Article

Title: NRF2-driven transcription and KEAPness predict survival outcomes in lung cancer treated with immunotherapy.

Authors

Stefano Scalera 1, †, Biagio Ricciuti 2, †, Daniele Marinelli 3, 4, 5, †, Marco Mazzotta 6, Laura Cipriani 1, Giulia Bon 7, Beatrice Messina 1, Giulia Schiavoni 1, Alessandro Di Federico 2, Joao V. Alessi 2, Maurizio Fanciulli 8, Ludovica Ciuffreda 8, Francesca De Nicola 8, Frauke Goeman 8, Giulio Caravagna 9, Daniele Santini 10, Ruggero De Maria 11, Federico Cappuzzo 12, Gennaro Ciliberto 13, Mariam Jamal-Hanjani 4, Mark M. Awad 2, Nicholas McGranahan 5, * and Marcello Maugeri-Saccà 1, 12, *

† These authors contributed equally to this work.

* These authors share senior authorship.

Affiliations

1. Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

2. Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.

3. Department of Experimental Medicine, Sapienza University, Rome, Italy.

4. Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK.

5. Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK.

6. Medical Oncology Unit, Sandro Pertini Hospital, Rome, Italy.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
7. Cellular Network and Molecular Therapeutic Target Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

8. SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

9. Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy.

10. Department of Medical-Surgical Sciences and Biotechnologies, Università degli Studi di Roma La Sapienza, Rome, Italy.

11. Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

12. Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

13. Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Corresponding author: Dr. Marcello Maugeri-Saccà, Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Roma, Italy. email: marcello.maugerisacca@ifo.it, phone +39-0652662724, fax +39-0652665523.
Abstract

KEAP1 mutations have emerged as determinants of survival outcomes in non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs). Given that mutational inactivation of KEAP1 leads to NRF2 transcription, we hypothesized that gene expression can determine immune responsiveness with higher precision. Using the TCGA, we identified a NRF2 gene signature shared by NSCLC with and without KEAP1-NRF2 pathway mutations. NRF2-enriched tumors were associated with poor survival outcomes and immune exclusion in two independent cohorts of ICI-treated NSCLC patients (SU2C n=153; OAK/POPLAR n=439). Patients with KEAPness (NRF2-enriched and KEAP1 wild-type) tumors had survival outcomes comparable to their KEAP1-mutant counterparts. In the TRACERx 421, NRF2-enriched tumors exhibited limited transcriptional intratumoral heterogeneity and an immune-excluded microenvironment. Moreover, the comparison between KEAP1-mutant and KEAPness NSCLC revealed shared and private cancer genes under positive selection. This study demonstrates that NRF2 transcriptional activity and KEAP1-loss phenocopies predict immunotherapy outcomes and outperforms mutational models.
Introduction

Immune checkpoint inhibitors targeting the programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) pathway have reshaped the therapeutic landscape of advanced non-small-cell lung cancer (NSCLC) \(^1\). Nevertheless, the limited accuracy of companion biomarkers in predicting clinical outcomes is a critical hurdle towards precision immuno-oncology. While immunohistochemical assessment of PD-L1 is routinely performed in the clinical setting, and generally correlates with increased benefit from PD-(L)1-based therapies, responses are also seen in tumor lacking PD-L1 expression \(^1\). Similarly, tumor mutational burden (TMB) has been intensively investigated as predictive biomarker. However, its use has not yet been implemented in clinical practice \(^2\).

The Kelch-like ECH-associated protein 1 (KEAP1)-Nuclear factor erythroid-2-related factor 2 (NRF2) pathway is a core defensive mechanism against a variety of harmful cues, regulating cellular redox homeostasis and protecting cells against xenobiotics \(^3-5\). In unstressed cells, KEAP1 triggers NRF2 proteasomal degradation through the CUL3-RBX1 E3 ubiquitin ligase complex. Oxidative and electrophilic stressors modify KEAP1 sensor cysteines, hampering its capability to bind the transcription factor NRF2. NRF2-driven transcription promotes metabolic rewiring and ensures protection against reactive oxygen species, xenobiotics, and ferroptosis \(^3-5\).

KEAP1 loss-of-function (LOF) mutations occur in approximately 15% of NSCLC \(^6,7\), leading to uncontrolled NRF2 transcriptional activity and enhanced cytoprotection. In the specific context of non-squamous NSCLC, mostly consisting of lung adenocarcinoma (LUAD), mutations in the KEAP1 tumor-suppressor gene are associated with resistance to chemotherapy, radiotherapy, and targeted agents, including KRAS-G12C inhibitors \(^8-11\). To a similar extent, KEAP1 mutations have been associated with inferior survival outcomes among non-squamous NSCLC patients treated with ICIs \(^12-15\). Studies exploring the connection between KEAP1 mutations and immunotherapy efficacy
capitalized on the concept of anti-immune epistatic interactions, a genetic framework envisioning that cooperating genomic events elicit non-linear effects on cancer cell fitness and foster immune evasion. Consistently, co-existing KEAP1 and KRAS/STK11 mutations defined an uncommon subset of patients experiencing rapid disease progression during immunotherapy. Conversely, KEAP1/TP53 co-mutations resulted in intermediate outcomes, denoting a neutral interaction. We have also described the deleterious nature of KEAP1 mutations when associated with loss of heterozygosity (LOH). However, the same considerations do not extend to NFE2L2 (the gene encoding for NRF2). Indeed, in squamous cell lung carcinoma (LUSC), where NFE2L2 is more commonly mutated than KEAP1, evidence on the association between pathway mutations and inferior survival outcomes is still lacking. As a result, clinical outcomes of NSCLC patients receiving ICIs remain largely unpredictable beyond the limited fraction of patients whose tumors harbor specific mutational configurations, or that exhibit very high PD-L1/TMB levels.

