Response to immune checkpoint inhibition is associated with the gut microbiome in advanced KRAS-mutated non-small cell lung cancer

Birgitta I. Hiddinga 1*, Laura A. Bolte 2,3*, Paul van der Leest 4, Lucie B.M. Hijmering-Kappelle 1, Anthonie J. van der Wekken 1, Ed Schuuring 4, Ranko Gacesa 2,3, Geke A.P. Hospers 5, Rinse K. Weersma 2, Johannes R. Björk 2,3#, T Jeroen N Hiltermann 1#

* contributed equally # contributed equally

1. Dept. of Pulmonary Medicine & Tuberculosis, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
2. Dept. of Gastroenterology & Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
3. Dept. of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
4. Dept. of Pathology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
5. Dept. of Medical Oncology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen the Netherlands

Corresponding author: Birgitta Hiddinga, MD.

Dept. of Pulmonary Medicine & Tuberculosis
University Medical Center Groningen
Hanzeplein 1, NL - 9713 GZ Groningen

Email: b.i.hiddinga@umcg.nl; Tel: +31 50 361 8574

Word count: abstract 249. Main text: 2981 (excluding abstract, excluding references).

References: 40

Take-home message: The gut microbiome could be a target to improve outcomes in advanced non-small cell lung cancer patients harbouring a KRAS-mutation treated with immune checkpoint inhibitors.
Tables and Figures

Box 1 Statistical Glossary

Table 1 Cohort characteristics

Figure 1 Alpha and beta diversity at the species-and pathway-level (PFSI2)

Figure 2 Differential abundance analysis at the species-and pathway-level

Supplementary table 1 Inclusion criteria

Supplementary table 2 Descriptive statistics

Supplementary table 3 PERMANOVA analysis (Excel file)

Supplementary figure 1 Alpha and beta diversity at the species-level

Supplementary figure 2 Alpha and beta diversity at the pathway-level

Supplementary figure 3 Species-level comparison of irAEs and different ICI-regimen

Supplementary figure 4 Pathway-level comparison of irAEs and different ICI-regimen

Supplementary figure 5 Species-level comparison of different metastatic disease stages

Supplementary figure 6 Pathway-level comparison of different metastatic disease stages

Ethical Approval

The study was conducted according to the principles of the Declaration of Helsinki and in accordance with the Medical Research Involving Human Subjects Act (WMO). The Medical Ethical Board of the University Medical Center Groningen approved the study protocol (CA209-759), NTR 6158 (Dutch Trial Register). All patients provided written informed consent.

Data availability

All relevant data supporting the key findings of this study are available within the article and the supplementary files. Codes used for generating the microbial profiles are publicly available at:

[https://github.com/WeersmaLabIBD/Microbiome/blob/master/Protocol_metagenomic_pipeli...](https://github.com/WeersmaLabIBD/Microbiome/blob/master/Protocol_metagenomic_pipeline)
ne.md]. All statistical analysis scripts are written in R and can be found here:

https://github.com/WeersmaLabIBD/Microbiome
Abstract

Background: KRAS-mutated non-small cell lung cancer (NSCLC) is associated with a poor prognosis to standard therapies. Despite advances of immune checkpoint inhibitors (ICIs), not all patients show durable responses. In this study, we aim to identify associations between ICI-response and the gut microbiome in patients with KRAS-mutated NSCLC.

Methods: We performed shotgun metagenomic sequencing of stool samples collected before ICI initiation from 33 patients with KRAS-mutated NSCLC. Microbiome composition within (α-diversity) and between samples (β-diversity) was calculated using Shannon diversity index and principal component analysis on Aitchison distances, respectively. A Bayesian logistic-normal regression model (Pibble) was implemented to identify associations between gut microbial features and disease control rate (DCR), progression free survival at 12 months (PFS12) and immune related adverse events (irAEs), adjusting for ICI-regimen, metastatic disease stage, age, sex and BMI.

