Artificial Intelligence and Patient Education: Examining the Accuracy and Reproducibility of Responses to Nutrition Questions Related to Inflammatory Bowel Disease by GPT-4

Short: ChatGPT and nutrition

Jamil S. Samaan1 MD, Kelly Issokson1 RD, MS, Erin Feldman1 RD, CSP, Christina Fasulo1 RD, MS, CNSC, Wee Han Ng2, Nithya Rajeev3 BS, Barbara Hollander1 MD, RD, Yee Hui Yeo3 MD, MSc, Eric Vasiliauskas4 MD.

1Karsh Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048.

2Bristol Medical School, University of Bristol, 5 Tyndall Ave, Bristol BS8 1UD, United Kingdom.

3Keck School of Medicine of USC, 1975 Zonal Ave, Los Angeles, CA 90033.

4Inflammatory Bowel and Immunobiology Research Institute, Karsh Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Correspondence to:

Jamil S. Samaan, MD
Karsh Division of Digestive and Liver diseases,
8700 Beverly Blvd
Los Angeles, California, USA
Email: jamil.samaan@gmail.com
Phone: (310) 423-3277

Manuscript word count: 3118

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract word count: 248/250

Conflict of Interest: The authors declare that they have no conflict of interest.

Funding/Support: None.

Author contributions

J.S.S conceived and designed the study, manuscript preparation.

K.I. Question curation, response grading, edited the paper for important intellectual content.

E.F. Question curation, response grading, edited the paper for important intellectual content.

C.F. Question curation, response grading, edited the paper for important intellectual content.

W.N. Data management, statistical analysis, edited the paper for important intellectual content.

N.R. Assisted with manuscript preparation, edited the paper for important intellectual content.

B.H. Edited the paper for important intellectual content.

Y.Y. Edited the paper for important intellectual content.
ABSTRACT

Purpose: The aim of this study is to examine the accuracy and reproducibility of GPT-4’s responses to patient nutrition questions related to Inflammatory Bowel Disease (IBD).

Methods: Questions were curated from adult IBD clinic visits, Facebook, and Reddit. Two IBD-focused registered dietitians independently graded the accuracy and reproducibility of GPT-4’s responses while a third senior IBD-focused registered dietitian arbitrated. To ascertain reproducibility, each question was inputted twice into the model. Descriptive analysis is presented as counts and proportions.

Results: In total, 88 questions were included. The model provided correct responses to 73/88 questions (83.0%), with 61 (69.0%) graded as comprehensive. A total of 15/88 (17%) responses were graded as mixed with correct and incorrect/outdated data. When examined by category, the model provided comprehensive responses to 10 (62.5%) questions related to “Nutrition and diet needs for surgery”, 12 (92.3%) “Tube feeding and parenteral nutrition”, 11 (64.7%) “General diet questions”, 10 (50%) “Diet for reducing symptoms/inflammation” and 18 (81.8%) “Micronutrients/supplementation needs”. The model provided reproducible responses to 81/88 (92.0%) questions.

Conclusion: GPT-4 provided comprehensive responses to the majority of questions, demonstrating the promising potential of LLMs as supplementary tools for IBD patients seeking nutrition-related information. However, 17% of responses contained incorrect information, highlighting the need for continuous refinement and validation of LLMs prior to incorporation.
INTRODUCTION

Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), are chronic, often debilitating conditions impacting an estimated 3.1 million adults and 70,000 children in the United States.1,2 The global burden of IBD is also substantial, with a rising incidence in newly industrialized nations that have adopted more Western lifestyles.3 Nutrition plays a pivotal role in the management of patients with IBD, not only influencing disease activity but also impacting overall patient outcomes given the increased risk for malnutrition and micronutrient deficiencies in this patient population. Proper nutritional interventions, such as exclusive enteral nutrition (EEN), can alleviate symptoms, reduce the need for medications, and promote mucosal healing, thus improving their quality of life.4–7 Furthermore, diet and lifestyle modifications can influence the course of these diseases by modulating gut microbiota, inflammatory responses, and disease-related complications.8