It has recently been observed that the magnitude of NRF2 transcription predicts both KEAP1/NFE2L2 mutations and mutation pathogenicity (deleterious versus tolerated). We hypothesized that NRF2 transcriptional activity may accurately predict immunotherapy efficacy by intercepting both negative/positive outliers (rapid disease progression/durable clinical benefit) and the large proportion of patients who do not obtain significant benefit from ICIs despite their tumors lack putative biomarkers of efficacy/resistance. We envisioned that hallmarks of lethal KEAP1 mutations are seeded in tumors with intact KEAP1-NRF2 pathway, and that this KEAPness phenotype shares the anti-immune properties of the canonical KEAP1-mutant counterpart. On this basis, we conceived the following workflow: i) The TCGA NSCLC cohort was used to identify NRF2 target genes that are expressed in both KEAP1/NFE2L2-mutant and wild-type tumors, and that were used for generating a NRF2 transcriptional signature; ii) The impact of the NRF2 signature on survival outcomes and immune phenotype was tested in two independent cohorts of metastatic NSCLC profiled...
by RNA-Seq and treated with ICIs: The Stand Up To Cancer-Mark Foundation (SU2C) NSCLC cohort (discovery cohort, n=153) and the OAK/POPLAR cohort (validation cohort, n=439) \(^{19-22}\). This latter consists of patients enrolled in the phase II/III trials investigating second-line atezolizumab versus docetaxel in advanced NSCLC \(^{20,21}\); iii) The pooled SU2C/OAK/POPLAR cohort with available \textit{KEAP1} mutation data was analyzed to evaluate whether KEAPness tumors (NRF2-enriched but \textit{KEAP1} wild-type) are poorly responsive to ICIs, similarly to those carrying \textit{KEAP1} mutations; iv) The prospective TRACERx421 multi-region sequencing study, which contains matched RNA-seq and whole-exome sequencing (WES) data from 347 non-metastatic NSCLC patients (947 tumor regions) \(^{23}\), was used to infer the oncogenic drivers of NRF2-enriched NSCLC, NRF2 transcriptional heterogeneity, and immunological correlates of NRF2-driven transcription.

Results

Identification of the NRF2 signature in the TCGA NSCLC cohort

The workflow of the present study is illustrated in Figure 1. To provide conceptual ground to our hypothesis, we first performed a differential gene expression analysis between \textit{KEAP1-NFE2L2}-mutant and wild-type cases in the TCGA NSCLC cohort (n=943). This approach retrieved a set of 220 differentially expressed genes between mutant and wild-type tumors (Figure 2a, Supplementary Table 1). Unsupervised hierarchical clustering revealed that while most of the differentially expressed genes are hallmark of \textit{KEAP1-NFE2L2}-mutant tumors, a pool of positively correlated NRF2 target genes are also expressed in a non-negligible fraction of NSCLC lacking pathway mutations (Figure 2b-c). These NRF2-associated genes, expressed in both \textit{KEAP1-NFE2L2}-mutant and wild-type tumors, were therefore exploited to generate the NRF2 signature. To better characterize the transcriptional repertoire associated with NRF2 activity, we investigated its relationship with both histology and cancer-associated pathways inferred from perturbation experiments (PROGENy) \(^{24}\). We noticed that LUSC
had significantly higher NRF2 signature levels than LUAD (Extended Data Figure 1). Moreover, tumors with higher NRF2 signature scores exhibited a distinct profile of cancer-related pathway activity, e.g., p53, WNT, and JAK-STAT, compared to NRF2-depleted samples (Figure 2d; and Supplementary Figure 1). Differences in the activity of the immune-related transcription factors STAT1 and STAT3 were confirmed with DoRothEA, a method that estimates transcription factor-target gene interactions (Figure 2e) 25. Next, we exploited an established method for immune subtyping from bulk RNA-Seq to explore differences in the immune microenvironment (http://science.bostongene.com/tumor-portrait) 26. We noted that tumors with high NRF2 signature scores prevalently had an immune-excluded microenvironment (Figure 2f; and Extended Data Figure 2). Overall, hypothesis-generating analyses in the TCGA indicated that a specific set of NRF2 target genes are also expressed in NSCLC with wild-type KEAP1-NRF2 pathway, and are associated with a transcriptomic background potentially denoting increased resistance to ICIs (e.g., immune-related features). On this basis, the NRF2 signature identified in the TCGA was used for survival and correlative molecular analyses in the two immunotherapy-treated cohorts (SU2C and OAK/POPLAR).

The NRF2 gene signature predicts survival outcomes in the SU2C identification cohort

Having identified NRF2 target genes with broad expression in NSCLC, we next tested the impact of the NRF2 signature on the efficacy of ICIs in the SU2C cohort. Using the receiver operator characteristic (ROC) curve and bootstrap resampling for predicting a lack of clinical benefit (disease progression within six months from the beginning of ICIs), we defined the most accurate signature cut point (cut-off 2.1678, area under the curve 0.67, Extended Data Figure 3). To avoid confounding factors related to histology and previous therapies, this analysis was carried out in non-squamous NSCLC patients who did not receive prior tyrosine kinase inhibitors (TKIs) (n=93).
used for all subsequent survival analyses and immune subtyping in the two independent clinical cohorts (SU2C and OAK/POPLAR), as well as the TRACERx 421 cohort.

Baseline clinical characteristics of patients included in the SU2C cohort (n=153), and their association with the NRF2 signature, are reported in Supplementary Table 2 and 3. Patients with NRF2-enriched tumors had shorter progression-free survival (PFS) and overall survival (OS) compared to those with NRF2-depleted NSCLC (PFS log-rank p=0.042; OS log-rank p=0.008, Figure 3a-b). Multivariate Cox regression models for PFS and OS confirmed the robustness of the NRF2 signature, indicating that the performances of the model were independent of established prognostic factors (PFS: p=0.018, HR 1.76, 95% CI 1.10-2.8; OS: p=0.019, HR 1.96, 95% CI 1.11-3.4; figure 3c-d). We observed a similar association between the NRF2 signature and overall response rate (ORR), being progressive disease (PD)/stable disease (SD) more commonly reported among patients with NFR2-enriched tumors (chi-squared test p=0.037; Figure 3e). Moreover, LUSC had significantly higher NRF2 signature levels than non-squamous NSCLC, as observed in the TCGA, a finding that is consistent with the lower efficacy of ICIs in LUSC (Extended Data Figure 4). Considering the limited role of ICIs in oncogene-addicted NSCLC, we carried out a sensitivity analysis upon exclusion of patients who received priorTKIs. In this case, the performances of the NRF2 classifier were further improved (Extended Data Figure 5). Of note, all the 12 patients treated with prior TKIs had tumors classified as NRF2-depleted, consistently with the mutual exclusivity between KEAP1 and EGFR mutations. PD-L1 expression levels were available for a minority of patients (n=71). NRF2-enriched tumors had lower PD-L1 expression levels, even though this difference was not significant due to the limited size of the subgroups compared (Supplementary Figure 2). Lastly, we confirmed that NRF2-enriched tumors were prevalently characterized by an immune-excluded phenotype, as already noted in the TCGA (chi-squared test p=0.001, Figure 3f-g).
The NRF2 gene signature predicts survival outcomes in the OAK/POPLAR validation cohort

The independent OAK/POPLAR cohort (atezolizumab, n=439) was used to confirm the findings from the SU2C study. To ensure reproducibility, the same NRF2 signature cut-off identified in the SU2C study was adopted. The available clinical features and their association with the NRF2 signature are reported as Supplementary Table 4. In the OAK/POPLAR cohort, patients with NRF2-enriched tumors had inferior PFS and OS compared to those with NRF2-depleted NSCLC (PFS log-rank p=0.001; OS log-rank p<0.001; Figure 4a-b). The distribution of NRF2-enriched and depleted cases was comparable to what is reported in the SU2C cohort. Also in the OAK/POPLAR study, squamous tumors exhibited significant higher NRF2 signature levels than non-squamous NSCLC (Extended Data Figure 6).