Results: Responders were enriched with several saccharolytic species, including Agathobaculum butyriciproducens, Fusicatenibacter saccharivorans, Bifidobacterium longum and Eubacterium ramulus. Non-responders harbored higher abundances of several Bacteroides and Blautia species. Patients unaffected by irAEs demonstrated higher abundances of biotin and butyrate synthesis pathways. Development of irAEs was associated with higher Alistipes finegoldii, Bifidobacterium longum and Bacteroides uniformis abundance. No differences were observed between responders and non-responders in Shannon diversity index (P=0.69) and overall microbial composition (P=0.82).

Conclusions: We show gut microbial species and pathways that are differentially abundant between responders and non-responders to ICI in the setting of KRAS-mutated NSCLC. We find overlap with microbial signatures of response to ICI in other tumor types, potentially reflecting tumor-independent microbial mechanisms.
Introduction

Lung cancer is the leading cause of cancer mortality worldwide. Immune checkpoint inhibition (ICI) has demonstrated significant benefit for patients with advanced non-small cell lung cancer (NSCLC). Recently, pembrolizumab has moved forward as standard of care first line treatment, in NSCLC patients having a PD-L1 tumor proportion score (TPS) > 50% [1]. Nivolumab is standard of care for second and further line treatment of immunotherapy-naïve patients [2]. The Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation is the most frequent genetic alteration found in NSCLC. KRAS mutations are associated with considerable heterogeneity in clinical characteristics and a poor prognosis to standard NSCLC therapies [3]. Immunotherapy seems to be an effective choice in patients with KRAS mutation, in any line of treatment and with better outcomes than chemotherapy [4]. However, responses in most patients are still poor and for up to 80% this treatment will have no favorable effect in terms of long-term survival [5].

The gut microbiome has been recognized as a hallmark of cancer [6]. Mechanisms through which the gut microbiome affects cancer development and progression include eliciting (innate) tumour promoting inflammation as well as escaping (adaptive) immune destruction [6, 7]. Moreover, the gut microbiome has been linked to ICI response, including the development of immune-related adverse events (irAEs), suggesting that characterisation of the gut microbiome may enable a more personalised line of treatment [8, 9, 10]. While most of the evidence comes from melanoma patients, it is not yet clear whether the gut microbiome can serve as a target in patients treated with ICI for different tumor entities such as KRAS-mutated NSCLC [11, 12]. In a French cohort of 338 patients with NSCLC, of which about 40% KRAS-mutated NSCLC, baseline Akkermansia muciniphila abundance was associated with increased response rates and overall survival [13].

In this study we investigate the role of the gut microbiome in a cohort of patients treated with anti-PD-1 immunotherapy for advanced KRAS-mutated NSCLC, presenting a specific tumor entity that has not yet been studied in this setting.

Materials and methods

Participant selection
From 1st of October 2017 to 1st of December 2019 we enrolled 40 patients with stage IIIB to IVB KRAS-mutated NSCLC (TNM classification of lung cancer, 8th edition) for treatment with ICI as first line treatment (14 patients pembrolizumab, PD-L1 TPS >50%) or after failing first line platinum containing doublet chemotherapy (26 patients nivolumab, independent of PD-L1 score). Patients were treated with nivolumab 3 mg/kg every 2 weeks or pembrolizumab 200 mg flat dose every 3 weeks until progression or intolerable toxicity. All patients were selected from a cohort of NSCLC patients harbouring a KRAS mutation, as reported previously [14]. Key eligibility criteria are depicted in **Supplementary table 1**. Baseline characteristics, tumour stage and previous treatment are presented in **Table 1**. Antibiotic and proton pump inhibitor (PPI) use within 3 months of commencing ICI were documented.

Of 40 recruited participants two were excluded due to presence of a second primary tumor and not harbouring a KRAS mutation, respectively. Five participants did not collect a faecal sample, leading to 33 patients eligible for analysis.

Sample collection, DNA extraction and sequencing

Patients received oral and written instructions about the stool sample collection. Stool samples were collected at baseline. The protocol for faecal sample collection and profiling of gut microbiota was previously published [15]. Microbial DNA was isolated with the QIAamp Fast DNA Stool Mini Kit (Qiagen, Germany), according to the manufacturer’s instructions. Metagenomic sequencing was performed at Novogene, China using the Illumina HiSeq 2000 platform. We obtained a total of 7.9 (sd=1.2) Gb with an average of 26.3 (sd=4.0) mil. reads/sample prior to quality control and pre-processing.

