and endothelial dysfunction using a preclinical model devoid of concomitant anomalies often presenting with CoA, and to test whether the BPgpp predictors translate to HTN status in pediatric patients treated for CoA. We hypothesize that aspects of CoA including severity and duration can predict whether a patient will be hypertensive after treatment since BP is similar and growth curves can be mapped between rabbits and humans\(^12\).

3 Methods

3.1 Preclinical model of CoA

Experimental procedures were approved by applicable Animal Care and Use Committees. All procedures conformed to the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals. After \(>72\) hours of acclimation, New Zealand white rabbits \(\sim10\) weeks old and weighing \(\sim1.0\) kg were anesthetized with ketamine/xylocaine IM and maintained with isoflurane (minimum alveolar concentration; MAC \(\approx 1\)%)\(^13\). Rabbits (total 74; N=5-11/group) were randomly designated to surgically undergo discrete CoA of varying severity and associated mechanical stimuli via left thoracotomy in the third intercostal space by tying suture around the aorta against a wire of known diameter (1.6, 2.0 or 2.7 mm). Removal of the wire resulted in CoA severity dependent on the wire diameter used and resulting in BPgpp within the range observed clinically (mild: BPgpp \(\leq12\) mmHg, intermediate: BPgpp 13 - 20 mmHg, and severe: BPgpp \(\geq20\) mmHg). To investigate the effect of duration of the mechanical stimuli caused by CoA, sutures with different dissolving properties (i.e., rapid dissolvable Vicryl, dissolvable Vicryl, or permanent silk) were used to initiate the stenosis for different durations (short: \(\sim1\) weeks, long: 3 weeks, and prolonged: 22 weeks) at the severity levels mentioned. Sutures were tied around the proximal descending thoracic aorta (distal to the left subclavian branch) where CoA most often presents clinically. This resulted in 9 experimental groups (3 severities and 3 durations) as well as a group of non-experimental control littermate rabbits. Subcutaneous furosemide injections were administered (1-5 mg/kg, BID weekdays, OD weekends) as needed for up to \(14\) days post-surgery to limit and/or treat edema. Weekly Doppler ultrasound imaging was performed by a trained sonographer using protocols similar to human echocardiography\(^14\) until estimates of the BP gradient across the CoA calculated using the simplified Bernoulli Equation no longer changed with body weight. For dissolvable CoA groups, BPgpp was expected to recover back to normal as the suture dissolved. Severity for rabbits in these groups was estimated noninvasively using Doppler BPG evolution curves compared to those from the permanent CoA groups. Specifically, the temporal evolution of Doppler BPG and BPgpp via catheter measurements in the permanent CoA group (22-
week duration) were used to determine the severity of coarctations experienced by rabbits in the other duration groups prior to dissolving of the suture (Figure). Rabbits were re-anaesthetized at ~32 weeks of age for catheter-based measurement of simultaneous blood pressure (BP) waveforms proximal and distal to the CoA.

Figure 1. Blood pressure gradient evolution curves from weekly Doppler ultrasound evaluations. Doppler estimates of BP were performed using echocardiography protocols including instantaneous pressure drop estimation via simplified Bernoulli equation using the Doppler peak jet velocity with consideration of proximal acceleration. Classification was based on catheter-based BP measurements for rabbits in the permanent CoA groups and used to determine the severity of coarctations experienced by rabbits in the other duration groups prior to dissolving of the suture used to create CoA. Green boxes in provide an example of a rabbit exposed to stimuli most aligned with that experienced by rabbits in the intermediate severity group (i.e., BP 13 - 20 mmHg) prior to the coarctation suture dissolving (~3 week period, red inset).

The detailed active and passive response of the aorta was then assessed relative to the severity and duration of the CoA generated in rabbits through an array of experimental protocols explained below.

3.1.1 Thickness of the aorta

Thickness was measured to quantify structural changes from coarctation-induced mechanical stimuli. Briefly, ring samples of the aorta were dissected proximal to the CoA after tissue harvest and thickness was measured optically under a dissection microscope. The cross-section view of the segment was imaged and used for quantitative measurement in ImageJ. Samples were collected at the ascending and descending thoracic aorta proximal and distal to the arch branches, respectively. Thickness was measured in triplicate for each sample and average values were normalized by rabbit body weight at the time of harvest.