Despite the limited availability of clinical features, multivariate Cox regression models for PFS and OS were consistent with Kaplan-Meier survival curves (PFS: p<0.001, HR 1.47, 95% CI 1.18-1.8; OS: p=0.002, HR 1.5, 95% CI 1.16-1.9; Figure 4c-d). We also confirmed that NRF2-enriched tumors are associated with lower ORR and are characterized by an immune-excluded phenotype (Figure 4e-g).

Next, we explored the association between the NRF2 signature and survival outcomes in a control cohort of chemotherapy-treated patients in the OAK/POPLAR trials (docetaxel, n=452). Also in this setting, NSCLC patients with NRF2-enriched tumors had shorter PFS and OS, as well as lower ORR (log-rank p=0.019 and p<0.001 for PFS and OS, respectively; chi-squared test for ORR p=0.005; Supplementary Figure 3).

Collectively, these data indicate that NRF2 transcriptional activity efficiently predicts immunotherapy efficacy and immune exclusion in advanced NSCLC patients, and is associated with worse outcomes to chemotherapy suggesting a potential prognostic role. This classifier divides the population in two groups of comparable size, which is consistent with the expected benefit from ICIs, thus indicating that the model does not exclusively identify outlier patients.
Pooled analysis of the SU2C and OAK/POPLAR cohorts

Having validated the model in the two independent cohorts, we used the merged SU2C/OAK/POPLAR dataset to further assess the differences between NRF2-enriched and NRF2-depleted NSCLC and investigate the impact of *KEAP1* mutations.

As expected, differences in survival outcomes between the NRF2-enriched and depleted NSCLC were more pronounced than in the individual cohorts (Supplementary Figure 4). Immune-subtyping, cancer-associated signatures (PROGENy), and STAT1/STAT3 activity (DoRothEA) were consistent with results from the TCGA (Supplementary Figure 5). Having noticed that LUSC had significantly higher levels of the NRF2 signature across all the cohorts considered, we carried out survival analysis in the subset of non-squamous NSCLC. In this subgroup analysis, we confirmed the impact of the NRF2 signature on survival outcomes among patients with non-squamous lung cancer (Supplementary Figure 6). Moreover, the clinical significance of the NRF2 transcriptional signature was independent of histology, even though survival analyses in squamous tumors were limited by the relatively low sample size (Supplementary Figure 6).

Data on *KEAP1* mutations were available from 65 patients in the SU2C cohort and 251 patients in the OAK/POPLAR studies. While the majority of *KEAP1* mutations (n=61) were seen in NRF2-enriched NSCLCs, a limited number of *KEAP1* mutations occurred in the NRF2-depleted context (Supplementary Figure 7). In survival analyses, we confirmed the hypothesis that patients with NRF2-enriched/*KEAP1* wild-type (KEAPness) NSCLC had shorter PFS and OS compared to those with NRF2-depleted tumors (Figure 5a-b). Importantly, survival outcomes of the KEAPness group were comparable to those of the NRF2-enriched/*KEAP1*-mutant group, indicating the mutation-independent significance of the NRF2 signature (Figure 5a-b). Similarly, KEAPness tumors had lower ORR
compared to NRF2-depleted tumors (Figure 5c). In terms of immune-related features, NSCLC with KEAPness more frequently exhibited an immune-excluded microenvironment compared to NRF2-depleted tumors, having an immunological phenotype reminiscent of that of KEAP1-mutant tumors (Figure 5d-e). Again, KEAPness tumors were characterized by higher p53 and WNT signature enrichment scores, and lower JAK-STAT activity, compared to NRF2-depleted NSCLC (Extended Data Figure 7).

Overall, data from the larger pooled cohort indicated that NRF2-enriched tumors are poorly responsive to ICIs, regardless of the presence of concurrent KEAP1 mutations. In addition, this transcriptional model outperforms a mutation-only approach by identifying a large population of NSCLC patients who do not obtain significant clinical benefit from ICIs.

NRF2 transcriptional heterogeneity, genetic selection, and immune infiltration in the TRACERx 421 cohort

We lastly investigated the transcriptional heterogeneity and genetic correlates of our model. To this end, we exploited multi-region WES and transcriptome sequencing data from the TRACERx 421 cohort (previously untreated, early-stage NSCLC)23,27.

First, the majority of NRF2-enriched tumors were uniformly enriched, given that only 24% of NRF2-enriched tumors had at least one sample classified as NRF2-depleted (33/139, Figure 6a), denoting limited intra-patient heterogeneity, namely, a phenotype which is consistent across time and space in tumor evolution. The frequency of NRF2 heterogeneity (i.e. NRF2-enriched tumors with at least one sample classified as NRF2-depleted) was independent of tumor histology (Extended Data Figure 8). KEAP1 mutations and copy number alterations (KEAP1 CNAs in KEAP1 wild-type tumors) were frequently, but not exclusively, seen among NRF2-enriched NSCLC (Supplementary Figure 8).
To further explore the genetic background of NRF2-enriched tumors, we investigated genetic selection among more than 700 cancer genes using the dndscv method. We identified a set of driver genes under positive selection (q-value < 0.05), with differences in relation to histology (Figure 6b-c). In non-squamous NSCLC, NRF2-enriched tumors with and without KEAP1 mutations shared positive selection for TP53, KRAS and STK11 (Figure 6b). However, while SMARCA4 was under positive selection exclusively in the KEAP1-mutant background, CDKN2A (p14(ARF) was identified as a private driver in non-squamous NSCLC with KEAPness (Figure 6b). In squamous tumors, TP53 and CDKN2A were identified as shared drivers in the NRF2-enriched context (Figure 6c). Conversely, squamous tumors with KEAPness exhibited positive selection for PI3K pathway genes (PIK3CA and PTEN), the tumor suppressor gene RB1, and NFE2L2 (Figure 6c). Most non-silent mutations in these cancer-associated genes were of clonal nature (Supplementary Figure 9).