Sample processing

Reads aligning to the human genome (GRCh37/Hg19) were removed using KneadData integrated Bowtie2 tool (V.2.3.4.1), functional profiles were calculated using **HUMAnN3** (V.0.10.0) and the taxonomic composition was evaluated using **MetaPhlAn3**. Microbes and microbial functions that were present in less than 10% of samples and microbes with a relative abundance lower than 0.01% were not included in subsequent analyses. Samples with a sequencing depth below 10⁶ million reads were removed. Arcsine square-root transformations for taxonomic abundances and logarithmic transformation for pathways were used as normalization methods.
Radiological evaluation and definition of clinical endpoints

Radiological evaluation with CT-scan according to Response Evaluation Criteria in Solid Tumours (RECIST) v1.1 [16] was performed at baseline and every 6 weeks in the first year of ICI treatment, and thereafter every 12 weeks until disease progression.

Clinical endpoints were disease control rate (DCR), progression-free survival at 12 months (PFS12) and development of immune-related adverse events (irAEs).

DCR was defined on the basis of the first two radiological evaluations (at week 6 and week 12) using RECIST v1.1 criteria [16], classifying patients as responders (complete response, partial response, or stable disease) or non-responders (progressive disease). Stable disease was only classified as a response when confirmed at 6 months.

PFS was defined as the time from the first dose of an ICI to the first event; i.e., disease progression or death from any cause, with PFS12 indicating a complete/partial response or disease stability up to at least 12 months following initiation of ICI treatment.

IrAEs during or after ICI treatment were documented using the Common Terminology Criteria for Adverse Events (CTCAE) v5 (Table 1) [17]. Side effects of clearly non-immune etiology were excluded.

Statistical analysis

The statistical tests and terminology are described in Box 1. χ2 Tests for categorical variables and Mann-Whitney U test (MWU) for continuous data were performed to calculate differences between responders and non-responders (Supplementary Table 2). To test for differences in α-diversity, we computed Shannon diversity index using estimate_richness (... , measures="Shannon") from the phyloseq package [18]. To test for differences in β-diversity, we performed a Principal Component Analysis (PCA) on clr-transformed relative abundances using transform(... , transform="clr") and ordinate(... , method="RDA") from the microbiome and phyloseq package, respectively [18]. To determine which endpoints and variables could significantly explain interindividual variation in the gut microbiome in this cohort, we performed Permutational Multivariate Analysis of Variance (PERMANOVA) on an Aitchison distance matrix produced from species-level clr-transformed relative abundances using the function adonis from the vegan R package (v2.5-7) [19]. The P and R^2 values were determined by 9999 permutations using all variables in the model.
To identify associations between treatment outcomes and species abundance and metabolic pathways, we implemented a Bayesian logistic-normal linear regression model called Pibble from the R package fido [20, 21], which allows for associating covariates to compositional and overdispersed high throughput sequencing data (Box 1).

We were particularly interested in the covariates determining whether a likely association existed between the gut microbiome and response to ICI, either DCR (yes/no) or PFS12 (yes/no), ≥ grade 2 irAEs (yes/no), ICI regimen (Nivolumab/Pembrolizumab), and metastatic disease stage (1A, 1B, 1C), also adjusting for age, sex and BMI. Prior to fitting the model, we mean-centered the continuous covariates age and BMI. Furthermore, we used weighted sum/deviation coding (as opposed to treatment coding) which effectively mean-centers categorical covariates, to weight cases and controls by the number of observations [22]. Then, from the fitted model, we calculated the difference in the marginal means for cases vs. controls for each covariate of interest, and then ranked those to determine which microbial features changed the most between cases and controls. We report results at 75% and 90% credible intervals. This means we concluded that a microbial species or pathway is differentially abundant between cases and controls if 75% or 90% of its posterior distribution do not contain zero (i.e. 75% and 90% Bayesian Confidence Level, BCL).