3.1.2 Stiffness of the aorta

After harvest, dissected thoracic aortas also underwent material characterization by uniaxial extension testing (MTS Criterion Load Frame, MTS, Minneapolis, U.S.A.) at 37°C in an environmental chamber (MTS Bionix EnviroBath, Minneapolis, U.S.A.). Tissue samples were dissected and assessed for length-to-width ratio of ~2.6 and preconditioned by stretching to 10% of the gauge length. Extension testing was performed at 10 mm/min until hyperelastic behavior was observed. Resulting stress-stretch curves were used to characterize stiffness of the samples. Area under the stress-stretch curve, i.e., strain energy stored in the sample, was quantified in the stretch range of 1 to 2 as an aggregate measure of overall stiffness.

3.1.3 Functional response of the aorta

Functional changes from coarctation-induced stimuli were also quantified by wire myography. Aortic segments (3-4 mm rings) were carefully sectioned and assessed for function. Briefly, active function testing was conducted to observe smooth muscle (SM) contraction via phenylephrine (PE) as well as endothelial-dependent relaxation by acetylcholine (ACh) in a half-log increasing dose response from 10^{-9} to 10^{-5} M concentrations. Arteries were precontracted with PE to the half-maximal effective concentration (EC50) and cumulative addition of agonists was initiated once a plateau was achieved. Contractile and relaxation response curves were quantified as a percentage of precontracted active tension. The area under the dose response curves (AUD) was then quantified as an aggregate measure of arterial function. All quantifications were performed in duplicate for paired myography channels from the ascending and descending thoracic aorta.

3.2 HTN in pediatric patients treated for CoA

Electronic medical records of patients treated for CoA (N=239) were retrospectively studied after exempt determination by the Institutional Review Boards at the Medical College of Wisconsin and Shand’s Children’s Hospital. Briefly, BPGpp, patient age, sex, height, weight, medication history, and follow-up BP were used to determine BP percentiles and HTN status. Patients <18 years at follow-up were assessed using the National High Blood Pressure Education Program (NHBPEP) Working Group on Children and Adolescents for systolic and diastolic BP: normal (≤50th percentile BP), pre-HTN (≥50th but <99th percentile BP), HTN (≥99th percentile BP). Patients ≥18 years at follow-up were assessed using Joint National Committee 7 guidelines for systolic/diastolic BP: normal (<120/80 mmHg), pre-HTN (120-139/80-89 mmHg), HTN (includes Stage 1: 140-159/90-99 mmHg and Stage 2: ≥160/>100 mmHg). Tables assembled from these guidelines are provided in the Appendix. Patients
with BP percentiles registering as Stage 1 or Stage 2 for systolic or diastolic BP were interpreted as hypertensive. BPGpp in patient records was determined from echocardiographic Doppler-based estimates of peak velocity by applying the simplified Bernoulli equation\(^{19}\). BPGpp at follow-up noted as “not significant” or “none” were interpreted as zero and average values were used when a range of BPGpp was noted.

3.3 Statistical Analysis
Multivariate regression analysis was performed on pre-clinical rabbit datasets with severity, duration, body weight, and sex as predictors. Indices of aortic remodeling including thickness, stiffness, and impaired vasoactive response by myography were used as surrogates for HTN. Forward and backward stepwise selection methods were used to ensure the best model is not over-/under-fitting. Three different information criteria, i.e., Akaike information criteria (AIC), corrected Akaike information criteria (AICc), and Bayesian information criteria (BIC), were used to identify the best model\(^{20}\). Normality of the residuals were tested through Shapiro-Wilk, Anderson-Darling, Shapiro-Wilk, and Kolmogorov-Smirnov tests. Values reported as Mean ± standard error of means (SEM) with graded significance (***=0.001, **=0.01, *=0.05).

Similarly, to assess the possibility of translating any new BPGpp threshold ranges to humans, predictors from hypertensive CoA patients at follow-up were analyzed via selection from 260 million possible models (e.g., logistic regression, support vector machine, decision trees, etc.) consisting of seven predictors. Predictors included pre & post-operative estimates of BPGpp (i.e., severity), surgery date versus date of birth (i.e., duration), follow-up time since surgery, sex, body surface area and knowledge of current anti-hypertensive medication (where available). Possible models also included the respective 21 pairwise interactions of these seven predictors. \textit{Glmulti}, an R package that utilizes a genetic algorithm, was used to find the best model\(^{21}\).

An interpretable machine learning algorithm, the Classification and Regression Tree, was alternatively used to model the impact of the predictors mentioned on HTN precursors in the preclinical model as well as HTN status in retrospective data sets from treated CoA patients. \textit{Sklearn}, a classification learner package in python\(^{22}\), was used for this purpose. Model predictions were then used to compute a confusion matrix and ROC curves to compare model performance relative to the multi-linear regression fit.