Next, we explored the immunological features associated with our model. As already reported in clinical cohorts, NRF2-enriched NSCLC were more commonly immune-excluded compared to NRF2-depleted tumors, regardless of co-existing KEAP1 mutations (Figure 6d, and Extended Data Figure 9). Among NRF2 heterogeneous tumors, namely, NRF2-enriched tumors with at least one NRF2-depleted region, we observed a mixed immune-related pattern (Figure 6e). While some tumors were immunologically stable having the same immune subtype in all the tumor regions, in other tumors NRF2 enrichment was associated with changes in the tumor microenvironment (i.e., from immune-enriched to immune-excluded), suggesting tumor-microenvironment co-evolution (Figure 6e). Lastly, we leveraged T cell ExTRECT, a method that infers T cell infiltration from DNA sequencing, rather than RNA-Seq, for orthogonal validation of immune-related features. NRF2-enriched tumors had lower, and KEAP1-independent, T-cell infiltration compared to the NRF2-depleted counterpart (Figure 6f).
Collectively, the analyses carried out in the TRACERx 421 highlighted limited intratumoral heterogeneity of the NRF2 signature, clarified the nature of cancer genes under positive selection in the NRF2-enriched background, and strengthened the relationship between NRF2 transcription and the immune microenvironment.

Discussion

Accumulating evidence links *KEAP1*-based mutational contexts to survival outcomes in NSCLC patients treated with immunotherapy 12-15. However, dissecting the impact of *KEAP1* mutations on immunotherapy outcomes is challenging, given that co-mutations in *KEAP1/KRAS/STK11* occur in approximately 10-15% of non-squamous NSCLC patients 12, 13. In addition, these models cannot be extended to squamous tumors, which have a distinct genomic profile characterized by *TP53* alterations and lack of *KRAS/STK11* mutations 7. Biomarkers associated with DCB represent the other side of the challenging task of predicting ICIs efficacy, considering the limited accuracy of PD-L1 and TMB. High PD-L1 levels (≥ 50%) are detected in approximately 30% of NSCLC 30, and are associated with greater benefit from immunotherapy. However, primary and acquired resistance is also commonly seen among patients with PD-L1-expressing NSCLC. Similarly, tumor responses are often observed in PD-L1 low/negative NSCLC. The use of TMB has also been difficult to implement in clinical practice. Beyond the discrepancies among the various pipelines 2, we have witnessed a wealth of studies which progressively raised the TMB cut-off, from ≥ 10 non-synonymous mutations per megabase (mut/Mb) to more extreme values (e.g., ≥ 19 mut/MB) 2, 31-35. Intuitively, while raising the TMB is expected to improve its predictive ability, very high TMB thresholds significantly lower the TMB-high population, which drops down to 10-15% of the whole population 35. Thus, there is a pressing need for improved biomarkers which can predict ICIs efficacy.
KEAP1 LOF mutations lead to aberrant NRF2 transcriptional activity. Here, we hypothesized that analyzing the KEAP1/NRF2 pathway from a transcriptional perspective may help overcome the many limitations of current mutation-based biomarkers. By integrating survival analyses and computational studies, we reported that: i) A set of NRF2 target genes are also expressed in KEAP1-NFE2L2 wild-type NSCLCs; ii) A transcriptional NRF2 gene signature conferred inferior survival outcomes, was associated with lower response to immunotherapy, and was characterized by a cold immune microenvironment in two independent clinical cohorts. Importantly, our model divided the population into two equally sized subgroups; iii) The shorter survival outcomes charactering NRF2-enriched tumors were independent of underlying KEAP1 mutations, indicating the clinical relevance of the KEAPness phenotype; iv) The analysis of the TRACERx 421 multi-region sequencing cohort revealed limited, but not negligible, NRF2 transcriptional heterogeneity. Furthermore, while NRF2-enriched tumors with and without KEAP1 mutations shared a set of driver mutations under positive selection, KEAPness tumors also had some private genomic traits driving tumor evolution.

Our study has important strengths, holding the potential to represent a turning point in the search of biomarkers for immune-oncology. First, the pool of genes included in the NRF2 signature was identified in the TCGA NSCLC cohort, and then applied to the clinical cohorts. Second, we used the same NRF2 signature threshold for the survival analyses, which yielded comparable results in terms of survival outcomes, distribution of cases, and immunological correlates in independent cohorts. Likewise, the same cut-off was also applied to the TRACERx 421, where immunological features of NRF2-enriched tumors were comparable to those observed in the other cohorts, and further confirmed by a different method leveraging DNA sequencing (T cell ExTRECT)29. Third, we used a streamlined method to classify samples as NRF2-enriched or NRF2-depleted, which could be easily exploited in the clinical setting. Importantly, we pursued an identification-validation approach, evaluating data from patients enrolled into a randomized phase III trial (OAK). In the search for cancer biomarkers, these
represent important methodological added values. The distribution of NRF2-enriched and -depleted cases deserves further mention. While current biomarkers mostly focus on outlier patients, the split achieved by the NFR2 signature suggests that this model better delineates the actual population of immunotherapy responsive/resistant NSCLC.

From a clinical perspective, this study has several implications. We currently have multiple first-line treatment options for patients with metastatic non-small cell lung cancer, including PD-(L)1 monotherapy alone or in combination with CTLA-4 inhibitors and/or chemotherapy, but we do not have robust biomarkers to individualize patient selection. These data suggest that patients with NRF2-enriched tumors have worse outcomes to PD-(L)1-based monotherapies, and that intensifying treatment with the addition of CTLA-4 blockade or chemotherapy may be a reasonable strategy, since the addition of CTLA-4 inhibitors and chemotherapy can be beneficial in immune-excluded tumors with low/negative PD-L1 expression. Importantly, an increasing number of commercial assays are now exploiting WES and RNA-seq, highlighting how gene expression signature can be incorporated in clinical decision making. Our data also have implication for patients with early-stage NSCLC. PD-(L)1 blockade is now approved as adjuvant and neoadjuvant therapy, but we currently lack biomarkers that can help predicting who will need the addition of peri-operative immunotherapies. PD-L1 expression and TMB have been inconsistently associated with the risk of recurrence in these settings. Therefore, there are opportunities for the use of other biomarkers, such as mutational profiles and gene expression signatures, to identify early-stage NSCLC patients who will benefit from the addition of immunotherapy.

Although our data were consistent between two independent clinical cohorts, we acknowledge that our study has some limitations. The main limitation is a lack of data on PD-L1 and TMB, apart from a subset of patients in the SU2C cohort. Thus, we were unable to include these features in multivariate
Cox regression models. Likewise, a limited number of clinical parameters were available in the OAK/POPLAR cohort. Nevertheless, the reproducibility of the results at multiple levels (PFS, OS, ORR, immune subtyping) with the same NRF2 signature cut-off, in two independent cohorts containing data from nearly 600 immunotherapy-treated NSCLC patients, indicate the robustness of the model. A second limitation is the relatively small sample size of patients with KEAP1 mutation data. Given that KEAP1 status was available for approximately half of the whole population, our study was not powered to explore the impact of KEAP1 in individual cohorts. Indeed, KEAP1 mutation status was available for only 61 patients in the SU2C study. However, the reproducibility of the data across all the clinical and molecular endpoints (e.g., immune subtyping) in the pooled SU2C/OAK/POPLAR cohort indicated that the NRF2 gene signature is independent of co-existing KEAP1 mutations. Lastly, we were unable to investigate the impact of other driver mutations, particularly NFE2L2. The low mutational frequency of NFE2L2 in non-squamous NSCLC, which represented most of our population, and the lack of evidence connecting NFE2L2 mutations to reduced immunotherapy efficacy, mitigate this issue. To a similar extent, lack of data on KRAS mutations in the OAK/POPLAR cohort hindered subgroup analyses in non-squamous tumors, considering the relationship between KEAP1 and KRAS mutations.