Results

Patient characteristics

Clinical and pathological characteristics are summarized in Table 1. The median PFS was 1 month (min=0 months, max=51 months, censoring date August 4, 2022), DCR was 24% (8 patients) and PFS12 was 18% (6 patients). Concomitant PPI was 58% and antibiotic use was low (9%). The KRAS G12C mutation was most frequently found (49%). In 11 patients (33%) irAEs occurred, of which 10 were ≥ CTCAE-grade 2. In responders, grade and number of organs affected by irAEs was higher than in non-responders, although not statistically significant (Supplementary table 2).

Overall gut microbiome composition and diversity

We tested whether the gut microbiome of responders and non-responders exhibited differences in α-diversity and β-diversity and we found no difference between responders and
non-responders in the Shannon diversity index neither for microbial species nor pathways in the PFS12 group (Figure 1). Similarly, there was no difference between responders and non-responders when using DCR as response measure (both $P=0.69$; Supplementary figures 1-2).

We did not find significant differences in microbial species or pathway composition between responders and non-responders for either PFS12 nor DCR (Supplementary table 3). Thereafter, we tested whether patients who developed irAEs exhibited differences in α- and β-diversity compared to those who were resistant to irAEs. Similarly to response to ICI, we found no differences between these two patient groups in terms of the Shannon diversity index for species, pathways, nor for microbial species or pathway composition (Supplementary figures 1-2, Supplementary table 3). In the PERMANOVAs, we also included and tested whether ICI regimen, metastatic disease stage, sex, age and BMI explained variation in gut microbiome composition. For species composition, we found that metastatic disease stage, and sex were the variables explaining most variation in both the DCR and PFS12 model. For microbial pathway composition we found that response (DCR and PFS12), ICI regimen, metastatic disease stage, and age explained the largest percent variation (between 4 and 6%). However, none of the variables reached statistical significance (Supplementary table 3).

Differential abundance analysis

Responders show enrichment of short chain fatty acids (SCFA)-producers

Responders were enriched in several saccharolytic species involved in the synthesis of short chain fatty acids (SCFA), including *Agathobaculum butyriciproducens*, *Clostridium leptum*, *Bifidobacterium longum*, *Eubacterium ramulus* and *Fusicatenibacter saccharivorans* (Figure 2A). Furthermore, responders showed higher relative abundances of *Akkermansia muciniphila* and SCFA-producers *Alistipes putredinis* and *Alistipes finegoldii* compared to non-responders, although these associations showed a wider credible interval (Figure 2). At pathway level, responders showed a higher abundance of pathways involved in synthesis of biotin (BIOTIN-BIOSYNTHESIS-PWY) and butyrate (PWY-5676; PWY-5022) (Figure 2B).
Responders show higher abundance of immunogenic pathways

In contrast to the aforementioned health-associated microbial features, we also observed that responders had higher abundances of pathways involved in lipopolysaccharide (LPS) and heme synthesis (NAGLIPASYN; PWY-5136; FAO-PWY; HEMESYN2-PWY, Figure 2B). These pathways are generally regarded as pro-inflammatory.

Higher abundance of Bacteroides species in non-responders

Non-responders were enriched in several species belonging to the Bacteroides (Bacteroides (B.) sp CAF 44; B. clarus; B. wexlerae; B. uniformis; B. plebeius; B. ovatus) and Blautia genus (Ruminococcus gnavus; Blautia sp. CAG 257) in both the DCR and the PFS12 model. Non-response was also associated with a higher abundance of Escherichia coli and several amino acid synthesis pathways (Figure 2).

Biotin and SCFA synthesis pathways enriched in patients unaffected by irAEs

Patients who did not develop irAEs showed higher abundances of Anaerotruncus colihominis and Hungatella hathewayi (that were associated with non-response) and Anaerostipes hadrus (Supplementary figure 3). These patients further showed an enrichment of pathways involved in the synthesis of biotin and SCFA or precursors of SCFA (BIOTIN-BIOSYNTHESIS-PWY; PWY-5676; PWY-5022) and fatty acid synthesis (FASYN-INITIAL-PWY; FASYN-ELONG-PWY); Supplementary figure 4).

On the other hand, patients who developed irAEs exhibited higher abundances of Alistipes finegoldii and Bifidobacterium longum (that were enriched in responders) and Bacteroides uniformis (enriched in non-responders; Supplementary figure 3). Development of irAEs was associated with microbial synthesis of several amino acids (lysine, arginine, proline, isoleucine, asparagine; Supplementary figure 4) partially overlapping with pathways seen enriched in non-responders (Figure 2B).

