Integration of Capnography and Continuous Positive Airway Pressure (CPAP) in the Prehospital Setting

Sahil Sethi¹, Gene Hobbs¹, Devin Hubbard¹, Kenneth Donnelly¹, Joseph M. Grover², Imran Rizvi¹,³, *

¹Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27599, USA
²Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC 27514, USA
³Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

*Corresponding author

Email: imran.rizvi@unc.edu (IR)

Author Contributions
S.S. formed the idea, conducted the literature search, and designed the study; G.H., D.H, K.D., J.G., and I.R. provided technical feedback; S.S. and G.H. collected data; S.S. and I.R. prepared the manuscript; all authors reviewed, edited, and approved the manuscript.

Declaration of Interests
The authors declare no competing interests.
Abstract

BACKGROUND: Capnography is one of the most important respiratory monitoring tools used in EMS because changes to end-tidal CO\(_2\) (ETCO\(_2\)) generally precede blood oxygen desaturation, and waveform morphology can be used to assess bronchial patency. Many of capnography’s indications overlap with those of continuous positive airway pressure (CPAP) therapy. However, there are currently no convenient methods to administer CPAP while using capnography, and no peer-reviewed studies have examined combining the two technologies in the prehospital setting.

METHODS & FINDINGS: Two types of capnography sampler were used to investigate how ETCO\(_2\), capnogram shape, and respiration rate (RR) are affected by applying a CPAP mask both with and without oxygen flowing. A traditional nasal-oral cannula (NC) sampler, as well as a novel sampler that does not break the seal between the CPAP mask and the patient’s face (called the CPAP-Capnography Adapter, or CCA), were evaluated on a Human Patient Simulator (HPS). No significant differences between the NC and CCA were found for ETCO\(_2\) and RR percent error. Placement of a CPAP mask without turning on O\(_2\) increased ETCO\(_2\). During CPAP therapy, the two samplers maintained their RR measurement accuracy, but ETCO\(_2\) values were significantly reduced and the capnogram depicted an increased \(\beta\)-angle with severe blunting of the inspiratory downstroke.

CONCLUSIONS: The HPS had set-point ETCO\(_2\) and PaCO\(_2\) values, indicating that the local CO\(_2\) concentration at the nares was diluted during CPAP and no longer accurately reflected the simulated subject’s breathing. The compromise in waveform morphology could be overcome by further research into interpreting capnogram differences during CPAP between healthy patients and those with respiratory pathologies. However, at this time, our results show that ETCO\(_2\) values and capnogram shape should be interpreted with caution during CPAP.

Key Words: End-tidal carbon dioxide, capnography, capnometry, oxygen therapy, noninvasive ventilation, continuous positive airway pressure, prehospital, emergency medical services
Abstract

Introduction

Materials and Methods

CPAP-Capnography Adapter (CCA) Design Process & Manufacturing

Materials

Experimental Design

Statistical Analysis

Results

Capnography Waveform

Effects on End-Tidal CO2

Effects on Respiration Rate

Discussion

Capnography Waveform

Capnography Sampler Effect on ETCO2 and Respiration Rate

Mask Condition Effect on ETCO2 and Respiration Rate

Additional Modeled Vital Signs

Relationship with Previous Studies

Limitations and Future Directions

Conclusions

Acknowledgments

References

Supporting Information

Abbreviations:

EMS - Emergency Medical Services

CO2 - Carbon Dioxide

CPAP - Continuous Positive Airway Pressure

ETCO2 - End-Tidal Carbon Dioxide (mmHg)

PaCO2 - Partial Pressure of Arterial Carbon Dioxide (mmHg)

SpO2 - Blood Oxygen Saturation

RR - Respiration Rate (breaths/min)