4 Results

4.1 Preclinical model of CoA
Overall, 75 rabbits were investigated including 12 control and 5-7 for each of the 9 CoA groups (Table 1). Thickness and stiffness of the aorta was observed to increase with severity and duration of CoA, whereas active response was impaired as evident by the decreased AUD curves characterizing SM contraction (via PE) and endothelial-derived relaxation (via ACh). Significant correlation to CoA severity and duration was observed via multiple linear regression fit to these metrics of active and passive function at the thoracic aorta proximal to the CoA. \textbf{Error! Reference source not found.} shows model prediction (lines) vs scatter plot of functional assessment indices (vertical axis) at various severities (horizontal axis) and durations (colors) of CoA.

<table>
<thead>
<tr>
<th>Group</th>
<th>Group Description</th>
<th>Samples</th>
<th>M/F</th>
<th>Characteristics of the pre-clinical rabbit dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration(^{1})</td>
</tr>
<tr>
<td>Control</td>
<td>Control</td>
<td>12</td>
<td>10 / 2</td>
<td>NA</td>
</tr>
<tr>
<td>mild-short</td>
<td>Rapid dissolvable suture</td>
<td>6</td>
<td>6 / 0</td>
<td>1.03 [0.04]</td>
</tr>
<tr>
<td>intermediate-short</td>
<td>Rapid dissolvable suture</td>
<td>6</td>
<td>5 / 1</td>
<td>0.97 [0.05]</td>
</tr>
<tr>
<td>severe-short</td>
<td>Rapid dissolvable suture</td>
<td>5</td>
<td>5 / 0</td>
<td>0.97 [0.05]</td>
</tr>
<tr>
<td>mild-long</td>
<td>Dissolvable suture</td>
<td>8</td>
<td>6 / 2</td>
<td>2.98 [0.20]</td>
</tr>
<tr>
<td>intermediate-long</td>
<td>Dissolvable suture</td>
<td>6</td>
<td>4 / 2</td>
<td>2.93 [0.15]</td>
</tr>
<tr>
<td>severe-long</td>
<td>Dissolvable suture</td>
<td>6</td>
<td>6 / 0</td>
<td>3.12 [0.13]</td>
</tr>
<tr>
<td>mild-prolong</td>
<td>Permanent suture</td>
<td>7</td>
<td>6 / 1</td>
<td>21.9 [1.05]</td>
</tr>
<tr>
<td>intermediate-prolong</td>
<td>Permanent suture</td>
<td>9</td>
<td>8 / 1</td>
<td>22.1 [1.23]</td>
</tr>
</tbody>
</table>
Results of machine learning identified best decision tree regression models to predict thickening, stiffening, impaired contraction, and impaired relaxation. Overall, duration and severity of the CoA were the most important predictors of active and passive dysfunction. The normalized importance of duration was 0.57, 0.58, 0.59, and 0.53 for arterial thickening, stiffening, impaired contraction, and impaired relaxation, respectively. The normalized importance of severity was 0.43, 0.43, 0.33, and 0.35 for arterial thickening, stiffening, contraction, and relaxation, respectively. On the other hand, body weight had only a minor effect on model predictions with normalized importance values of 0.00, 0.00, 0.08, 0.12 for arterial thickening, stiffening, contraction, and relaxation, respectively. Sex had no effect on model prediction in any of the studied metrics of dysfunction.

Error! Reference source not found. A shows the best decision tree regression fit to aortic thickening patterns observed in rabbits. For aid in clinical translation, BP gradients shown have been converted from estimates via simplified Bernoulli equation to catheter representations using the function of Doppler Gradient = 1.62 × BPGpp + 21.33 as described elsewhere. For mild severity and short duration presentation of the CoA, aortic thickness was close to that of the control group. Specifically, data was clustered into 6 total leaf nodes with aortic thickness being closer to that of the control group when CoA severity, i.e., BPGpp, was <27.3 mmHg and CoA was present for <20 days. There were two clusters present in this criterion with 7 and 13 samples and average aortic thicknesses of 75.27±6.17 and 80.92±6.66 μm/kg, respectively. For the same duration, i.e., <20 days, and BPGpp ≥27.3 mmHg (N=5), aortic thickness notably increased to 98.69±13.29 μm/kg.

