GLP-1 enhances beta-cell response to protein ingestion and bariatric surgery amplifies it

Author names and affiliations

GLP-1 enhances beta-cell response to protein ingestion and bariatric surgery amplifies it

Maria Rayas*, Amalia Gastaldelli*, Henri Honka, Samantha Pezzica, Fabrizia Carli, Richard Peterson, Ralph DeFronzo, Marzieh Salehi

1 Department of Pediatrics, University of Texas Health at San Antonio, San Antonio, TX, United States
2 Division of Diabetes, University of Texas Health at San Antonio, San Antonio, TX, United States
3 Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
4 Department of Surgery, University of Texas Health at San Antonio, San Antonio, TX, United States
5 STVHCS, Audie Murphy Hospital, San Antonio, TX, United States

*Authors contributed equally

Abstract

Objective: Protein ingestion stimulates β-cell secretion and alters glucose flux. Enhanced action of glucagon-like peptide 1 (GLP-1) and increased plasma glucose excursion contribute to prandial hyperinsulinemia after gastric bypass surgery (GB) and sleeve gastrectomy (SG). We examined the contribution of endogenous GLP-1 to glucose kinetics and β-cell response to protein ingestion under basal glucose concentrations in humans, and whether these responses are affected by rerouted gut after GB or SG.

Design: Glucose fluxes, insulin secretion rate (ISR), and incretin responses to a 50-gram oral protein load were compared between 10 non-diabetic individuals with GB, 9 matched subjects with SG and 7 non-operated controls (CN) with and without intravenous infusion of exendin-(9-39) [Ex-9], a specific GLP-1 receptor (GLP-1R) antagonist.

Results: Blocking GLP-1R increased the plasma glucose concentration before and after protein ingestion in all 3 groups (p<0.05) and decreased β-cell sensitivity to glucose in the first 30 minutes of protein ingestion (p<0.05). Reduction in the prandial ISR by Ex-9 infusion, however, only was observed in GB and SG (p<0.05 for interaction) and not in controls. Also, GLP-1R blockade increased post-protein insulin action in GB and SG, but not CN (p=0.09 for interaction). Endogenous glucose production (EGP) during the first 60 minutes after protein ingestion was increased in all 3 groups but EGP only was accentuated in GB by Ex-9 infusion (p<0.05 for interaction).

Conclusion: These findings are consistent with both a pancreatic and extrapancreatic role for GLP-1 during protein ingestion in humans, and GLP-1 actions are exaggerated by bariatric surgery.

Keywords: GLP-1; insulinotropic effects of protein; gastric bypass; sleeve gastrectomy; glucagon; insulin action

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
1. Introduction

The weight-loss independent glycemic effect of gastric bypass surgery (GB) and sleeve gastrectomy (SG) has been partly attributed to altered prandial nutrient flux and metabolism mediated by enhanced secretion of insulinotropic gut factors, mainly glucagon-like peptide 1 (GLP-1)[1-4]. GLP-1 is a product of the preproglucagon gene, mainly secreted by intestinal L-cells in proportion to amount of ingested nutrient and acts through GLP-1 receptor (GLP-1R) expressed in various tissues including islet cells and specific brain regions [5]. Using the infusion of exendin-(9-39)[Ex-9] a potent GLP-1R antagonist, during a mixed meal or oral glucose ingestion, where glycemia is above the baseline concentration, we and others have shown that endogenous GLP-1 has insulinotropic (stimulating insulin) and glucagon suppressive properties in healthy individuals [6, 7] and in patients with T2D [8]. The regulatory role for GLP-1 in the insulinotropic effect of protein ingestion, when the glycemic concentration is maintained at the basal level, is completely unknown.

We and others have shown that GLP-1R blockade has a greater effect to reduce the prandial insulin secretory response after gastric bypass (GB)[2, 4, 9-11] or sleeve gastrectomy (SG)[1], where both prandial GLP-1 secretion and glycemic excursion are augmented. Further, the increased insulinotropic effect of GLP-1 after GB is exaggerated in a discrete population suffering from the syndrome of hyperinsulinemic hypoglycemia and blocking GLP-1 action can correct hypoglycemia in affected patients, indicating that enhanced GLP-1-stimulated insulin secretion is a pathogenic factor in post-GB hypoglycemia. By choice, patients who undergo GB or SG tend to eat smaller, more frequent non-fat meals [12], which also may contribute to their altered glucose regulation and entero-insular function. Patients with GB-related hypoglycemia are, in fact, instructed to be even more restricted, with frequent meals and added protein to all meals or even to take protein alone [13]. The effect of protein ingestion on glucose kinetics and islet-cell secretory response mediated by GLP-1 after bariatric surgery remains unexamined.
We hypothesized that endogenous GLP-1 contributes to the insulinotropic effect of protein ingestion, independent of the plasma glucose or GLP-1 concentration, and that the prandial glycemic and β-cell effects of endogenous GLP-1 are augmented after GB and SG given their enhanced nutrient flux. To test this hypothesis, we examined the acute effect of GLP-1R blockade by administration of intravenous Ex-9 on glucose fluxes and islet-cell (insulin and glucagon) and incretin hormonal secretory responses to oral protein challenge in 3 groups of non-diabetic subjects: GB, SG, and non-operated controls (CN).