NC - Nasal-Oral Cannula

CCA - CPAP-Capnography Adapter

MAP - Mean Arterial Pressure

HPS - Human Patient Simulator

PEEP - Positive End Expiratory Pressure
Introduction

Respiratory issues are among the most common causes of 911 calls in the United States. (1) Once on scene, EMS personnel interview the patient and use vital signs—such as heart rate, blood pressure, respiration rate (RR), pulse oximetry, and capnography—in addition to their physical exam findings to determine possible causes for their breathing difficulties. Capnography is particularly beneficial as it can typically detect changes to a patient’s breathing before pulse oximetry. (2–4) For example, one study found that, for acute respiratory events, abnormal ETCO\(_2\) results were observed before SpO\(_2\) changes or observed hypoventilation in 70% of cases. (2) Capnography’s physiological relevance stems from its correlation with PaCO\(_2\), which regulates the respiratory drive. Directly measuring PaCO\(_2\) requires an interventional test that is not practical in the prehospital setting, such as arterial blood gas analysis. (8) There is some debate surrounding the correlation of ETCO\(_2\) to PaCO\(_2\), but several studies have found good correlation in healthy patients and patients with compromised pulmonary function who are spontaneously breathing. (9–12) Capnography has been shown to be a valuable screening tool for mortality predictions in patients with sepsis. (13,14) Also, in penetrating trauma patients, capnography measurements correlate with serum lactate levels (an indicator of tissue hypoxia and shock) and can predict the odds of the patient requiring operative intervention. (15) See Fig. 1B & 1D for example capnograms.

Figure 1. Capnography and Continuous Positive Airway Pressure (CPAP). (A) Nasal cannula (NC) commonly used for prehospital sidestream capnography sampling. (B) Example capnogram for a healthy individual (i) and an individual with bronchospasm (ii); peaks indicate exhalations while troughs indicate inhalations, and the end of the exhalatory plateau yields the PETCO\(_2\) measurement (labeled with a star). For the first waveform, phases I-IV are labeled, along with \(\alpha\)- and \(\beta\)-angles. (C) Common prehospital CPAP
setup with NC placed below the mask for capnography sampling; CO₂ gas line is circled in purple. (D)

Example EMS monitor depicting a capnography waveform; CO₂ gas line insertion is circled in purple; standard orange capnography port (not shown) is used for insertion.

Prehospital capnography is most commonly used for validating endotracheal tube placement,(16) as well as helping identify asthma, chronic obstructive pulmonary disease (COPD), pulmonary embolism (PE), and congestive heart failure (CHF). (17–19) The morphology of the capnogram is crucial for assessing bronchial patency as bronchospasm tends to yield a “shark fin” waveform (prolonged phase II with increase or loss of α-angle),(20,21) which is depicted in Fig 1B.ii. Monitoring of the waveform is currently used to assess response to bronchodilators.(20,22) Prehospital indications for CPAP strongly align with those of capnography and include CHF, COPD, asthma, acute bronchitis, pneumonia, and near-drownings with signs of pulmonary edema.(23,24) Prehospital CPAP has been shown to improve patient outcomes by reducing the need for intubation (and thus decreasing the likelihood of developing ventilator-associated pneumonia),(25) improving vital signs, and reducing myocardial damage—its use is also associated with reduced mortality.(24,26) Using capnography to monitor the effectiveness of CPAP would allow for the rapid determination of ineffective therapy and a quick decision to be made regarding switching to an invasive option.(27,28) This would also align with the 2011 AARC Clinical Practice Guideline on capnography, which recommends its use for monitoring response to therapies that improve the ventilation-perfusion (V/Q) ratio.(23)

Despite these points, the two technologies are not currently easily compatible. Common EMS cardiac monitors with built-in sidestream capnography sensors, such as the Physio-Control LIFEPAK-15, are used with a nasal-oral cannula (NC) sampler for spontaneously breathing patients, and an in-line sampler for intubated patients.(27,29) Non-invasive ventilation (NIV) dilutes exhalations, so sampling as close to the nares/mouth as possible is best.(27) Thus, using an NC sampler is generally preferred during NIV.(30) However, placing a cannula beneath a
CPAP mask is not ideal as it allows gas to escape at the location where the sampling line exits the mask; (27) significant leaks are problematic as they decrease CO₂ elimination and ETCO₂ values. (30) Despite this, due to anecdotal evidence, some EMS education sources recommend using the NC sampler for capnography during CPAP; (31–33) and EMS systems have already added this recommendation to their protocols. (34) Thus, in this article, the efficacy of monitoring capnography during prehospital CPAP will be analyzed on three simulated patients using a Human Patient Simulator (HPS). To overcome the issue of breaking the seal between the CPAP mask and the patient’s face, this study will introduce a novel sampler—called the CPAP-Capnography Adapter (CCA)—and compare its performance to the NC. Overall, this article will investigate if applying a CPAP mask while monitoring capnography with either an NC or the novel CCA sampler alters the capnogram, ETCO₂ readings, or respiration rate.