The critical role of nutrition in IBD underscores a pressing need for effective patient education in this domain. Patient surveys have consistently indicated a strong demand for comprehensive nutrition guidance and education, both in general and within the IBD community.9 One study of IBD patients showed 15.4\% of patients did not talk to any provider

Keywords: ChatGPT, GPT-4, nutrition, dietitian, IBD, gastroenterology.
about nutrition while 15.5% rarely entered discussion with their healthcare providers regarding this subject. When asked the reason for the lack of discussion, 31.3% of patients felt their provider did not have enough time during clinical visits while 20.9% reported feeling their provider lacked the requisite expertise on the subject. Moreover, studies show patients frequently turn to external sources of information in lieu of their healthcare providers. More and more patients are seeking information about their disease from online sources, and this trend is anticipated to grow. Despite this demand, there is variable access to high quality IBD-specific dietary information available to patients. Furthermore, when navigating online sources patients are confronted with both high-quality information as well as misinformation that may be harmful, a dichotomy that often makes it challenging to distinguish between valid medical guidance from erroneous or misleading advice.

The emergence and growing popularity of large language models (LLMs), such as ChatGPT, may revolutionize the way information is accessed and disseminated. These models have the potential in assisting patients with IBD by helping them navigate the complex landscape of nutrition information. Personalized dietary recommendations can play a pivotal role in managing IBD, and ChatGPT may offer an accessible platform for patients to receive timely and pertinent information. While not a replacement for professional medical advice, it can serve as a complementary resource by providing general dietary guidelines and addressing common nutritional queries. There is a growing body of literature showing the impressive ability of ChatGPT in answering clinical questions on a wide range of topics including cirrhosis, bariatric surgery, laryngology and orthopaedic surgery.
There is little to no literature examining the performance of ChatGPT or other LLMs regarding nutrition-related questions. Examining the performance of LLMs, like ChatGPT, in the realm of nutrition will be critical to understanding the future role and limitations of this technology. Therefore, we examined the accuracy and reproducibility of GPT-4’s responses to nutrition questions related to IBD.

MATERIALS AND METHODS

Question Curation/Data Source

Questions were obtained from adult patient clinic visits at a tertiary academic hospital, Facebook groups (“Crohn’s and Colitis Food, recipes, Diet, and Nutrition”, “Crohn’s Disease & Ulcerative Colitis Support Group”, “Crohn’s Disease Support Group”) and Reddit pages (“r/CrohnsDisease”, “r/IBD”). Questions were curated, screened, and approved by three authors (CF, EF, KI) to evaluate their inclusion in the study. Only nutrition questions related to IBD were included. Duplicate and similar questions from multiple sources were removed.

Questions requiring subjective or personalized responses (ex.) and questions that were vague (ex.) were rephrased to a generic language format to allow for inclusion in the study. Other questions were grammatically modified to eliminate ambiguity. A total of 88 questions were included and used to generate responses from GPT-4. To better characterize GPT-4’s performance in various topics within IBD nutrition, questions were categorized into multiple groups for statistical analysis purposes: 1. Nutrition and diet needs for surgery, 2. Tube feeding and parenteral nutrition 3. General diet questions, 4. Diet for reducing symptoms/inflammation.
and 5. Micronutrients/Supplementation needs. Approval from the institutional review board was not sought given all questions are publicly available.

ChatGPT

ChatGPT is a LLM trained using an expansive dataset from various sources such as online websites, books, and articles up to the year 2021, including the medical literature. GPT-4, or Generative Pre-trained Transformer 4, was released in March of 2023 and is the fourth iteration of the GPT series. Based on a given input, the model generates responses that are east-to-understand and conversational in nature. By leveraging billions of sentences from diverse internet sources, GPT-4 can engage in complex conversations, answer questions, write essays, and even generate creative content like stories or poems. Its developers employed Reinforcement Learning from Human Feedback (RLHF) to optimize the model, ensuring it effectively responds to a wide range of commands and written inquiries. This fine-tuning was driven by human preferences, which served as a reward signal, ensuring the model’s alignment with user intent and desired outcomes. The model has been fine-tuned to resonate with user goals and to reduce biased, or potentially harmful outputs. The exact origins of the data used to train ChatGPT remain undisclosed. As a product of extensive research and refinement, this model has found applications across various industries with growing literature highlighting its potential use in the field of healthcare.