Aortic thickening was more pronounced when CoA was present ≥20 days. Specifically, a thickness of 90.25±7.93 μm/kg was observed when BPGpp <14.3 mmHg (N=9) and 106.63±10.63 μm/kg when BPGpp ≥14.3 mmHg (N ≥7). Finally, the highest level of aortic thickening was observed when BPGpp ≥20.0 mmHg was experienced for more than 20 days (N=15), where thickness measured 120.55±12.14 μm/kg.

Model performance was assessed for an assumed threshold equal to higher 75th, 90th, and 99th quantile of the thicknesses observed in the control group, i.e., 83.5, 84.1, and 91.2, respectively. The corresponding [accuracy, sensitivity, specificity] was [0.74, 0.00, 1.00], [0.79, 0.80, 0.79], and [0.79, 0.67, 0.90], respectively.

Duration is measured in weeks, severity is measured through coarctation peak-to-peak blood pressure gradient [mmHg] for rabbits in the permanent CoA groups and used to determine the severity of coarctations experienced by rabbits in other duration groups prior to dissolving of the suture used to create CoA as indicated in Figure 1. Body weight is measured in kg.

<table>
<thead>
<tr>
<th>Duration (weeks)</th>
<th>Permanent suture</th>
<th>10</th>
<th>9 / 1</th>
<th>22.1 [1.33]</th>
<th>31.3 [8.43]</th>
<th>3.01 [0.43]</th>
</tr>
</thead>
</table>

Figure 2: Preclinical evidence of arterial thickening, stiffening, impaired contraction, and impaired relaxation as a function of CoA severity and duration. All metrics were quantified at the thoracic aorta proximal to the CoA where elevated BP was observed. Multi-variate regression modeling was performed to predict (A) normalized thickness [μm/kg], (B) stiffness [MPa], (C) contraction impairment [nondimensional], and (D) relaxation impairment [nondimensional] as a function of severity, duration, body weight, and sex. Severity was quantified through trans-coarctation peak-to-peak blood pressure gradient (BPGpp) and duration was quantified in weeks. Logarithmic transformations of severity and duration were used to improved model fits. Specifically, log(BPGpp+12) and log(Duration+12) were used for a positive-range logarithmic transformation. Reported severity and durations on the axes are transformed back to the measured dimensions, i.e., mmHg and weeks for severity and duration, respectively. Short, long, and prolong classifications are based on the type of the sutures used that created CoA for ~1, 3, and 22 weeks, respectively. The glmulti multi-classification tool identified severity, duration, or their interaction as the main effect in each of the four metrics of aortic dysfunction. The results were unchanged through the three different information criteria investigated, i.e., AIC, BIC, and AICc and residuals followed a normal distribution.

The normalized thickness measured 120.55±12.14 μm/kg.

The normalized stiffness measured 83.5 ±12.14 μm/kg.

The normalized contraction impairment measured 83.5 ±12.14 μm/kg.

The normalized relaxation impairment measured 83.5 ±12.14 μm/kg.

The normalized body weight measured 83.5 ±12.14 μm/kg.

The normalized duration measured 83.5 ±12.14 μm/kg.
Figure 3B shows the best decision tree regression fit to arterial stiffening patterns observed from rabbit aortic tissue samples proximal to the coarctation. Aortic stiffness remained close to that of control values for intermediate severity and short duration CoA. Specifically, tree structure was clustered into 4 end leaves with aortic stiffness being closer to that of the control group when CoA severity, i.e., BPGpp was <5.5 mmHg and CoA was present for <20 days. There were two clusters present in this criterion with 11 and 14 samples and average aortic stiffnesses of 0.43±0.06 and 0.52±0.06 MPa, respectively.

On the other hand, for longer presentations of CoA, duration ≥20 days, aortic stiffening was more pronounced. Specifically, a stiffness of 0.62±0.08 MPa was observed when BPGpp <20.0 mmHg (N = 16) and 0.93±0.23 MPa when BPGpp ≥20.0 mmHg (N=15).

Model performance was assessed for an assumed threshold equal to higher 75th, 90th, and 99th quantile of the stiffnesses observed in the control group, i.e., 0.323, 0.350, 0.365. The corresponding [accuracy, sensitivity, specificity] was [0.74, 0.00, 1.00], [0.79, 0.80, 0.79], and [0.79, 0.67, 0.90], respectively.