Materials and Methods

CPAP-Capnography Adapter (CCA) Design Process & Manufacturing

A novel method for measuring capnography during CPAP was invented and tested alongside the nasal-oral cannula method (see Fig. 2). The new method involved attaching an elbow-shaped adapter to a prehospital CPAP setup between the mask and flow regulator. To ensure an air-tight seal, flat ring seals were created out of duct tape and applied to each end of the elbow (functioning similarly to square profile O-rings). A nasal sampling element was fed through this adapter and into the mask, allowing for sidestream capnography sampling. To prevent the nasal sampler’s tubing from getting crimped by the elbow as it passed into it, a short internal guide tube was added to provide greater support. The nasal sampler base slid onto existing CapnoLine® tubing containing a standard orange capnography plug; the sampler fit
snugly via friction but was further secured via duct tape. Combined, this setup is referred to as the CPAP-Capnography Adapter (CCA).

Figure 2. CPAP-Capnography Adapter (CCA) manufacturing & experimental setup. (A) Stereolithography (SLA) 3D printing process used for the CCA. (B) Labeled diagram of CCA. (C) Labeled diagram of CCA integrated into a prehospital CPAP setup. (D) Example of CAE Healthcare Human Patient Simulator (HPS) output display, including ETCO$_2$ set-point, modeled respiration rate (RR), modeled SpO$_2$, modeled heart rate (HR), and modeled blood pressure (BP). (E) CCA applied to the HPS without a CPAP mask. (F) CCA integrated into a prehospital CPAP setup and applied to the HPS.

The CCA elbow and nasal sampler were designed using OnShape Computer-Aided Design (CAD) software and printed with a Formlabs Form 2 stereolithography (SLA) 3D printer (see Fig. 2A). Engineering sketches are provided in Fig. S1. Formlabs Clear V4 resin was selected as the elbow material due to its translucency and rigidity. Formlabs Elastic 50A resin was selected as the nasal sampler material due to its translucency and flexibility, the latter property allowing for the accommodation of various nose sizes. After printing, an isopropyl alcohol (IPA) bath was used to vigorously wash parts for 15 minutes. Then, an IPA-filled syringe was used to clear excess resin from small channels, and the parts were soaked in a clean IPA bath for an additional 15 minutes. Next, an ultraviolet (UV) light & heat cure was conducted according to the manufacturer’s guidelines (power density: 1.25 mW/cm2; LED centered at 405 nm; 60 °C for 20 minutes for Elastic 50A and 60 minutes for Clear V4). (35–37)

Materials

A stock CPAP kit containing a Pulmodyne O$_2$-MAX™ and Curaplex O$_2$ Max Trio BiTrac ED Mask was used. For all conditions, CPAP tubing was fully contracted to standardize dead space, and the PEEP valve was set to 10 cm H$_2$O. The following nasal-oral cannula was used:
Covidien Smart CapnoLine® Plus O₂, Adult/Intermediate CO₂ Oral/Nasal Sampling Set with O₂ Tubing. For their respective trials, the CCA and NC were plugged into the capnography port on a Physio-Control LIFEPAK-15 monitor to obtain capnograms and ETCO₂ values. As the HPS is meant to accurately model a variety of respiratory parameters, ETCO₂ and respiration rate could not be directly manipulated to test the full range of expected values for each because this could result in a biologically inaccurate combination of parameters. Therefore, pre-programmed patient respiratory profiles were used for testing. For each condition, the HPS was kept in the supine position, and CCA and NC positioning were kept constant.

Experimental Design

The following six configurations were tested: (1) NC with no CPAP mask nor O₂ flowing, (2) CCA with no CPAP mask nor O₂ flowing, (3) NC with CPAP mask but no O₂ flowing, (4) CCA with CPAP mask but no O₂ flowing, (5) NC with CPAP mask and O₂ flowing, and (6) CCA with CPAP mask and O₂ flowing. Groups 1 and 2 are controls for evaluating the effects of CPAP mask dead space (Groups 3 & 4) and CPAP therapy (Groups 5 & 6) on capnography monitored via NC and CCA, respectively. These groups are summarized in Table 1. Images of the setup for Groups 1 & 3 are provided in Fig. 1A and 1C, respectively. Images for Groups 2 & 4 are provided in Fig. 2E and 2F, respectively. Groups 3 & 5 share the same setup as each other, as do Groups 4 & 6.
Table 1. Experimental groups used for testing on HPS.