Response Generation
To produce responses, each question was prompted to the March 14th version of GPT-4. Questions were entered as is and without additional prompting in order to emulate the manner in which patients may potentially engage with the model. Every question was entered twice at different times using the "new chat" feature, yielding two answers for each question. This approach aimed to assess the reproducibility of responses to the same question.

\textbf{Question Grading}

Responses to the questions underwent an initial evaluation for both accuracy and reproducibility by two actively practicing IBD-focused registered dietitians in a tertiary care center (E.F., C.F.). The reviewers used information available up to 2021 as the benchmark for assessing accuracy. Reproducibility was assessed by examining the similarity in accuracy between the two responses provided for each question. The grading scale for response accuracy was as follows:

- \textit{Comprehensive}: Defined as accurate and comprehensive, nothing more a registered dietitian would add if asked this question by a patient in clinic.
- \textit{Correct but inadequate}: All information is correct but incomplete, a registered dietitian would have more important information to add if asked this question by a patient in clinic.
- \textit{Mixed with correct and incorrect/outdated data}
- \textit{Completely incorrect}

In instances of disagreement regarding reproducibility or accuracy grading, a third reviewer who has 10 years of experience as a clinical dietitian working with IBD patients at a...
tertiary care center arbitrated (K.I.). These final grades were subsequently aggregated to gauge GPT-4's proficiency in addressing questions related to nutrition in IBD.

Statistical Analysis

The proportions of responses earning each grade were calculated and shown as counts and percentages. To assess reproducibility, both responses for each question were categorized into two categories based on the presence of incorrect information: grades comprehensive and correct but inadequate formed the first category, while grades of mixed with correct and incorrect/outdated data and completely incorrect made up the second. A pair of responses to a question were deemed non-reproducible if their respective grades belonged to separate categories. All analyses were conducted using Microsoft Excel. (version 16.69.1).

RESULTS

In total, 88 nutrition questions related to IBD were inputted into GPT-4. The model performed well overall in terms of accuracy and provided correct responses to 73/88 questions (83.0%), with 61 (69.0%) of responses graded as comprehensive. For example, the model provided a comprehensive summary of EEN that is clear, concise, comprehensive, and accurate. This included a summary of the route of administration, avoidance of consumption of solids, nutritional content of EEN, its impact on mucosal healing, length of administration, reintroduction of solids, and its efficacy in inducing remission particularly in children and adolescents. Another example of a comprehensive response is an important and common questions asked by patients regarding taking vitamins and minerals despite normal laboratory
values. The model first stressed the importance of monitoring nutrient deficiencies in patients
with IBD and the temptation by patients to discontinue these supplements when laboratory
tests reveal normal values. The model then advised the user to consult with their healthcare
professional who will consider the patient’s medical history, medications, and IBD disease
status prior to making such a decision.

A total of 15/88 (17.0%) responses were graded as mixed with correct and
incorrect/outrated data while no responses were graded as completely incorrect. For example,
the model was asked about diet recommendations for IBD patients, which is one of the most
common questions encountered in the IBD clinic. The model offered various suggestions that
are not necessarily applicable to all patients with inflammatory bowel disease. For example, a
low-fat and lactose-free diet may only be suitable for a limited subset of these patients.
Furthermore, the model recommended a low residue diet, often conflated with “low fiber” diet,
which is not recognized as a diet by the Academy of Nutrition and Dietetics due to the lack of
definition and therefore inability to accurately measure from available data. This also
contradicts the current International Organization for the Study of IBD (IOIBD) Diet Guidelines,
which recommend patients with IBD consume more fiber. These recommendations may lead to
confusion or unnecessary nutritional restrictions for patients and ultimately to worse
outcomes. Another example is the model stating “a plant-based diet is not a guaranteed cure”
when asked if a plant-based diet is a cure for IBD. This is inaccurate as it suggests that a plant-
based diet may sometimes cure IBD.