2. Material and methods

2.1 Subjects (Table1)

Ten non-diabetic individuals with previous history of GB and 9 BMI- and age-matched subjects with SG and 7 healthy non-operated controls (CN) were consecutively recruited based on their response to our enrollment effort. None of the participants had diabetes or renal dysfunction or liver disorder. The control subjects had no personal or family history of diabetes and had a normal oral glucose tolerance test. Subjects were weight stable for at least 3 months prior to enrollment. The Institutional Review Board of the University of Texas Health at San Antonio approved the protocol (HSC20180070H) and all subjects provided written informed consent before participation.

2.2 Peptides

Synthetic exendin-(9 –39) (CS Bio, Menlo Park, California) was greater than 95% pure, sterile, and free of pyrogens. Lyophilized peptide was prepared in 0.25% human serum albumin on the day of study. The use of synthetic exendin-(9-39) is approved under the U.S. Food and Drug Administration Investigational New Drug 123,774.

2.3 Experimental procedures
Subjects were instructed to eat a weight-maintaining diet containing 150-200 grams of carbohydrates per day and not to engage in vigorous physical activity for 3 days prior to each study visit. Studies were performed at the Bartter Clinical Research Unit at Audie Murphy VA Hospital in the morning after an overnight fast. Body composition was assessed using dual-energy X-ray absorptiometry, and waist circumference was measured. Intravenous catheters were placed in each forearm for the blood withdrawal and the infusion of study drugs; the arm used for blood sampling was continuously warmed using a heating pad to arterialize the venous blood. Blood samples were drawn from -130 to 180 minutes; the plasma was separated within 60 minutes for storage at -80°C until assay.

At -120 minutes, a primed-continuous infusion of [6,6-2H2] glucose (28 µmol/kg prime and 0.28 µmol/kg/min constant) was initiated and continued for the duration of the study as previously described [18]. At -60 minutes, subjects either received a primed continuous infusion of Ex-9 (7,500 pmol/kg prime and 750 pmol/kg/min constant) or saline for the remainder of the study [18]. At time 0 min, 50 g whey protein mixed with 1 g of acetaminophen was consumed orally within 10 min. The order of the studies was performed in random fashion.

2.4 Assays

Blood samples were collected in EDTA tubes for measurement of insulin, acetaminophen, glucose and in aprotinin/heparin/EDTA for assay of C-peptide, glucagon, GLP-1, and GIP [34]. Plasma glucose was determined using Analox GM9 Glucose Analyzer (Analox Instruments, Stourbridge, UK). Insulin (DIAsource, Neuve, Belgium), C-peptide and glucagon (Millipore, Billerica, MA) were measured with commercial radioimmunoassay kits. The Millipore glucagon RIA kit has a cross-reactivity of <2% with oxyntomodulin and glicentin with a sensitivity of ~10 pmol/l [35]. GIP was measured using commercial Multiplex ELISA (Millipore, Billerica, MS), and GLP-1 using ELISA (Mercodia, Uppsala, Sweden) according to the manufacturers’ specifications. Tracer enrichment was measured by GC-MS (5975, Agilent, Santa Clara, CA) as
previously described [18, 36, 37] utilizing the same derivatization method used for glucose tracers and monitoring peak of mass 200-202. Acetaminophen was measured by GC–MS using acetaminophen (acetyl-13C2, 15N) as internal standard (Cambridge Isotope Laboratories, Boston, USA) free fatty acid (FFA) was determined by calorimetric assay (Wako Chemicals, Richmond, VA, USA).

2.5 Calculations

Fasting plasma glucose and hormone concentrations represent the average of 2 samples drawn before -120 min, and the pre-meal values represent the average of 2 samples drawn before the test meal. Insulin secretion rates (ISRs) were calculated from C-peptide concentrations using deconvolution with population estimates of plasma C-peptide [38]. Beta-cell glucose sensitivity was calculated as the slope of ISR and blood glucose concentration for the first part of protein absorption, as ISR rose to peak value. Beta-cell sensitivity to GLP-1 was measured as the slope of each subject’s plot of ISR (from premeal to peak values) versus corresponding plasma concentration of GLP-1 [39].