In conclusion, results from this study indicate that a transcriptional signature denoting high NRF2 activity efficiently predicts survival outcomes and an immune-excluded phenotype in NSCLC patients treated with ICIs. The adverse survival outcomes conferred by NRF2 transcriptional activity extended beyond the presence of KEAP1 mutations, indicating that KEAPness tumors behave in a KEAP1-mutant-like manner. Lastly, our data provide solid ground to the concept that transcriptomics, and integrated transcriptomics-mutational data, can significantly foster the identification of biomarkers predicting immunotherapy efficacy, and that this approach can be transferred to other driver mutations associated with deregulation of transcription factors.
Methods

Cohorts and patients

The TCGA NSCLC cohort, containing data from 943 tumor samples profiled by WES and RNA-Seq, was used for the identification of NRF2 target genes. Mutational and RNA-Seq data (RSEM TPM) were downloaded from cBioPortal (https://www.cbioportal.org/) \(^{17,18}\).

The SU2C identification cohort contains data from NSCLC patients treated with immunotherapy. For this study, we selected those with available RNA-Seq data (\(n=153\)). Among them, 61 had matched WES. Survival outcomes, namely, PFS, OS, and ORR, were available for 136, 143, and 140 patients, respectively. Detailed information on sequencing methods are available in the original publication \(^{19}\).

Baseline clinical features are reported as Supplementary Table 2, and included patient age at diagnosis, sex, histology, stage at diagnosis, treatment type, line of therapy, prior use of TKIs, and smoking status. PD-L1 status, assessed by the tumor proportion score (TPS), was available for 71 patients.

The OAK/POPLAR validation cohort consists of 891 patients enrolled into the phase II POPLAR trial and the phase III OAK trial, both comparing second-line atezolizumab (1200 mg IV every 3 weeks until disease progression) versus docetaxel (75 mg/m\(^2\) IV every 3 weeks) monotherapy. The study protocols and sequencing methods are detailed in the original publications \(^{20,21}\). In the available datasets, 439 patients were treated with atezolizumab, whereas 452 patients received mono-chemotherapy. Regarding clinical data, histology (squamous versus non-squamous) and sex were the only clinical features reported in the datasets. Data on \(KEAPI\) mutations were available from 517 patients, of whom 251 treated with atezolizumab and 266 treated with docetaxel \(^{22}\). Given that histology was reported as squamous and non-squamous in the OAK/POPLAR cohort, this definition was also applied to the SU2C and TRACERx 421 cohorts.
Genomic correlates of NRF2 transcription were investigated in the TRACERx 421 cohort, containing matched RNA-seq and WES data from 347 non-metastatic NSCLC patients (947 tumor regions). Methods of data collection and sequencing are extensively described in the related publications 23, 27.

Statistical analyses

Time to event endpoints (PFS and OS) were estimated using the Kaplan-Meier product-limit method, using the log-rank test for subgroups comparison. Multivariate Cox regression models for PFS and OS were performed by taking into account all the relevant patient- and treatment-related features reported in the original datasets. The related estimates were reported as hazard ratio (HR) and 95% confidence interval (CI). Differences in median values were estimated with the Wilcoxon test when two groups were compared. For the pooled SU2C/OAK/POPLAR cohort, where we investigated differences among three molecular subgroups (NRF2-enriched/KEAP1-mutant, KEAPness, and NRF2-depleted), we used the Kruskal-Wallis test followed by the Dunn’s test for pairwise comparisons, and the Benjamini-Hochberg method to control the False Discovery Rate (FDR). When we evaluated the relationship between categorical variables (e.g., differences in ORR and immune subtyping between NRF2-enriched and NRF2-depleted NSCLC), the Pearson Chi-square test of independence was used. The Pearson’s correlation test was used to assess the connection among the twelve genes included in the NRF2 signature. SPSS v21 and R (“survival” and “survminer” packages) were used for statistical analyses. The level of significance was defined as p<0.05.

Calculation of the NRF2 signature score

The NRF2 signature score was defined by the mean expression value of the 12 NRF2-linked genes identified upon differential gene expression and unsupervised hierarchical clustering in the TCGA NSCLC study (AKR1C1, AKR1C2, AKR1C3, AKR1B10, AKR1B15, ALDH3A1, CYP4F3, CYP4F11, GPX2, PPP2R2C, UGT1A9, UGT1A6). In the TCGA, we used the median value to classify samples as
NRF2-enriched and NRF2-depleted. In order to identify a NRF2 signature cut-off for survival analyses, log2(TPM + 1) RNA-seq data were used for both clinical cohorts (SU2C and OAK/POPLAR) and the TRACERx 421. The optimal cut-point of the NRF2 signature in predicting no durable clinical benefit (PFS<6 months) was identified with the “cutpointtr” R package, using the receiver operator characteristic (ROC) curve and optimizing the Youden index via bootstrap resampling (n=2,000). For this purpose, we used a subset of patients included in the SU2C cohort, namely, non-squamous NSCLC patients who did not receive prior TKIs (n=93). The same cutoff (NRF2 signature score ≥ 2.1678 versus <2.1678) was adopted for all the analyses in the SU2C, OAK/POPLAR, pooled SU2C/OAK/POPLAR, and TRACERx 421.