Figure 3C shows the best decision tree regression fit to contractile response from rabbit aortic tissue samples proximal to the coarctation. Active contraction response of the aorta remained close to that of control rabbits for intermediate severity and short duration CoA. Specifically, tree structure was clustered into 6 end leaves with contractions distinctively impaired by CoA severity and duration. When severity, i.e., BPGpp was <2.7 mmHg and CoA was present for <22 days, normalized contractions close to those of control group were observed, i.e., 3.45±0.29. At the same duration, i.e., <22 days, contraction correlated with...
BW when BPGpp ≥ 2.7 mmHg. Specifically, contraction response decreased to 3.15±0.37 and 2.51±0.30 for BW < and ≥ 3.05 kg, respectively.

Conversely, for longer presentations of CoA, duration ≥22 days, contraction of the aorta was more markedly impaired. Specifically, contractile response reduced to 1.94 ±0.32 when BPGpp ≥ 23.1 mmHg. For BPGpp < 23.1 mmHg, contractile response decreased to 2.68±0.23 and 2.51±0.23 for durations < and ≥ 153 days, respectively.

Model performance was assessed for an assumed threshold equal to lower 1st, 10th, and 25th quantile of the contraction observed in the control group, i.e., 2.91, 3.17, and 3.23. The corresponding [accuracy, sensitivity, specificity] was [0.79, 0.82, 0.75], [0.89, 1.00, 0.71], and [0.89, 0.93, 0.80], respectively.

Figure 3D shows the best decision tree regression fit to relaxation response observed in CoA rabbits. Active relaxation response of the aorta also remained close to that of control rabbits for intermediate severity and short duration CoA. Specifically, tree structure was clustered into 6 end leaves with relaxations distinctively impaired by CoA severity and duration. When severity, i.e., BPGpp was <17.2 mmHg and CoA was present for <22 days, normalized relaxation close to that of control group was observed, i.e., 2.43±0.15 and 2.15±0.21, for durations < and ≥ 3 days, respectively. At the same duration, i.e., <22 days, normalized relaxation to 1.57±0.59 if BPGpp ≥17.2 was present.

On the other hand, for longer presentations of CoA, duration ≥22 days, relaxation of the aorta was more markedly impaired by coarctation severity. Specifically, relaxation response reduced to 1.55 ±0.21, 1.07 ±0.27, and 0.79±0.20 for BPGpp <14.3, 14.3 to 23.1, and ≥23.1 mmHg, respectively.

Model performance was assessed for an assumed threshold equal to lower 1st, 10th, and 25th quantile of the contraction observed in the control group, i.e., 2.128, 2.200, 2.29. The corresponding [accuracy, sensitivity, specificity] was [0.68, 0.62, 0.83], [0.84, 0.92, 0.67], and [0.84, 0.87, 0.75], respectively.

4.2 Pediatric patients treated for CoA

Descriptive statistics for the CoA patient population studied retrospectively are provided in Table 2. Of the data sets studied, 154 were from males and 85 were from female patients. Patients with elevated BP are not considered HTN by current guidelines, but 22 of the 239 patients were elevated for SBP and 10 for DBP. 36 patients were noted to be on at least one antihypertensive medication by their follow-up period, while 174 were not any antihypertensive medication. Medication history was not available for 29 patients, which were considered as not on hypertensive medications for decision tree analysis.

Table 2. Descriptive statistics for our CoA patient data. BPG= blood pressure gradient estimate by Doppler ultrasound

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at Surgery</td>
<td>3.44</td>
<td>0.01 – 46.0</td>
</tr>
<tr>
<td>BPG prior to Surgery</td>
<td>46</td>
<td>0 - 100</td>
</tr>
<tr>
<td>Age at Follow-up</td>
<td>9.64</td>
<td>0.05 - 52.4</td>
</tr>
<tr>
<td>Follow-up duration</td>
<td>6.22</td>
<td>0 - 34.6</td>
</tr>
<tr>
<td>BPG at Follow-up</td>
<td>22</td>
<td>5 - 66</td>
</tr>
<tr>
<td>Hypertension at Follow-up</td>
<td>Systolic</td>
<td>Diastolic</td>
</tr>
<tr>
<td>Stage 1</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>Stage 2</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Glmulti produced similar results based on three different information criteria (AIC, AICc, and BIC)\(^\text{20}\), where the final model includes two main effects (age at surgery and follow-up time since surgery) as well as four pairwise interactions: (a) age and BPGpp at surgery, (b) age at surgery and body surface area, (c) and follow-up time since surgery and body surface area, and (d) and follow-up time since surgery and hypertensive medication. To avoid an incomplete or biased result between the predictors and the outcome, insignificant main effects that were associated with the significant interactions (i.e., BPGpp at surgery, body surface area, and hypertensive medication) were also included\(^\text{21}\). The final model is given below with coefficients listed in Table 3.