Rates of total glucose appearance (Ra), reflecting endogenous glucose production (EGP), and total glucose disappearance (Rd) were derived from plasma [6,6-2H2]glucose enrichments as previously described using the Steele equation [18, 36]. Metabolic clearance of glucose (MCG) was measured as Rd/plasma glucose [24, 37].

Using the trapezoidal rule, the prandial incremental area under the concentration curve (AUC) of islet-cell and gut hormones, as well as glucose fluxes, was calculated from 0-60 and 0-180 minutes to examine the early and total responses, respectively, given the altered prandial response pattern after bariatric surgery. Pre- and post-prandial insulin sensitivity were calculated as the ratio of premeal MCG/insulin and the prandial total AUC of the MCG/insulin, respectively [24].
Insulin extraction and clearance rates were calculated as previously described [38]. Disposition index was calculated as the product of total AUC ISR and MCG/insulin during the 3 hours after oral glucose ingestion [24, 37]. Antilipolytic effect of insulin was measured as FFA per unit of insulin, i.e., the ratio of premeal free fatty acid (FFA)/insulin and the prandial total AUC of the FFA/insulin, given the linear relationship between the two parameters within insulin range in our experiments[39].

2.6 Statistical Analysis

Data are presented as mean ± SEM. The parameters of interest at baseline and the relative changes in the outcomes from saline to Ex-9 study were compared using ANOVA or Chi-square. The effect of administration of GLP-1R antagonist and the group effect (GB, SG, and CN), as well as their interaction on experimental outcomes, were analyzed using repeated measured ANOVA with post-hoc (Tukey’s) comparisons among the groups. Association among parameters were performed using Spearman correlation. Statistical analyses were performed using SPSS 28 (SPSS Inc., Chicago, IL). The STROBE cross sectional reporting guidelines were used [40].

3. Results

3.1 Subject characteristics (Table 1)

The GB, SG, and CN groups were similar in age, BMI, fat and lean mass, and female to male ratio. While the pre-operative BMI did not differ among GB and SG, % weight loss since surgery was larger in GB than SG. Surgical groups did not differ in pre-op BMI, weight loss and time post-surgery. HbA1c was lower in GB than SG and CN (p=0.05).

3.2 Glucose concentrations

Baseline fasting and premeal glucose concentrations were similar among the groups (Table 2). Protein ingestion slightly raised the average plasma glucose concentration in GB and SG by
0.1±0.05 mmol/l, particularly in the first 60 minutes, but reduced glucose values in controls by 0.1±0.05 mmol/l (Fig.1a; p<0.05).

Blocking GLP-1R similarly increased average plasma glucose concentrations before and after protein ingestion by 5-6% and 10-15%, respectively, in all 3 groups (Fig.1a; p<0.05). However, the early glycemic effect of Ex-9 after protein intake (AUC Glucose₁h) was much more robust in GB and SG compared to non-operated controls (Table 2; p<0.05 for interaction).

3.3 Glucose kinetics

Following an overnight fast, under the steady-state condition, the rate of total body glucose utilization (Rd) equals the rate of endogenous glucose production (EGP), and was similar among GB, SG, and controls (Table 3; Fig.2).

In response to protein ingestion, EGP rose but to a much larger extent in GB and SG than CN (Table 3, Fig.2b; p<0.05). Ex-9 infusion tended to increase the early prandial EGP (AUC EGP₁h) in all 3 groups (Table 3; p=0.07). However, the overall EGP following oral protein (AUC EGP₃h) during Ex-9 studies was increased only in GB and not in SG or CN (Table 3, Fig.2b; p<0.05 for interaction).

Following protein ingestion, in parallel with EGP response, incremental rates of glucose disposal (Rd) were larger in surgical, especially GB, than in CN (Table 3, Fig.2a; p<0.05). Although adjusting Rd for glucose levels, which represents metabolic clearance of glucose (MCG), over the 3 hours from protein intake was not significantly different among 3 groups (Table 3). Blocking GLP-1R augmented AUC Rd₃h or AUC MCG₃h only in GB subjects without any significant effect in SG or CN (Table 3, Fig.2a; p<0.01 for interaction).

3.4 Beta- and alpha-cell responses

Baseline fasting levels of insulin and ISR were similar among the 3 groups and between the two studies (Table 2). During saline studies, protein ingestion increased β-cell secretion (AUC
ISR\textsubscript{3h}) in all 3 groups, but due to a shift of ISR response to the left the AUC ISR\textsubscript{1h} was larger in surgical compared to controls (Table 2, Fig.1b; p<0.05).