Bioinformatic analyses

For differential gene expression, carried out in the TCGA NSCLC study with the goal of identifying differentially expressed gene between KEAP1-NFE2L2-mutant and wild-type samples, we used DESeq2 with the following parameters: Log2FC ≥ 1.2 and Log2FC ≤ -1.2; padj ≤ 0.05. Unsupervised hierarchical clustering was performed with “ComplexHeatmap”, using the following settings: clustering_method_columns = "euclidean" (ward.D), column_km (k-means) = 4, row_split = 15. The study of cancer-associated pathway signatures was performed with PROGENy (Pathway RespOnsive GENes; https://saezlab.github.io/progeny/), a method that infers the activity of cancer pathways from perturbation experiments 24, whereas the immune-related transcription factors STAT1 and STAT3 were investigated with DoRothEA (https://saezlab.github.io/dorothea/) 25. For immune subtyping, we exploited a method that generates four subtypes (immune-depleted and non-fibrotic, immune-depleted and fibrotic, immune-enriched and non-fibrotic, immune-enriched and fibrotic) on the basis of 29 microenvironment-related signatures estimated from RNA-Seq (http://science.bostongene.com/tumor-portrait; http://science.bostongene.com/tumor-portrait). 26 In the TRACERx 421, the dN/dS method
was used to detect positive selection in established cancer genes. The dndscv function from the dNdScv R package was run on genes from the COSMIC Cancer Gene Census (v. 98, https://cancer.sanger.ac.uk/census) using the gene_list argument; the run was performed separately on patients grouped by NRF2 signature classes, histology, and presence of a non-silent KEAP1 mutation. Only genes with global q-values < .05 and evidence of positive selection (i.e. total number of non-synonymous mutations ≥ total number of synonymous mutations) were classified as significant. T cell infiltration was estimated from WES data using the T cell ExTRECT method.

Data availability

WES and RNA-Seq data related to the TCGA NSCLC study are freely available at https://www.cbioportal.org/. Details regarding data availability of the SU2C cohort are provided in the original publication. For this study, an additional patient treated at the Dana-Farber Cancer Institute (Boston, MA, USA) was included. Data related to the OAK/POPLAR trials are deposited to the European Genome-phenome Archive (EGA) (Study ID EGAS00001005013. Datasets: EGAD00001007703, EGAD00001008550, EGAD00001008390, EGAD00001008391, EGAD00001008548, EGAD00001008549). Data access was granted by Genentech to Dr. M. Maugeri-Saccà for the specific purpose of this study (Project Title: Mapping NRF2 activity in non-small cell lung cancer treated with immune checkpoint inhibitors). TRACERx 421 data are available from the original publication.

Acknowledgements

M. Maugeri-Saccà is supported by the Italian Association for Cancer Research (AIRC) under MFAG 2019 - project ID. 22940, and the Italian Ministry of Health (MoH)- project ID. GR-2016-02362025. N.M. is a Sir Henry Dale Fellow, jointly funded by the Wellcome Trust and the Royal Society (Grant Number 211179/Z/18/Z), and also receives funding from Cancer Research UK Lung Cancer Centre of
Excellence, Rosetrees, and the NIHR BRC at University College London Hospitals. B. Ricciuti is supported by The Conquer Cancer Foundation of the American Society for Clinical Oncology and the Society for Immunotherapy of Cancer. G. Caravagna is supported by the Italian Association for Cancer Research (AIRC) under MFAG 2020- ID. 24913. D. Marinelli is a fellow of the PhD Network Oncology and Precision Medicine, Department of Experimental Medicine, Sapienza University of Rome. The research leading to these results has received funding from the European Union - NextGenerationEU through the Italian Ministry of University and Research under PNRR - M4C2-I1.3 Project PE_00000019 "HEAL ITALIA" to M. Maugeri-Saccà and G. Ciliberto, CUP H83C22000550006. The views and opinions expressed are those of the authors only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Competing interests

R.D.M. reports serving as a scientific advisory board member at Exosomics SpA (Siena IT), HiberCell Inc. (New York, NY), Kiromic Inc. (Houston, TX) and Exiris Inc. (Rome, IT). **FC** reports personal fees from Roche/Genentech, AstraZeneca, Takeda, Pfizer, Bristol-Myers Squibb, Merck Sharp & Dohme, Lilly, and Bayer. **M.M.A.** reported serving as a consultant for Achilles, AbbVie, Neon, Maverick, Nektar, and Hegrui; receiving grants and personal fees from Genentech, Bristol-Myers Squibb, Merck, AstraZeneca, and Lilly; and receiving personal fees from Maverick, Blueprint Medicine, Syndax, Ariad, Nektar, Gritstone, ArcherDx, Mirati, NextCure, Novartis, EMD Serono, and NovaRx. **N.M.** has received consultancy fees and has stock options in Achilles Therapeutics. He holds European patents relating to targeting neoantigens (PCT/EP2016/ 059401), identifying clinical response to immune checkpoint blockade (PCT/ EP2016/071471), determining HLA loss of heterozygosity
(PCT/GB2018/052004) and predicting survival rates of patients with cancer (PCT/GB2020/050221).
The remaining authors declare no conflict of interest.

References

Figure Legends

Figure 1. Study workflow.

The TCGA NSCLC cohort was used to identify NRF2-associated genes shared by *KEAP1-NFE2L2*-mutant and wild-type cases. The Stand Up To Cancer-Mark Foundation (SU2C identification cohort, n=153) and OAK/POPLAR (validation cohort, n=439) cohorts were used to investigate the impact of the transcriptional NRF2 gene signature on survival outcomes and immune subtyping in advanced NSCLC patients treated with immune checkpoint inhibitors. The impact of *KEAPI* mutations on the performances of the NRF2 signature was assessed in the pooled cohort (SU2C/OAK/POPLAR). The TRACERx 421 multi-region sequencing study was analyzed to investigate the genetic drivers
associated with KEAPness, NRF2 transcriptional heterogeneity, and the immunological features associated with NRF2 transcription.

Figure 2. Identification of the NRF2 gene signature in the TCGA NSCLC study.

a, Volcano plot showing differentially expressed genes between *KEAP1-NFE2L2*-mutant and wild-type NSCLC (right: up-regulated, left: down-regulated; log2 fold change ≥1.2 and ≤-1.2, adjusted p-value ≤ 0.05). b, Heatmap showing unsupervised hierarchical clustering of differentially expressed genes, with magnification of the gene set of interest. c, Heatmap illustrating Pearson correlation coefficients for the genes included in the NRF2 gene signature. d, Box plots illustrating the differences in the p53, WNT, and JAK-STAT PROGENy signatures between NRF2-enriched and depleted cases (Wilcoxon test). e, Box plots illustrating DoRothEA-predicted activity of the immune-related transcriptional factors STAT1 and STAT3 in NRF2-enriched and depleted NSCLC (Wilcoxon test). f, Stacked bar chart displaying the distribution of immune subtypes in NFR2-enriched and depleted NSCLC (χ^2). D: desert, immune-depleted and non-fibrotic, F: fibrotic, immune-depleted and fibrotic, IE: immune-enriched and non-fibrotic, IE/F: immune-enriched and fibrotic. The NRF2 signature enrichment score was obtained by the mean expression value of the 12 NRF2-associated genes. For TCGA data analyses, NRF2-enriched and NRF2-depleted cases were classified on the basis of the median value of the NRF2 signature.