When examined by question category, the model provided comprehensive responses to
10 (62.5%) questions related to “Nutrition and diet needs for surgery”, 12 (92.3%) “Tube
feeding and parenteral nutrition”, 11 (64.7%) “General diet questions”, (50%) “Diet for reducing symptoms/inflammation” and 18 (81.8%) to “Micronutrients/Supplementation needs” (Table 1, Figure 1). The percentage of comprehensive responses was lowest among questions regarding “Diet for reducing symptoms/inflammation” at 50% and highest among questions regarding “Tube feeding and parenteral nutrition” at 92.3%.

Table 1: Grading of responses generated by GPT-4 to nutrition questions related to inflammatory bowel disease stratified by question category.

<table>
<thead>
<tr>
<th>Question Category and Grading Scale</th>
<th>Number of responses (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrition and Diet Needs for Surgery (N=16)</td>
<td></td>
</tr>
<tr>
<td>1. Comprehensive</td>
<td>10 (62.5)</td>
</tr>
<tr>
<td>2. Correct but inadequate</td>
<td>4 (25.0)</td>
</tr>
<tr>
<td>3. Mixed with correct and incorrect/outdated data</td>
<td>2 (12.5)</td>
</tr>
<tr>
<td>4. Completely incorrect</td>
<td>0</td>
</tr>
<tr>
<td>Tube Feeding and Parenteral Nutrition (N=13)</td>
<td></td>
</tr>
<tr>
<td>1. Comprehensive</td>
<td>12 (92.3)</td>
</tr>
<tr>
<td>2. Correct but inadequate</td>
<td>0</td>
</tr>
<tr>
<td>3. Mixed with correct and incorrect/outdated data</td>
<td>1 (7.7)</td>
</tr>
<tr>
<td>4. Completely incorrect</td>
<td>0</td>
</tr>
<tr>
<td>General Diet Questions (N=17)</td>
<td></td>
</tr>
<tr>
<td>1. Comprehensive</td>
<td>11 (64.7)</td>
</tr>
<tr>
<td>Question Category</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Diet for Reducing Symptoms/Inflammation (N=20)</td>
<td>10 (50.0)</td>
</tr>
<tr>
<td>Micronutrients/Supplementation Needs (N=22)</td>
<td>18 (81.8)</td>
</tr>
</tbody>
</table>

Percentage of Responses:
- Nutrition and Diet Needs for Surgery: 62.5%
- Tube-Fed and Parenteral Nutrition: 92.3%
- General Diet Questions: 64.7%
- Diet for Reducing Symptoms/Inflammation: 50.0%
- Micronutrients/Supplementation Needs: 81.8%
Figure 1: Graphical illustration of grading of responses generated by GPT-4 to nutrition questions related to inflammatory bowel disease stratified by question category.

The model provided overall high reproducibility in accuracy with 81/88 (92.0%) of questions generating reproducible responses. When examined by question category, the model provided reproducible responses to 100% of questions related to “Tube feeding and parenteral nutrition” (100%), 94.1% “General diet questions”, 90.0% “Diet for reducing symptoms/inflammation”, 95.4% “Micronutrients/Supplementation needs”, and 81.3% “Nutrition and diet needs for surgery” (Table 2).

Table 2. Proportion of nutrition questions related to inflammatory bowel disease with reproducible grading of responses generated by GPT-4 stratified by question category.