<table>
<thead>
<tr>
<th></th>
<th>No CPAP mask, no O2 (“no mask”)</th>
<th>CPAP mask, no O2 (“mask with no O2”)</th>
<th>CPAP mask with O2 (“mask with CPAP”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>Group 1</td>
<td>Group 3</td>
<td>Group 5</td>
</tr>
<tr>
<td>CCA</td>
<td>Group 2</td>
<td>Group 4</td>
<td>Group 6</td>
</tr>
</tbody>
</table>

Groups 1-6 were each tested on three HPS standardized simulated patients: Stan D. Ardman II (Healthy Adult Male), Grandma Smokey (COPD Patient), & Kenton Parkers (CHF & COPD Patient); these profiles have set-point ETCO$_2$ values of 33 mmHg, 22 mmHg, and 34 mmHg, respectively.

For conditions 1-6, data were obtained from three standardized simulated patients from the HPS system: Stan D. Ardman II (Healthy Adult Male), Grandma Smokey (COPD Patient), & Kenton Parkers (CHF & COPD Patient). From their pre-programmed respiratory profiles, their ETCO$_2$ targets were 33 mmHg, 22 mmHg, and 34 mmHg, respectively. The HPS continuously adjusts modeled vital signs to remain consistent with this ETCO$_2$, as well as the rest of its pre-programmed patient profile. As conditions 1-6 were tested for all three patients, 18 total trials were conducted. For each trial, the ETCO$_2$ value and respiration rate were recorded from the LIFEPAK-15 monitor’s screen for 20 consecutive breaths. Simultaneously, the following modeled vital signs were recorded from the HPS display at the exact timestamps of the same 20 breaths: respiration rate, SpO$_2$, heart rate, and blood pressure. Results for the latter three vital signs are presented in the Supplementary Information (Fig. S4-5). To facilitate data collection, videos were taken of both displays, timestamps were lined up, and values were entered into a spreadsheet. Trials were spaced one minute apart to allow for the modeled vital signs from the HPS to stabilize in response to changes.
Statistical Analysis

For all tests, α was chosen to be 0.05. As each simulated patient had a different set-point ETCO$_2$, measured ETCO$_2$ values at each breath were normalized by dividing by their respective target ETCO$_2$. The same normalization process was done for the modeled vital signs except RR. Unlike ETCO$_2$, the HPS displayed the true RR value for each breath, so the true and measured values were used to calculate RR percent error. The average normalized ETCO$_2$, RR percent error, and modeled vital signs for breaths 1-20 in each condition were used for analysis.

Normalized ETCO$_2$ and RR percent error were associated with the following nominal independent variables: capnography monitor (NC or CCA), mask condition (no mask, mask with no O$_2$, and mask with CPAP), and patient (Stan D. Ardman II, Grandma Smokey, & Kenton Parkers). In accordance with the current literature,(38–40) a mixed effects model was constructed with “patient” as a random effect. Using the mixed model (multilevel linear model) feature within JMP Pro 17, the full factorial of capnography monitor, mask condition, and patient were selected as model effects; all terms containing “patient” were marked as random effects. The t-statistics were then used to obtain specific p-values.

Results

For all three patients during the experiment, it was noted that a leak was audible and could be felt by the experimenter’s hands around the sides of the CPAP mask for the NC conditions when oxygen was administered (Group 5); no such leaks were noticed for the corresponding CCA condition (Group 6).
Capnography Waveform

Representative capnography waveforms are depicted in Fig. 3. Within each trial, waveform shape remained consistent across the 20 recorded breaths. It was noted that the waveforms obtained via the CCA appeared to consistently show more dead space compared to the NC capnograms, indicated by the waveform not fully returning to 0 mmHg during each inhalation. This was most noticeable in the “no mask” and “mask with no O₂” conditions. These same capnograms appeared to have increased α- and β-angles compared to those from the NC, with bilateral blunting of the waveforms.

Figure 3. Representative capnography waveforms across all experimental conditions. Capnography monitor and mask condition are labeled. Waveforms remained consistent within each trial for all trials. A small increase in baseline ETCO₂ (indicating dead space) is present for “mask with no O₂”; “mask with CPAP” waveforms have diminished magnitudes and increased β-angles. Images presented are from the “Grandma Smokey” (COPD Patient) simulated patient profile.