Comparison of different ICI-regimen and metastatic disease stages

Finally, we compared gut microbial abundances in different treatment settings, including metastatic disease stage and treatment line or agent. We observed higher abundances of Bacteroides sp. CAG 144 and Escherichia coli in those treated with first-line pembrolizumab compared to those treated with second- and further line nivolumab (Supplementary Figure
Patients with an earlier metastatic disease stage (M1a) harbored higher abundances of \textit{Bifidobacterium} and \textit{Eubacterium spp.}, biotin synthesis (BIOTIN-BIOSYNTHESIS-PWY) and starch degradation (PWY-2723) pathways, whereas the higher metastatic disease stage M1c was associated with higher abundances of a pathway involved in LPS synthesis (NAGLIPASYN-PWY; \textbf{Supplementary Figures 5-6}).

\textbf{Discussion}

In this study we profiled the gut microbiome composition and function in a homogeneous cohort of patients treated with anti-PD-1 immunotherapy for advanced KRAS-mutated NSCLC. We identified distinct gut microbial features of response and non-response to treatment, while correcting for important clinical confounders such as ICI-type, metastatic disease stage and the development of irAEs. In line with earlier studies, response-associated microbiome features were not reflected at the whole microbiome level by common β-diversity metrics [23].

\textit{Overlap in microbial signatures of response with other tumour types and geographies}

We found that responders are enriched in SCFA producing species compared to non-responders. SCFA producing species have previously been associated with healthy host phenotypes [11, 15, 24, 25]. SCFA-producers such as \textit{Bifidobacteria} [23, 10], \textit{Faecalibacterium prausnitzii} [9, 26] have been consistently associated with ICI-response across several tumour types including melanoma and renal cell carcinoma [8, 27], geographies [23, 28], and treatment regimen [13, 29].

Similarly, \textit{Akkermansia muciniphila} has been repeatedly associated with increased overall survival and response rates to ICI in cohorts from different countries, such as in advanced NSCLC patients from France [8, 13] and Poland [30], and melanoma patients from the Netherlands [31], the UK and Spain [23]. In our cohort we found increased \textit{Akkermansia muciniphila} in responders, but not statistically significant, probably due to the small sample size. We also identified two \textit{Alistipes} species to be enriched in responders, in line with the findings in melanoma and NSCLC patients [8, 26, 32].

At the level of predicted metabolic pathways, we observed an enrichment of biotin synthesis in responders as well as in patients unaffected by irAEs. Microbial pathways for the synthesis
of biotin, as well as other B-vitamins, have been reported to be enriched in those protected from ICI-induced colitis [33].

Non-responders showed higher abundances of the species belonging to the Blautia genus and the Bacteroides genus. These species have been previously shown to be associated with chronic diseases such as IBD, diabetes mellitus and cardiovascular diseases and long-term diets rich in animal protein and saturated fat [15, 24, 25]. Our observation aligns with the findings of a recent cross-cancer meta-analysis at which Bacteroides were relatively underrepresented in ICI-responders across different tumor types including NSCLC, melanoma, hepatic and renal cell carcinoma [8]. Bacteroides clarus in particular, has been consistently associated with non-response to ICI [23].

Differences to NSCLC cohorts from other geographies

Overall, there has been heterogeneity in the microbial species associated with response across different cohorts [23], owing to regional differences such as diets, including concomitant medication use, and to methodological confounders such as limited sample sizes, metastatic disease stage or ICI-type not considered. In contrast to our findings, a study from China found higher abundances of Bacteroidea such as Bacteroides massiliensis in NSCLC patients who showed a partial response after anti-PD-1 therapy [32]. Interestingly, previous studies have shown biphasic effects for the Bacteroides genus: while the Bacteroides genus has been associated with negative efficacy of anti-PD-1 blockade, in line with our study [9], some Bacteroides species (B. fragilis, B. thetaiotaomicron) have been shown to increase efficacy when anti-CTLA-4 blockade was used [29]. In another study from China, NSCLC patients treated with nivolumab showed an enrichment of Alistipes, Bifidobacterium and Prevotella, whereas Ruminococcaceae was associated with non-response [34]. Two studies from Japan in ICI-treated NSCLC patients found yet another set of species associated with response, mainly Ruminococcaceae and Agathobacter [35] and Lactobacillus, Clostridium and Syntrophococcus [36], whereas non-responders were enriched in Bilophila, Sutterella and Parabacteroides. Another reason for the observed differences could be that, while the patients in our cohort all harboured a KRAS mutation, previous studies conducted in NSCLC did not look at these patients separately. Larger studies across different geographies are needed to further elucidate the role of the gut microbiome in NSCLC.