<table>
<thead>
<tr>
<th>Question Categories</th>
<th>Number of responses (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrition and Diet Needs for Surgery (N=16)</td>
<td>13 (81.3%)</td>
</tr>
<tr>
<td>Tube Feeding and Parenteral Nutrition (N=13)</td>
<td>13 (100.0%)</td>
</tr>
<tr>
<td>General Diet Questions (N=17)</td>
<td>16 (94.1%)</td>
</tr>
<tr>
<td>Diet for Reducing Symptoms/Inflammation (N=20)</td>
<td>18 (90.0%)</td>
</tr>
<tr>
<td>Micronutrients/Supplementation Needs (N=22)</td>
<td>21 (95.4%)</td>
</tr>
</tbody>
</table>

Reproducibility was defined as no difference in grading categories (Comprehensive and Correct but inadequate vs mixed with correct and incorrect/outdated data and completely incorrect) between the two responses for each question.
DISCUSSION

The increasing global prevalence of IBD, coupled with the critical role of nutrition in its management, underscores the importance of reliable and accessible nutrition-related patient educational resources. Our study evaluated the accuracy and reproducibility of GPT-4’s responses to patient nutrition questions related to IBD. The model provided accurate and reproducible responses to the majority of questions prompted, highlighting the future potential of LLMs as a complementary source of information related to nutrition for IBD patients. However, the model provided inaccurate and incomplete responses to 17% of questions, underscoring the need for further improvement in performance prior to its introduction into clinical practice. With future iterations and improvements in performance, we see this technology as a supplementary tool rather than a substitute for advice from licensed healthcare professionals.

Individuals with IBD place significant emphasis on their diet, frequently implementing self-imposed dietary limitations. Subsequently, patients frequently seek nutritional guidance and turn to external sources in lieu of their healthcare providers with one study revealing that IBD patients were most confident in advice from online sources when experiencing active disease. The quality and reliability of information available online are either limited or frequently inconsistent. Using conventional online search engines provides patients with an abundance of information from a variety of sources, making distinguishing reliable information both difficult and time consuming. As the disease predominantly affects young adults with high computer literacy, the potential impact of online resources, like LLMs, becomes increasingly significant. This provides urgency in examining the role of LLMs in
nutrition related patient education in order to understand the strengths and limitations of this
technology. GPT-4 provided accurate and comprehensive responses to the majority of
questions in our study, highlighting a promising potential for LLMs in the realm of patient
education. The reproducibility of GPT-4’s responses in our study, which exceeded 80% across all
categories, is also noteworthy and crucial for building trust among users and ensuring
consistently accurate information. If validated, LLMs like ChatGPT may serve as an easy-to-
understand and efficient tool for patients to obtain reliable supplemental information based on
the medical literature.

It’s also important to highlight the limitations of GPT-4, as seen in our study. The model
provided incorrect or outdated information in 17% of responses which demonstrates its lack of
readiness for clinical use in its current form. There are multiple possible reasons for this.
ChatGPT’s training includes data from a wide range of sources, some of which may not be
accurate, leading to potential inaccuracies in its outputs. Moreover, the data sources used to
train the model have not been publicly disclosed making critical appraisal of its knowledge base
regarding a particular topic not possible. Even when accessing information from the medical
literature in its training data, the model may emphasize or utilize conflicting or outdated
information resulting in inaccurate or inconsistent outputs. Prompting strategies may also play
a role in the quality of responses. For our investigation, we pursued a pragmatic study design
where real world patient questions were curated from our IBD clinic and online sources and
subsequently inputted into GPT-4 without additional prompting. This is likely not the optimal
prompting method to produce the highest quality outputs from LLMs. We hypothesize that
more advanced prompt engineering would likely produce higher quality responses, both in
accuracy and comprehensiveness. In light of this, the design of intuitive, precise prompts for both patients and healthcare providers may be an effective strategy in harnessing the full potential of LLMs, as it ensures these tools deliver relevant, accurate information to specific medical contexts. By educating both groups on effective prompt crafting, we can greatly enhance the quality of interactions with LLMs, potentially leading to improved patient outcomes, more efficient healthcare delivery, and a deeper integration of AI in healthcare.