Across both the NC and CCA trials, waveform shape remained similar when transitioning from the “no mask” to the “mask with no O₂” condition, but a small increase in dead space was noted. Note that the CPAP setup allowed for exhaled gas to escape through a valve near the PEEP regulator when oxygen was not flowing, reducing CO₂ rebreathing; the high flow rate during CPAP forces this valve closed to prevent leaks while administering the therapy. The “mask with CPAP” waveform consistently had a lower magnitude and sharper peak compared to the “no mask” and “mask with no O₂” conditions. Specifically, the expiratory upstroke (phase II) appeared relatively unaffected, but the alveolar plateau (phase III) and inspiratory downstroke (phase IV/0) were severely blunted, with β-angles appearing to be around 180 degrees. These morphological changes were present when administering CPAP in all three patients. There were no noticeable consistent differences between NC and CCA waveforms when CPAP was being administered.
Effects on End-Tidal CO2

Box plots of “ETCO2 normalized to patient” compared against “capnography monitor” and “mask condition,” as well as against each of these variables individually, are depicted in Fig. 4. The same plots for respiration rate percent error are shown in Fig. 5. Capnography monitor was not found to significantly affect normalized ETCO2 (NC: 1.005, CCA: 0.897; p = 0.25) nor RR error (NC: 9.423%, CCA: 0.690%; p = 0.40), indicating no difference between ETCO2 and RR values obtained from a conventional NC versus the CCA device proposed here. The interaction between mask condition and capnography monitor was also found to have no significant effect on normalized ETCO2 (p = 0.69), but mask condition alone did have a significant effect (p = 0.0308). Specific model parameter t-statistics revealed that the “mask with CPAP” normalized ETCO2 was significantly less than that of the “no mask” condition (0.810 vs. 0.983, respectively; p = 0.0145); moreover, the “mask with no O2” normalized ETCO2 was significantly greater than that of the “no mask” condition (1.060 vs. 0.983, respectively; p = 0.0328).

Figure 4. End-tidal CO2 (ETCO2) normalized to target among all conditions (A), by capnography monitor (B), and by mask condition (C). No differences were found for ETCO2 measured via NC versus CCA. Application of CPAP mask without O2 increased ETCO2, and CPAP decreased ETCO2. * indicates p < 0.05 (p-values obtained from t-statistic from mixed/multilevel-linear model). Boxplots reflect data prior to taking 20-breath averages.

Effects on Respiration Rate

RR error was 0.955% for “no mask”, 0.537% for “mask with no O2”, and 13.677% for “mask with CPAP”; mask condition and the interaction between mask condition and capnography monitor were both found to have no significant effect on RR percent error (p = 0.37 & 0.44,
respectively). A single outlier caused the high RR error for “mask with CPAP” and “NC” (13.677% and 9.423%, respectively); for the Group 5 (NC; mask with CPAP) condition for the patient “Kenton Parkers” (CHF & COPD Patient), it was noted that an artifact on the capnography waveform caused the LIFEPAK-15 monitor to double the measured respiration rate. This greatly increased the mean and variance in the Group 5 data, but none of the fixed effects were found to significantly influence RR percent error—likely as this artifact was not observed in the other simulated patients or trials.

Figure 5. Normalized respiration rate (RR) percent error among all conditions (A), by capnography monitor (B), and by mask condition (C). No significant differences were found in RR percent error between any of the conditions; a single trial (Group in “Kenton Parkers”) caused the extreme outliers visible for NC and CCA. * indicates p < 0.05 (p-values obtained from t-statistic from mixed/multilevel-linear model). Boxplots reflect data prior to taking 20-breath averages.

Discussion

Recall that this study was primarily concerned with elucidating any effects caused by mask condition (no mask, mask with no O₂, and mask with CPAP) or capnography monitor (NC or CCA) on capnogram shape, ETCO₂ values, and respiration rate.

Capnography Waveform

The main difference between the NC and CCA waveforms was the observed increase in dead space—indicated by the capnogram not returning to baseline during inhalation—and altered morphology when using the CCA. This could be due to CO₂ accumulating in the sampling line and not being fully able to escape; however, the measured ETCO₂ value did not trend upward and was stable throughout all trials, meaning exhalations did escape to some extent. Further
testing will be needed to determine which component of the CCA’s design caused this artifact. A Computational Fluid Dynamics (CFD) model could be helpful in analyzing differences in oxygen flow through the NC versus the CCA during CPAP. However, the CCA is only meant to be used during CPAP, and it produced nearly identical waveforms to the NC in the CPAP trials. Thus, the altered morphology of the CCA waveforms in the “no mask” and “mask with no O₂” conditions compared to the corresponding NC waveforms has little impact in context. Similarly, the slight increase in dead space and ETCO₂ value noted upon mask placement did not significantly alter waveform shape and is consistent with a 2017 study by Phillips et al. that showed that using an NC sampler placed beneath a standard oxygen mask causes an increase in ETCO₂ due to rebreathing.(41) The fact that CPAP consistently blunted the capnograms from both the NC and CCA, though, is more concerning.