Figure 3. Survival analyses and immune subtyping in the SU2C identification cohort.

a, b Kaplan-Meier survival curves for progression-free survival (PFS) and overall survival (OS) comparing NRF2-enriched and NRF2-depleted NSCLC. c, d Forest plots showing multivariate Cox regression models for PFS and OS. e, Stacked bar chart illustrating the differences in the overall response rate (ORR) between patients with NRF2-enriched and NRF2-depleted NSCLC (χ^2). CR: complete response, PR: partial response, SD: stable disease, PD: progressive disease. f, Stacked bar
chart showing the distribution of immune subtypes in NRF2-enriched and NRF2-depleted NSCLC (χ^2). D: desert, immune-depleted and non-fibrotic, F: fibrotic, immune-depleted and fibrotic, IE: immune-enriched and non-fibrotic, IE/F: immune-enriched and fibrotic. g, Heatmap illustrating the 29 tumor immune microenvironment (TIME) signatures used for immune subtyping (BostonGene) in relation to the NRF2 model.

Figure 4. Survival analyses and immune subtyping in the OAK/POPLAR validation cohort.

a, b, Kaplan-Meier survival curves of progression-free survival (PFS) and overall survival (OS) comparing NRF2-enriched and NRF2-depleted NSCLC. c, d, Forest plots illustrating multivariate Cox regression models for PFS and OS. e, Stacked bar chart showing tumor response to immunotherapy (overall response rate, ORR) in patients with NRF2-enriched and NRF2-depleted NSCLC (χ^2). CR: complete response, PR: partial response, SD: stable disease, PD: Progressive Disease. f, Stacked bar chart showing differences in immune subtypes between NRF2-enriched and NRF2-depleted NSCLC (χ^2). D: desert, immune-depleted and non-fibrotic, F: fibrotic, immune-depleted and fibrotic, IE: immune-enriched and non-fibrotic, IE/F: immune-enriched and fibrotic. g, Heatmap showing the 29 tumor immune microenvironment (TIME) signatures exploited for immune subtyping (BostonGene) in relation to the NRF2 signature.

Figure 5. Survival analyses in the pooled SU2C/OAK/POPLAR cohort to explore the impact of KEAP1 mutations on the NRF2 signature.

a, b, Kaplan-Meier survival curves of progression-free survival (PFS) and overall survival (OS) comparing NRF2-enriched/KEAP1-mutant, NRF2-enriched/KEAP1 wild-type (KEAPness), and NRF2-depleted NSCLC. c, Stacked bar chart displaying the differences in terms of overall response rate (ORR) across the subgroups compared (χ^2). d, Stacked bar chart for immune subtyping across the three molecular subgroups considered. e, Heatmap illustrating the 29 tumor immune microenvironment
(TIME) signatures used for immune subtyping (BostonGene) across the three subgroups compared (NRF2-enriched/KEAP1-mutant, NRF2-enriched/KEAP1 wild-type, and NRF2-depleted).

Figure 6. Genomic and immunological correlates of NRF2-enriched tumors in the TRACERx 421 multi-region sequencing cohort.

a, Dumbbell plot showing the NRF2 signature at the patient-level. Each dot represents a tumor region (NRF2-enriched and depleted regions are indicated in red and water green, respectively). The dotted line represents the NRF2 signature cutoff identified in clinical cohorts. Tumors with NRF2 transcriptional heterogeneity are those with dots of both colors. b, c, COSMIC cancer genes under positive selection in NRF2-enriched non-squamous (b) and squamous (c) tumors with and without KEAP1 mutations. d, Stacked bar chart displaying the sample-level distribution of the four immune subtypes across NRF2-depleted, NRF2-enriched/KEAP1 wild-type (KEAPness), and NRF2-enriched/KEAP1-mutant NSCLC. D: desert, immune-depleted and non-fibrotic, F: fibrotic, immune-depleted and fibrotic, IE: immune-enriched and non-fibrotic, IE/F: immune-enriched and fibrotic. e, Dumbbell plot showing the NRF2 signature at the patient level across NRF2 heterogeneous tumors, and the related immune subtyping (D-F: desert/fibrotic, IE-IE/F immune-enriched, either fibrotic or not). f, Box plot illustrating T cell infiltration estimated by T cell ExTRECT across the three subgroups compared: NRF2-depleted, NRF2-enriched/KEAP1 wild-type (KEAPness), and NRF2-enriched/KEAP1-mutant tumors.

Extended data figures

Extended Data Figure 1. The NRF2 signature in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) in the TCGA study. a, Box plot for the NRF2 signature in LUAD and LUSC (Wilcoxon test).
Extended Data Figure 2. The NRF2 signature and the tumor immune microenvironment (TIME) in the TCGA study. a, Heatmap illustrating the 29 TIME signatures exploited for generating four immune subtypes (BostonGene) in relation to the NRF2 signature.

Extended Data Figure 3. Optimal cutoff of the NRF2 signature. a, b ROC-AUC curve and bootstrap resampling to identify the optimal cutoff of the NRF2 signature in predicating lack of clinical benefit in a subset of patients included in the SU2C identification cohort (n=93, lung adenocarcinoma patients who did not receive prior tyrosine kinase inhibitors). Lack of durable clinical benefit was defined as a progression-free survival shorter than 6 months.

Extended Data Figure 4. The NRF2 signature in relation to histology in the SU2C identification cohort. a, Box plot showing the difference in the NRF2 signature between squamous and non-squamous NSCLC (Wilcoxon test).

Extended Data Figure 5. Sensitivity analyses in the SU2C cohort upon exclusion of patients who received prior targeted agents. a, b Kaplan-Meier survival curves for progression-free survival (PFS) and overall survival (OS). c, d Forest plots illustrating multivariate Cox regression models for PFS and OS. e, Stacked bar chart for overall response rate (ORR) (χ^2).

Extended Data Figure 6. The NRF2 signature in relation to histology in the OAK/POPLAR validation cohort. a, Box plot showing the difference in the NRF2 signature between squamous and non-squamous NSCLC (Wilcoxon test).

Extended Data Figure 7. The NRF2 signature reclassified according to KEAP1 mutations and p53, WNT, and JAK-STAT PROGENy signatures. a, b, c Box plots showing the differences in the p53, WNT, and JAK-STAT PROGENy signatures across the three subgroups compared: NRF2-enriched/KEAP1-mutant, NRF2-enriched/KEAP1 wild-type (KEAPness), and NRF2-depleted.
Extended Data Figure 8: NRF2 transcriptional heterogeneity in non-squamous and squamous tumors in the TRACERx 421. a, b, Dumbbell plots showing NRF2 transcriptional heterogeneity in non-squamous (a) and squamous (b) lung cancer. Each dot represents a tumor region (water green: NRF2-depleted, red: NRF2-enriched), whereas the dotted line indicates the NRF2 signature cutoff.

Extended Data Figure 9: Immune-related processes and the NRF2 signature in the TRACERx 421 study. a, Heatmap illustrating the 29 TIME signatures used for immune subtyping (BostonGene) in relation to the NRF2 signature.