If future iterations of this technology are validated for clinical use, they may have a significant impact on the patient experience and healthcare outcomes. The timely accessibility of healthcare providers, particularly dietitians and IBD specialists, remains a consistent hurdle for many IBD patients. This can not only exacerbate delays in care and result in potentially detrimental outcomes, but also augment the challenges of patients navigating through the sea of inaccurate or insufficient online information. These barriers may also disrupt the proactive efforts of informed patients, leading to misguided actions based on flawed knowledge. In the future, patients equipped with accurate and holistic knowledge from LLMs may be able to streamline in-person appointments with more focused questions, allowing healthcare providers to focus on patient-specific concerns. Moreover, empowering patients with more information can potentially foster a greater sense of autonomy among patients, encouraging them to initiate discussions regarding nutrition with their healthcare providers. This, in turn, may help promote the focus on nutrition during clinic visits, and potentially increase the rate of referrals to dietitians.

LLMs may also help bridge healthcare disparities by democratizing access to health information. Barriers to care, such as lengthy wait times and inaccessibility to a dietician or IBD
specialist, are even more pronounced in patients of minority backgrounds, which can further
exaggerate disparities and lead to delays in diagnosis and treatment. LLMs may empower
these patients with knowledge regarding their disease, giving them a tool which helps them
proactively engage with their healthcare providers. LLMs may also prove beneficial to patients
who have language discordance with their healthcare providers, given disparities in healthcare
outcomes based on language preference have been previously shown. ChatGPT’s ability to
provide patient education in languages other than English is an active area of research with
some studies demonstrating its ability to respond to inquiries related to cirrhosis in Arabic,
Korean, Mandarin, and Spanish. LLMs can provide a valuable resource for these patients,
and potentially serve to mitigate disparities in outcomes.

Looking ahead, further avenues of research should aim towards ameliorating the
inaccuracies and limitations of this technology as revealed by our study. While ChatGPT can
provide answers to general IBD nutrition-related questions, it lacks the ability to
comprehensively assess individual health status, address behavioral needs, or monitor progress
over time. IBD can vary significantly from person to person in terms of symptoms, triggers, and
nutritional needs. Registered dietitians can assess individual cases, considering medical history,
current medications, symptom severity, and tailor nutrition advice to the individuals’ specific
needs and goals. While the model’s linguistic prowess is commendable, it can sometimes
produce responses that sound convincing but may be incorrect or nonsensical, a phenomenon
termed “hallucinations”. Continuous feedback and iterative improvements are essential to
minimize these limitations. Considering the growing popularity of LLMs and their potential in
delivering patient education, it’s imperative to further study and validate their utility. The role
of dieticians and physicians in managing patients with IBD remains critical to positive outcomes, and further research should investigate ways in which collaborations between AI-models and the healthcare team can benefit our patients.

CONCLUSION

GPT-4 provided comprehensive responses to the majority of questions, demonstrating the promising potential of LLMs as supplementary tools for IBD patients seeking nutrition-related information. It’s important to note that 17% of responses contained incorrect information, highlighting the need for continuous refinement and validation of LLMs prior to their incorporation into clinical practice. Going forward, it’s essential to approach the use of LLMs as an adjunct to professional medical advice. Future studies should focus on leveraging LLMs to enhance patient outcomes in the realm of IBD nutrition. Furthermore, efforts towards promoting patient and healthcare professional proficiency in using LLMs are essential to maximizing their impact and personalization.

Conflict of Interest: The authors declare that they have no conflict of interest.

Funding/Support: None

Ethical Approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent Statement: Informed Consent does not apply.
Declaration of AI and AI-assisted technologies in the writing process: During the preparation of this work the authors used GPT-4 in order to improve readability and language. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

REFERENCES

27. Borren NZ, Conway G, Tan W, et al. Distance to Specialist Care and Disease Outcomes in Inflammatory Bowel Disease: Inflammatory Bowel Diseases. 2017;23(7):1234-1239. doi:10.1097/MIB.0000000000001133