In addition to ETCO₂ value, capnogram morphology is critical for identifying possible causes of breathing difficulties as well as response to therapy. Typically, the slope of the phase III alveolar plateau is an indirect indicator of V/Q status in the lungs.(21) A prolonged phase II with an increase in α-angle suggests bronchospasm or airway obstruction; an increased β-angle might indicate rebreathing.(21) Conclusions such as these based on capnogram morphology cannot be made during CPAP, as it is unknown if they will still be visible on the waveform. Thus, prehospital medical providers cannot rely on their current understanding of waveform morphology to assess a patient’s breathing during CPAP. Additional research will be needed to investigate ways of interpreting differences in waveform shape during CPAP between healthy patients and those with various respiratory conditions.

Capnography Sampler Effect on ETCO₂ and Respiration Rate

Overall, no differences were found between ETCO₂ and RR percent error when measuring capnography via a traditional nasal-oral cannula (NC) or the novel CPAP-Capnography Adapter
The observation that a leak between the face and mask was present during CPAP in all NC trials and absent in all CCA trials indicates that the CCA met its design objectives. While the NC did have a higher RR error than the CCA (9.423% vs. 0.690%), this can be attributed to a single trial (Group 5 for the patient “Kenton Parkers”) where an artifact caused the LIFEPAK-15 to record a doubled respiration rate. This artifact was not noted in any other trials, so its effect was not statistically significant. Additional experiments would be needed to determine if the artifact is truly associated with the use of the NC or if it originates from some other source. Note that RR error was consistently 0% for the vast majority of trials, so values that deviated from this were marked as outliers in many of the conditions, resulting in several of the boxplots in Fig. 5 showing horizontal lines instead of a traditional box.

Mask Condition Effect on ETCO$_2$ and Respiration Rate

Administering CPAP significantly reduced the measured ETCO$_2$ (0.810) when compared to “no mask” (0.983), which is consistent with the waveform observations. While a reduction in ETCO$_2$ could indicate reduced PaCO$_2$, the fact that the HPS did not model ETCO$_2$ and instead had a set target value indicates that the measured ETCO$_2$ did not accurately reflect the mannequin's breathing profile during CPAP. Both capnography monitors recorded ETCO$_2$ values within five percent of the HPS’s target ETCO$_2$ in the control “no mask” condition (NC: 1.4% higher; CCA: 4.89% lower), so their measurement of the partial pressure of CO$_2$ at the HPS’s nares was relatively accurate. Consequently, the notable decrease in ETCO$_2$ during CPAP indicates that the CO$_2$ at the nares was diluted by the high oxygen flow rate (which can exceed 100 L/min).(42) Thus, the reduction in measured ETCO$_2$ is not an artifact of the capnography samplers themselves. As a result, this ETCO$_2$ likely would no longer correlate with PaCO$_2$ in a human subject. Further evidence that the functionality of the capnography samplers is not compromised by CPAP is the fact that no differences in RR percent error were found between the “no mask”,
“mask with no O₂”, and “mask with CPAP” conditions—indicating that the capnography samplers obtain sufficient gas samples to record measurements during all mask conditions. Therefore, healthcare professionals should use ETCO₂ values obtained during CPAP with caution, as a decreased ETCO₂ value might not indicate a true decrease in a patient’s PaCO₂.