Table 3. Coefficients for Likelihood of Hypertension using Logistic Regression Model. AIC=226.4

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Estimate</th>
<th>SEM</th>
<th>Z-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>6.03e-01</td>
<td>7.06e-01</td>
<td>0.86</td>
<td>0.393</td>
</tr>
<tr>
<td>Age at Surgery</td>
<td>-2.55e-03</td>
<td>8.44e-04</td>
<td>-3.02</td>
<td>0.003</td>
</tr>
<tr>
<td>Pre-op BPGpp</td>
<td>7.06e-03</td>
<td>9.36e-03</td>
<td>0.76</td>
<td>0.451</td>
</tr>
<tr>
<td>BSA</td>
<td>-7.72e-01</td>
<td>1.11e+00</td>
<td>-0.70</td>
<td>0.487</td>
</tr>
<tr>
<td>Medication</td>
<td>-1.15e-01</td>
<td>7.35e-01</td>
<td>-0.16</td>
<td>0.876</td>
</tr>
<tr>
<td>Time since Surgery</td>
<td>-1.25e-03</td>
<td>3.87e-04</td>
<td>-3.23</td>
<td>0.001</td>
</tr>
<tr>
<td>Age:BPGpp</td>
<td>1.90e-05</td>
<td>8.72e-06</td>
<td>2.17</td>
<td>0.030</td>
</tr>
<tr>
<td>BPGpp:BSA</td>
<td>8.61e-04</td>
<td>3.06e-04</td>
<td>2.82</td>
<td>0.005</td>
</tr>
</tbody>
</table>
BSA: Time since surgery 6.11e-04 2.35e-04 2.60 0.009
Medication: Time since surgery 6.99e-04 3.89e-04 1.80 0.073
Surgery

Severity was characterized as BPGpp, Medication refers to antihypertensive medication, BSA: body surface area, age refers to age at surgery. Regression model:

$$\logit(p) = \beta_0 + \beta_1 \text{AGE@Sx} + \beta_2 \text{FUtSx} + \beta_3 \text{BPG@Sx} + \beta_4 \text{BSA} +$$

$$\beta_5 \text{HTNmed} + \beta_6 \text{AGE@Sx} \times \text{BPG@Sx} + \beta_7 \text{AGE@Sx} \times \text{BSA} +$$

$$\beta_8 \text{FUtSx} \times \text{BSA} + \beta_9 \text{FUtSx} \times \text{HTNmed},$$

with $p =$ likelihood of HTN, $\text{AGE@Sx} =$ age at surgery, $\text{FUtSx} =$ time since surgery, $\text{BSA} =$ body surface area, and $\text{HTNmed} =$ hypertension medication

The ROC curve for the model described above resulting in an AUC of 0.74, is shown in Figure 4.

![Figure 4](image)

Figure 4. ROC curve of the best model tested using retrospective data from treated CoA patients. Age at surgery and follow-up time since surgery were associated with hypertension, as well as four pairwise interactions: age and BPGpp at surgery, age at surgery and body surface area, follow-up time since surgery and body surface area, and follow-up time since surgery and hypertensive medication. Applying a cutoff of 22% with the model confusion matrix resulted in 72% sensitivity and 57% specificity and 0.74 area under the curve.

Similar to pre-clinical results, decision tree regression (Figure 5) identified both pre-op severity and age at surgery as main effects with normalized feature importance of 0.56, and 0.25. For aid in clinical translation, BP gradients listed have been converted from estimates via simplified Bernoulli equation to arm-leg pressure gradient representations using the function of simplified Bernoulli gradient $= 0.98 \times \text{BPGpp} + 18.69$ with BP gradients representing arm-leg peak-to-peak gradient13. Interestingly, post-op BPGpp was also observed among the main effects with 0.18 normalized feature importance. Specifically, for pre-op BPG <35.7 mmHg, 15% of the patients developed hypertension, among which the majority where patients that were treated ≥ 3.1 years of age had post-op BPG ≥ 5.9 mmHg. On the other hand, hypertension was more prevalent (46%) among patients with pre-op BPGpp ≥ 35.7 mmHg, among which the majority (72%) were older than 6.4 years old at surgery.