Supplementary figures and tables

Supplementary Figure 1. Relationship between the NRF2 signature and PROGENy core cancer pathway signatures in the TCGA NSCLC study. a-i, Box plots illustrating the relationship between PROGENy signatures (EGFR, hypoxia, MAPK, NFKB, PI3K, TGFb, TNFa, TRAIL, VEGF) and the NRF2 signature (Wilcoxon test). p53, WNT, and JAK-STAT are presented in Figure 2.

Supplementary Figure 2. The NRF2 signature and PD-L1 tumor proportion score (TPS) in the SU2C identification cohort. a, Stacked bar chart showing the distribution of PD-L1 TPS (<50% and ≥50%) in NRF2-enriched and NRF2-depleted NSCLC.

Supplementary Figure 3: The NRF2 signature in advanced NSCLC treated with chemotherapy (docetaxel) in the OAK/POPLAR trials. a, b, Kaplan-Meier survival curves for progression-free survival (PFS) and overall survival (OS). c, Stacked bar chart illustrating the differences in overall response rate (ORR) between NRF2-enriched and NRF2-depleted NSCLC (χ²).

Supplementary Figure 4: Survival analyses in the pooled SU2C/OAK/POPLAR cohort. a, b, Kaplan-Meier survival curves for progression-free survival (PFS) and overall survival (OS). c, Stacked bar chart for overall response rate (ORR).
Supplementary Figure 5: Immune subtyping, cancer-associated PROGENy signatures, and transcription factors (DoRothEA) in the pooled SU2C/OAK/POPLAR cohort.

a, Stacked bar chart illustrating immune subtypes in NRF2-enriched and NRF2-depleted NSCLC (χ^2). D: desert, immune-depleted and non-fibrotic, F: fibrotic, immune-depleted and fibrotic, IE: immune-enriched and non-fibrotic, IE/F: immune-enriched and fibrotic.

b, c, d, Box plots showing the differences in the p53, WNT, and JAK-STAT PROGENy signatures between NRF2-enriched and NRF2-depleted NSCLC (Wilcoxon test).

e, f, Box plots illustrating DoRothEA-predicted activity of the immune-related transcriptional factors STAT1 and STAT3 in NRF2-enriched and NRF2-depleted NSCLC (Wilcoxon test).

Supplementary Figure 6: The NRF2 signature and tumor histology in the pooled SU2C/OAK/POPLAR cohort.

a, b, Kaplan-Meier survival curves for progression-free survival (PFS) and overall survival (OS) comparing NRF2-enriched and NRF2-depleted non-squamous NSCLC.

c, d, Kaplan-Meier survival curves for progression-free survival (PFS) and overall survival (OS) comparing NRF2-enriched and NRF2-depleted squamous lung cancer.

e, f, Kaplan-Meier survival curves for progression-free survival (PFS) and overall survival (OS) comparing NRF2-enriched squamous and non-squamous tumors.

g, h, Kaplan-Meier survival curves for progression-free survival (PFS) and overall survival (OS) comparing NRF2-depleted squamous and non-squamous tumors.

Supplementary Figure 7: KEAPI mutations and the NRF2 signature in the pooled SU2C/OAK/POPLAR cohort.

a, Stacked bar chart illustrating the distribution of KEAPI mutations in NRF2-enriched and NRF2-depleted tumors.

Supplementary Figure 8. Distribution of KEAPI mutations and copy number alterations (CNAs) according to the NRF2 signature in the TRACERx 421 study.

a, Stacked bar chart illustrating the distribution of KEAPI clonal mutations in NRF2-enriched and NRF2-depleted NSCLC.

b, Stacked bar chart...
chart illustrating the distribution of KEAPI driver mutations in NRF2-enriched and NRF2-depleted NSCLC. c, Stacked bar chart illustrating the distribution of KEAPI CNAs (loss of heterozygosity) in NRF2-enriched and NRF2-depleted KEAPI wild-type NSCLC.

Supplementary Figure 9. NRF2-enriched tumors and clonal status of mutations under positive selection identified in the TRACERx 421. a, Oncoprint illustrating the mutational frequency and clonal status of genes under positive selection in NRF2-enriched NSCLC. Clonal mutations (C) are indicated in water green in the Oncoprint.

Supplementary Table 1. List of up- and down-regulated genes identified by differential gene expression when comparing KEAPI-NFE2L2-mutant and wild-type NSCLC in the TCGA study.

Supplementary Table 2. Clinical features of the patients included in the SU2C identification cohort.

Supplementary Table 3. Association between the NRF2 signature and baseline characteristics of NSCLC patients included in the SU2C identification cohort.

Supplementary Table 4. Clinical features of the patients included in the OAK/POPLAR validation cohort and association with the NRF2 signature.
TCGA NSCLC cohort (n=943)

NRF2 transcriptional signature

Immunotherapy-treated cohorts

SU2C (n=153) Identification cohort

OAK/POPLAR (n=439) Validation cohort

Lung cancer evolution

TRACERx (n=421) NRF2 transcriptional heterogeneity and clonal drivers

Survival Outcomes and Immune Subtyping

medRxiv preprint doi: https://doi.org/10.1101/2023.10.30.23297743; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
A)

B)

C)

D)

E)

F)

G)
A) Probability of Survival

N. patients at risk

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>103</td>
<td>23</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>118</td>
<td>70</td>
<td>49</td>
<td>20</td>
<td>94</td>
</tr>
<tr>
<td>94</td>
<td>49</td>
<td>20</td>
<td>67</td>
<td>118</td>
</tr>
<tr>
<td>67</td>
<td>49</td>
<td>20</td>
<td>67</td>
<td>153</td>
</tr>
<tr>
<td>31</td>
<td>13</td>
<td>4</td>
<td>31</td>
<td>153</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>153</td>
</tr>
</tbody>
</table>

Log-rank p = 0.013

B) Probability of Survival

N. patients at risk

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>103</td>
<td>23</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>118</td>
<td>70</td>
<td>49</td>
<td>20</td>
<td>94</td>
</tr>
<tr>
<td>94</td>
<td>49</td>
<td>20</td>
<td>67</td>
<td>118</td>
</tr>
<tr>
<td>67</td>
<td>49</td>
<td>20</td>
<td>67</td>
<td>153</td>
</tr>
<tr>
<td>31</td>
<td>13</td>
<td>4</td>
<td>31</td>
<td>153</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>153</td>
</tr>
</tbody>
</table>

Log-rank p = 0.006

C) χ² = 0.04652

D) χ² = 4.649e-05

E) Score distribution

- NRF2-Depleted
- NRF2-Enriched/KEAP1-Mut
- NRF2-Enriched/KEAP1-Wt