Additional Modeled Vital Signs

Besides RR, several additional modeled vital signs were recorded from the HPS’s display during the experiment: SpO₂, heart rate (HR), and blood pressure—the latter of which was converted to an estimated mean arterial pressure (MAP) using: MAP = P\text{systolic}/3 + 2*P\text{diastolic}/2.(43)

See Fig. S4 for SpO₂ results, and Fig. S5 for HR and MAP results. The magnitude of the HR and MAP differences within each simulated subject prior to normalization was very low (+/-1 bpm, and +/- 2 mmHg, respectively), so no meaningful conclusions were drawn from them. Statistical standardization was performed on the 20-breath average SpO₂ from each trial. Only mask condition was found to influence SpO₂, with SpO₂ increasing during CPAP compared to “no mask” and “mask with no O₂” (p = 0.0110). This change aligns with the expected physiological response, but the magnitude of the differences was very low within each subject prior to normalization/standardization (+/- 1%). The overall lack of variation in the HPS’s vital signs throughout the experiments is due to the mannequin’s adherence to the pre-programmed simulated patient profiles. Note that the aforementioned findings regarding capnogram shape, ETCO₂, and RR percent error do not depend on the HPS’s response to the therapy.

Relationship with Previous Studies

In 2012, Razi et al. showed good correlation between PaCO₂ and ETCO₂ obtained during mechanical ventilation (including CPAP) in a hospital setting. However, these patients were intubated and monitored in a mainstream manner.(44) In 2015, Piquilloud et al. used an
NC sampler to monitor capnography in ICU patients receiving non-invasive ventilation (NIV), and found that ETCO$_2$ was inadequate to predict both PaCO$_2$ value and variations over time. However, they only included 11 patients in their study, and used bi-level positive airway pressure (BiPAP) instead of CPAP. A much larger study of 154 patients was published in 2021 by Uzunay et al. that showed a significant difference between ETCO$_2$ and PaCO$_2$ during both non-invasive BiPAP and CPAP in the emergency department. However, a positive moderate correlation was present, so the authors stated that capnography monitoring during NIV may still be beneficial for predicting PaCO$_2$ changes in response to therapy—allowing for a quicker decision to be made regarding switching to intubation. The mainstream capnography monitoring method they used is not compatible with prehospital CPAP nor existing EMS cardiac monitors, though. Most recently, Sakuraya et al. showed in 2022 that PaCO$_2$ and ETCO$_2$ correlate well during CPAP when measured via an NC in a sidestream manner, and correlate even better when measured in a mainstream manner. Their study was conducted on 60 recently extubated ICU patients. The authors concluded that the results of previous studies monitoring ETCO$_2$ during NIV were mixed likely due to physiological issues and shortcomings of exhalation sample collection.

None of the existing studies described changes to waveform morphology nor used a prehospital CPAP system. Further, Sakuraya et al. is the only one that used a capnography sampler compatible with common EMS cardiac monitors during non-invasive CPAP. All the studies presented here assessed the correlation of PaCO$_2$ to ETCO$_2$ in human subjects, and they achieved mixed results likely due to physiological factors and variations in methodology. Our study complements this work by showing that—with physiological factors and variation removed through the use of an HPS—ETCO$_2$ value and capnogram morphology are directly compromised by CPAP itself. We did not assess PaCO$_2$; however, we show that the ETCO$_2$ value and capnogram shape should not be interpreted with current protocols. Additional research into interpreting the value and waveform when taken during CPAP is needed.
Limitations and Future Directions

The primary limitation of this study is that it was conducted on simulated patient profiles on an HPS. The CAE Healthcare HPS is extremely accurate at mixing respiratory gasses and mimicking human breathing, so it is commonly used in anesthesia training. Using an HPS rather than human subjects allows for greater control of confounding variables, facilitates rapid data collection, and relieves the ethical concerns (and IRB approval) of testing a novel capnography sampler on patients in respiratory distress who are receiving CPAP. However, it is not a perfect substitute for testing on human subjects. For example, it omits important factors such as emotions, which are known to significantly affect respiration rate. Due to this, future controlled clinical trials might analyze ETCO₂, respiration rate, and other vital signs on healthy voluntary subjects under the same six conditions used here. It would be beneficial for PaCO₂ to be monitored during these trials so that the correlation between ETCO₂ and PaCO₂ could be analyzed under the “no mask”, “mask with no O₂”, and “mask with CPAP” conditions. A controlled trial like this would provide far greater clarity than the existing observational studies, which have yielded largely mixed results regarding ETCO₂’s correlation with PaCO₂ during NIV. Such experiments are outside the scope of this article but could strengthen the results presented here.

Another factor that could be analyzed in a future publication is capnography sampling location. This study monitored nasally with the CCA, and oro-nasally with the NC. Patients who are candidates for CPAP often breathe through their mouths, then through their noses as their condition improves. A comparison of sampling nasally vs. orally vs. both was not conducted due to the limitations of the HPS (the nares and mouth are connected and are not able to model differences in breathing nasally vs. orally).