![Figure 5](image)

Figure 5- Decision tree regression fit to predict hypertension likelihood based on the human dataset. Hypertension status was assessed relative to metrics of duration and severity of the CoA in humans, including, BPGpp and age at surgery (pre-op), as well as the BPGpp and age at the follow up (post-op). For aid in clinical translation, blood pressure gradients listed have been converted from estimates via simplified Bernoulli equation to arm-leg pressure gradients (BPGpp) represented using the function of simplified Bernoulli gradient $= 0.98 \times \text{BPGpp} + 18.69$ from Ghorbannia et al - J Am Soc Echocardiogr. 2022 Dec;35(12):1311-1321.

5 Discussion

A recent retrospective study of 690 patients in the UK with a median surgical repair age of 4 years (1 month to 15 years lower-upper quartile) reported a 70 year survival rate 16% less than the general population with 57% of patients hypertensive at their latest follow-up24. This is just one of many studies pointing to persistent morbidity that has been observed since the first surgery for CoA was performed >75 years ago25. Collectively these findings underscore a need for improved treatment approaches and guidelines related to CoA.

There are two main findings from the current work. First, the current BPGpp threshold determined decades ago is likely too high to limit activation of processes leading to persistent aortic changes associated with HTN. Second, the reported findings emphasize the importance of both severity and duration of the peak-to-peak CoA gradient to the likelihood of HTN precursors in the preclinical rabbit model as well as HTN status in pediatric CoA patients. Values for BPGpp severity and the duration CoA is present from Figure 5 may provide a starting point for revised treatment
guidelines after confirmatory follow-up studies in larger populations of CoA patients.

While prior work from animal models and humans with CoA previously reported the importance of severity in reference to the putative BPgpp gradient for CoA (i.e., ≥20 mmHg), the current investigation is the first to systematically evaluate lesser BPgpp severities within a range of values seen clinically. BP is generally similar between species12, which provides some basis for the severity ranges from the rabbit model also being applicable to patients with CoA as is discussed in more detail below. The correlation of CoA duration with the degree of structural remodeling and functional impairment could be inferred by prior computational growth and remodeling studies reporting that treatment at an earlier age seems to result in less morbidity26. The current findings confirm and extend such prior work to elucidate a range of durations that seem to avoid permanent arterial remodeling depending on coarctation severity.

The additional finding of age at surgery and follow-up time after surgery being associated with the likelihood of HTN from retrospective data of CoA patients in the current investigation is also consistent with prior studies. For example, in the recent retrospective study of 690 patients in the UK mentioned above where 57% of patients were hypertensive at their latest follow-up24, risk factors for HTN were male sex, older age at repair and/or follow-up as well as residual coarctation.

Mechanical stimuli influence the progression of cardiovascular disease. For example, chronic changes in wall tension (the product of radius and BP) exposing arterial cells to pronounced deformation is believed to be the mechanical stimuli for arterial thickening through remodeling. While thickening restores wall stress to a preferred operating range27, it also adds stiffness. Decreased strain occurs with age26, is a manifestation of arterial remodeling, and is indicative of the risk for HTN29,30. The current study focused on HTN at the conclusion of 32 weeks using the rabbit model of CoA, and prior work by our lab suggests indices of WSS are similar to normal controls28,35,36 in repaired CoA patients. In contrast, elevated blood pressure, decreased strain, and increased stiffness were localized the proximal area where medial thickening, endothelial dysfunction, and smooth muscle dedifferentiation via myography were present10. O’Rourke and Cartmill suggested most of the morbidity in CoA can be explained on the basis of altered conduit (blood flow) and cushioning (capacitance) functions31. The authors described how CoA introduces a BP wave reflection site near the heart causing drastic reductions in ascending aortic capacitance and elevated pulse pressure. Concomitant increases in afterload also offer an explanation for heart failure in these patients. Importantly, most of the morbidity associated with human CoA seems to involve the proximal aorta and its branches. The main findings from the current study are therefore likely a result of adverse mechanical stimuli imposed on the proximal aorta as a result of the coarctation, with stimuli derived from coarctation-induced changes in BP and deformation primarily implicated (e.g.; strain, wall tension). More recent work32,33 characterized the temporal evolution of these stimuli that ultimately resulted in permanent changes to aortic structure and function39 for the groups of rabbits featured in the current study.

The notion of stimuli proximal to the coarctation influencing adverse remodeling seems to be consistent with other prior preclinical and clinical studies. For example, in dogs, evidence for decreased nitric oxide (NO) bioavailability has been noted above but not below CoA34. This focus proximal to the coarctation is further supported by findings in humans28,35,36 where post-surgical corrections are observed proximal to the CoA, but not distal. Multiple studies have reported that the structure and function of the lower limb vasculature of CoA patients is normal before and after CoA correction, as opposed to the proximal aortic regions, suggesting altered mechanical stimuli due to the CoA are a critical component of the disease37–40. Further evidence for impaired function includes an increased response to norepinephrine in the brachial but not a calf artery of CoA vs. control patients41; abnormal brachial but not femoral function in repaired CoA patients42; and increased collagen and stiffness with less SM but greater contractility to potassium and norepinephrine stimulation in anterior vessels of CoA patients43.