Higher abundance of inflammatory pathways in responders
While previous studies suggest a health-associated gut microbiome profile in responders to ICI [37], including higher abundances of SCFA-producers, we also observed an enrichment of microbial functions that are generally considered “pro-inflammatory” or immunogenic. The precise mechanisms between the gut microbiome and immunotherapy still have to be elucidated [38]. Our findings suggest that different microbial mechanisms are at play that could help promote an anti-cancer immune response during ICI treatment, challenging the concept of predominantly healthy microbiome signatures associated with response. Given the role of SCFA producing species in the fermentation of fiber, our results support a potential benefit of fiber-rich diets and unsaturated fatty acids to improve outcomes of ICI therapy [39, 40].

Strengths and Limitations

To our knowledge this is the first study associating outcomes to ICI with the gut microbiome composition that is conducted exclusively in NSCLC patients harbouring a KRAS mutation, a tumor entity that has been hard-to-target by standard NSCLC therapies in the past. A limitation of the study lies in its sample size and studying only a single time point (pre-treatment). Future multinational studies across different tumor entities with longitudinal profiling of the gut microbiome are needed to confirm the role of the identified species as potential biomarkers or treatment targets to improve response to ICI.

Conclusions

In a homogeneous cohort of patients with a KRAS-mutated NSCLC, we identified microbial species and pathways associated with response to ICI, and the development of irAEs. We find overlap in gut microbial species and functions associated with ICI-response in other tumour types such as melanoma, that may reflect tumour-independent microbial mechanisms. Specifically, we identified an enrichment in species involved in the fermentation of fiber and production of SCFA in responders, supporting a potential benefit of fiber-rich diets to synergize with ICI. Non-responders harbored a higher abundance of species belonging to the *Bacteroides* genus. The findings support the notion that the gut microbiome could be an interesting target to improve outcomes in NSCLC patients treated with ICI.

Acknowledgements
The authors would like to acknowledge the funding of the SEERAVE foundation. We thank ms. B.H. Jansen for logistical and laboratory support. We thank all participants of the study for their contribution.

α-diversity:	Quantifies the number of microbial species within each sample. To test for differences in α-diversity, we computed the Shannon diversity index.
Shannon diversity:	A measure of α-diversity which penalizes rare species.
β-diversity:	Quantifies the similarity/dissimilarity between two different samples. To test for differences in β-diversity, we performed a Principal Component Analysis (PCA) on clr-transformed relative abundances.
Aitchison distance:	The euclidean distance between samples calculated on species relative abundances after center log-ratio transformation (clr). This distance is considered the gold standard for high throughput sequencing data.
Principal Component Analysis (PCA):	A dimensionality reduction technique that is used to reduce the size of a large dataset into a smaller one that keeps most of the information. The result of this analysis is typically visualized in an ordination plot.
Bayesian logistic-normal regression model:	Statistical models that allow associating compositional and overdispersed high throughput sequencing data (such as microbiome data) with covariates. In the Pibble model, regression coefficients are ranked to determine which microbial features changes the most between cases and controls with statistical significance achieved through Bayesian inference. Importantly, the rankings produced from relative abundances are identical to the rankings produced by absolute abundances.
Permutational multivariate analysis of variance (PERMANOVA):	Non-parametric multivariate statistical permutation test. Distance-based method to test which variables could significantly explain interindividual variation in the gut microbiome composition. The test statistics directly use the distance matrix to partition β-diversity into different sources of variation.
Microbial species:	Groups of microorganisms that share common genetic and phenotypic characteristics. A species is a group of similar organisms (strains) within a genus. Microbial species can play important roles in various biochemical pathways and metabolic processes, such as the breakdown of fiber through fermentation, which can produce energy and metabolic byproducts, short-chain fatty acids.
Microbial pathways:	Refer to specific biochemical processes and metabolic pathways that are carried out by microorganisms. Predicted metabolic functions of gut microbiota are based on their annotated genome and can be captured by whole shotgun metagenomics sequencing.