Finally, while it is evident that ETCO₂ and capnogram shape are significantly altered by CPAP, this does not mean that capnography is a useless tool for patients receiving the therapy.
It would be beneficial for future studies to examine if there are consistent changes that occur to the capnogram and ETCO$_2$ value when a patient’s condition is improving. If so, then healthcare providers could still use capnography to monitor the effectiveness of CPAP but might require additional training on interpreting the altered waveform morphology and ETCO$_2$ value. This type of analysis was not possible here as the HPS had an internal PaCO$_2$ set-point for each patient profile, but investigating this in human subjects would be very informative.
Conclusions

CPAP and capnography have many overlapping indications, but combining their use in the prehospital setting has not been well studied. Despite this, some EMS education sources recommend using an NC for capnography during CPAP. Previous studies have investigated the correlation of ETCO₂ to PaCO₂ during NIV in the hospital setting with conflicting results, likely due to mixed methodologies and physiological factors. Using an HPS to standardize confounding variables, we assessed CPAP’s effect on capnogram morphology, ETCO₂, and respiration rate accuracy. In addition to using a conventional NC, we introduced a novel capnography sampler (the CCA) that overcame the NC’s issue of breaking CPAP’s mask-face seal. The NC and CCA were equally accurate for measuring respiration rate, and both maintained this accuracy with and without CPAP; the two capnography samplers also did not produce differences in ETCO₂ measurements. However, placing a mask without O₂ flowing on the HPS increased ETCO₂, and administering CPAP decreased ETCO₂. As this occurred while the HPS was running a pre-programmed respiratory profile with set-point ETCO₂ and PaCO₂, the results indicate that measuring exhaled CO₂ is not an accurate way to reflect patient breathing during CPAP. The capnography waveform was also compromised by CPAP, limiting its potential as a diagnostic tool. Therefore, healthcare professionals should interpret ETCO₂ values and capnogram shape with caution while administering CPAP.

Acknowledgments

The authors thank Steve Wilson for generously providing equipment that was vital for data collection. This work was funded by the Abrams Scholarship from the UNC/NCSU Joint Department of Biomedical Engineering, as well as significant in-kind support from the UNC School of Nursing Simulation Center, UNC/NCSU Joint Department of Biomedical Engineering, and Durham Technical Community College EMS Education program.
References

Supporting Information

Figure S1. Engineering sketches of Capnography-CPAP Adapter (CCA). Multiple isometric, side, top, and bottom views are depicted for both the elbow adapter and nasal sampler portions. All necessary dimensions for replication are labeled (in mm and degrees); sharp edges were filletted.

Figure S2. SpO₂ standardized to patient among all conditions (A), by capnography monitor (B), and by mask condition (C). Capnography monitor did not affect SpO₂; applying CPAP significantly increased SpO₂ compared to “no mask”. Mixed model approach did not converge, so SpO₂ was standardized to remove the random effect of “patient”. Then, MANOVA was run; no significant interactions were found, so p-values were obtained from unpaired two-tailed t-tests. * indicates p < 0.05. Boxplots reflect data prior to taking 20-breath averages.

Figure S3. Normalized heart rate (HR) and mean arterial pulse (MAP) among all conditions (HR: A; MAP: D), by capnography monitor (HR: B; MAP: E), and by mask condition (HR: C; MAP: F). HR was higher for CCA trials compared to the NC; MAP was reduced in the CPAP trials compared to “no mask”. Note that the observed differences, prior to normalization, were +/- 1 bpm and +/- 2 mmHg for HR and MAP, respectively. * indicates p < 0.05 (p-values obtained from t-statistic from mixed/multilevel-linear model). Boxplots reflect data prior to taking 20-breath averages.
Elbow Adapter:

Nasal Sampler:

*Dimensions are in mm and degrees
Figure A shows box plots comparing standardized SpO2 levels under different conditions: no mask, mask with no O2, and mask with CPAP. The plots are categorized by NC and CCA, with the box representing the interquartile range and the whiskers showing the range of data points.

Figure B presents another set of box plots comparing standardized SpO2 levels using a Capnography Monitor versus CCA, with the test showing no significant difference (ns).

Figure C displays box plots for SpO2 levels under three conditions: no mask, mask with no O2, and mask with CPAP, with the test indicating a significant difference (*).