The current results should be interpreted relative to several potential limitations. Unlike the preclinical rabbit model where severity and duration of CoA were systematically controlled, patient CoA datasets present with heterogeneity that may have impacted our ability to translate the preclinical results using the methods described. BPgpp was measured via simplified Bernoulli equation, which were not available or expressed as a range in some patients. The simplified Bernoulli equation is also known to over-estimate
the gold-standard values from catheterization. While simple to implement and familiar clinically, there are other indices like the continuous flow pressure gradient\(^1\) that are also available from conventional ultrasound based approaches. The BPG conversions applied in the current work for Figures 3 and 5 were obtained in the process of deriving the continuous flow pressure gradient\(^1\). This index could be used to increase the accuracy of the BPGp used in humans with CoA as part of follow-up research based on the current study. The results of pediatric CoA patient datasets may also have been affected by the correlations between different parameters investigated. For example, BSA, body weight, and age are expected to correlate differently at the range of ages investigated in the current study. Additionally, the age at surgery may have been affected by other concomitant anomalies like bicuspid aortic valve, long and multi-segment CoA. Similarly, the time since surgery where HTN status is evaluated may have been affected by other complications patients may have encountered. Over all, these limitations are sources of differences identified when comparing the patients results to those from the preclinical model. The preclinical rabbit model of CoA used thickness, contraction and relaxation as surrogates for HTN. Values reported for each of these indices were obtained ex vivo and not within an in vivo system where dynamic adjustments are being made physiologically related to HTN. Future studies with our rabbit model of CoA will strive to use telemetry to obtain conscious BP measurements as a direct assessment of HTN from the severity and duration imposed.

It is difficult to directly conclude that results concerning severity and duration of CoA in the rabbit directly agree with those from the retrospective review of CoA patients presented. Nonetheless, BPGp severity and duration (i.e. age at surgery) being the main factors of the decision tree to predict HTN from pediatric patient data sets suggests that findings from the rabbit model may translate to humans with CoA. Importantly, applying the findings reported in the results section as simply as possible shows that endothelial function is maintained in response to a BPGp <13 mmHg if present for <3 weeks using our preclinical model. Plotting the age of New Zealand White rabbits\(^4\) versus that of humans suggests there may be a ~1.5 year window of aortic plasticity for treating humans with CoA diagnosed around age 9 (Figure). Knowing that arterial stiffening occurs with age, this window is likely longer if patients are treated sooner in life, and possibly shorter if diagnosis occurs later. This hypothesis regarding a window of plasticity based on our rabbit CoA results remains to be directly tested in future studies, along with whether revised guidelines using less severe BPGp and careful assessment of CoA duration are possible to manage clinically. Adapting to subsequent data associated with new evidence may also take some time since the morphology of a lesser BPGp may not necessarily appear severe.

![Figure 6. Human age plotted as a function of New Zealand White rabbit age. Rabbits underwent CoA at 10 weeks of age in the current study. One of the results presented shows endothelial function via myography is maintained in response to a BPGp <13 mmHg if present for <3 weeks in this rabbit CoA model. Extracting the corresponding human age from the plot suggests there may be a ~1.5 year window of aortic plasticity for treatment in children with CoA manifesting around age 9 years old.](https://example.com/figure6)

6 Conclusions

The findings of reported preclinical and clinical studies emphasize the importance of both severity and duration of the peak-to-peak CoA gradient to the likelihood of HTN precursors in the preclinical rabbit model as well as HTN status in humans. These findings provide a foundation for revising CoA treatment guidelines to limit the chance of HTN.

7 Acknowledgements

The authors thank Angie Klemm, Thomas Eddinger, Alexander Armstrong, Ken Allen, Brandon Wegter, Angelia Espinal, Nick Peterson, Dalia Lopez-Colon and Andrew Spearman for their assistance at various points throughout this study.
8 Sources of funding

The current study was partially supported by the American Heart Association under award number 15GRNT25700042 (JFL) as well as the National Institutes of Health - National Heart, Lung, and Blood Institute under award numbers R01HL142955 (JFL) and R15HL096096 (JFL). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the American Heart Association.

9 References