Box 1. Statistical glossary
Table 1. Cohort characteristics. Cohort characteristics are presented as mean and standard deviation (SD) for continuous variables and as counts and percentages for categorical variables. Abbreviations: BMI, body mass index; DCR, Disease control rate; ICI, immune checkpoint inhibitor; irAEs, immune-related adverse events; NSCLC, Non-small cell lung cancer; PFS, Progression-free survival; PFS12, Progression-free survival at 12 months; PPI, proton pump inhibitors.

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>(n=33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) at stage IV diagnosis, mean (SD)</td>
<td>64.24 (7.83)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>18 (55)</td>
</tr>
<tr>
<td>male</td>
<td>15 (45)</td>
</tr>
<tr>
<td>BMI (kg/m^2), mean (SD)</td>
<td>24.93 (4.53)</td>
</tr>
<tr>
<td>Performance status, n (%)</td>
<td></td>
</tr>
<tr>
<td>PS 0</td>
<td>6 (18)</td>
</tr>
<tr>
<td>PS 1</td>
<td>23 (70)</td>
</tr>
<tr>
<td>PS 2</td>
<td>4 (12)</td>
</tr>
<tr>
<td>Metastatic stage, n (%)</td>
<td></td>
</tr>
<tr>
<td>0 (Stage 3b)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>1a</td>
<td>10 (30)</td>
</tr>
<tr>
<td>1b</td>
<td>12 (36)</td>
</tr>
<tr>
<td>1c</td>
<td>10 (30)</td>
</tr>
<tr>
<td>Treated brain metastases, n (%)</td>
<td>3 (9)</td>
</tr>
<tr>
<td>Liver metastases, n (%)</td>
<td>3 (9)</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>4 (12)</td>
</tr>
<tr>
<td>Former smoker</td>
<td>29 (88)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ICI used, n (%)</td>
<td></td>
</tr>
<tr>
<td>Nivolumab (second or further line)</td>
<td>21 (64)</td>
</tr>
<tr>
<td>Pembrolizumab (first line)</td>
<td>12 (36)</td>
</tr>
<tr>
<td>Antibiotic use at baseline, n (%)</td>
<td>3 (9)</td>
</tr>
<tr>
<td>PPI use at baseline, n (%)</td>
<td>19 (58)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcomes following ICI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DCR, n (%)</td>
<td>8 (24)</td>
</tr>
<tr>
<td>PFS (months), median (range)</td>
<td>1.0 (0-51)</td>
</tr>
<tr>
<td>PFS12, n (%)</td>
<td>6 (18)</td>
</tr>
<tr>
<td>irAEs, n (%)</td>
<td>11 (33)</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Maximum grade irAEs, n (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>22 (67)</td>
</tr>
<tr>
<td>1</td>
<td>1 (3)</td>
</tr>
<tr>
<td>2</td>
<td>3 (9)</td>
</tr>
<tr>
<td>3</td>
<td>4 (12)</td>
</tr>
<tr>
<td>4</td>
<td>3 (9)</td>
</tr>
</tbody>
</table>
Figure 1: α-and β-diversity between responders and non-responders. Upper panels show α-diversity at the species- (left) and pathway-level (right). α-diversity is computed as the Shannon diversity index (y-axis) for responders (R; blue) and non-responders (NR; red), respectively. Lower panels show species-and pathway-level compositional similarity (β-diversity) between responder and non-responder samples. β-diversity was computed using Aitchison distances. Each eclipse includes 95% of each group’s samples.
Figure 2: Differential abundance analysis. Differentially abundant microbial species (A) and pathways (B) between responders (R; red) and non-responders (NR; blue) at 75% Bayesian confidence level. Dots indicate microbial features that were differentially abundant at 90% Bayesian confidence level. Color strength indicates the effect size.
References