Blocking GLP-1R tended to decrease premeal ISR levels in CN but not in GB subjects (relative change in premeal ISR from saline to Ex-9 studies in GB and SG versus CN: 9±4 % and -4±6 % versus -11±8 %, Fig.1b inset; p=0.08). However, postprandial β-cell secretory response was reduced only in surgical subjects by Ex-9 infusion (relative change in AUC ISR\textsubscript{3h} from saline to Ex-9 studies in GB and SG versus CN: - 29±6% and - 27±8% versus 19±13%; Fig.1b inset; p<0.05 interaction). The magnitude of GLP-1 contribution to AUC ISR\textsubscript{3h} was not associated with the size of increased plasma GLP-1 concentrations during control or Ex-9 studies.

Beta-cell glucose sensitivity during the first part of protein absorption, where ISR rose from premeal to peak value, did not differ among surgical and non-surgical controls and similarly diminished in all 3 groups by blocking GLP-1R (Fig.3a; p=0.05). In contrast, disposition index (DI) was significantly larger in GB versus SG or CN during control studies (Fig.3c; p<0.05) but remained unchanged by GLP-1R blockade (Fig.3c).

Beta-cell responsiveness to increasing plasma concentrations of GLP-1 from premeal to peak value during protein ingestion was significantly larger in CN versus GB during saline study (Fig.3b; p<0.05). As expected, blocking GLP-1R markedly decreased the ISR response to increasing plasma GLP-1 concentrations in all 3 groups (Fig.3b; p<0.01).

Baseline and premeal glucagon levels were similar among the 3 groups and between the two studies (Table 2). During saline study, early glucagon response to protein ingestion (AUC Glucagon\textsubscript{1h}) was larger in surgical than CN (p<0.05) with a similar trend noted over 180 minutes (AUC Glucagon\textsubscript{3h}; p=0.08). Adjusting glucagon for corresponding insulin values showed an early reduction of glucagon/insulin ratio within the first 30-60 min in 3 groups with a reversal to premeal values by 3 hours from protein intake (Supplementary.Fig1a). Ex-9 infusion similarly increased plasma concentrations of glucagon after protein ingestion in all 3 groups (Table 2,
Fig. 4a; p<0.05). The difference (Δ) in glucagon/insulin ratio between saline and Ex-9 studies over 3 hours from protein ingestion, however, was insignificant in controls but increased by 3-4-fold in GB- and SG-treated subjects beyond the first hour of protein ingestion (Supplementary Fig1b).

3.5 Insulin action

Before and after protein ingestion insulin action measured by premeal MCG/insulin and AUC MCG/insulin$_{3h}$, respectively, were greater in GB compared to controls (Table 2, Fig. 5b; p<0.05). GLP-1R antagonist had no effect on premeal insulin action but increased prandial TAUC MCG/insulin$_{3h}$ in surgical, particularly in GB subjects compared to controls (Table 2, Fig. 5b; p<0.05).

Insulin action in suppressing FFA at baseline measured by premeal FFA/insulin did not differ among 3 groups (Fig. 5c). Prandial AUC FFA/insulin$_{3h}$, however, tended to be larger in GB than SG or CN (p=0.06) and increased further by Ex-9 infusion in GB subjects compared to GB or CN (Fig. 5c; p=0.07 for interaction).

3.6 Incretin response

Fasting levels of GLP-1 and GIP were similar among 3 groups. Ex-9 infusion increased premeal concentrations of GLP-1 but not GIP (Table 2). In control condition, GLP-1 secretory effect of protein consumption was much larger in surgical than controls (Table 2; Fig. 4b). However, protein ingestion similarly stimulated GIP secretion across the groups (Table 2; Fig. 4c). Ex-9 infusion increased prandial GLP-1 concentrations (Fig. 4b; p<0.05), but decreased GIP secretion in all 3 groups (Fig. 5c; p<0.05).

3.7 Gastric emptying

Time to peak plasma ingested acetaminophen concentration was shorter in GB and SG compared to CN (34±11, 56±21, and 148±17 min in GB, SG, and CN; p<0.001) and C$_{max}$ was
larger in surgical than controls (103±14, 76±9, and 43±4 µmol/L in GB, SG, and CN; p<0.001), but neither was affected by Ex-9 infusion (Supplementary.Fig2).

4. Discussion

The findings reported here, for the first time, demonstrate that insulinotropic effect of protein ingestion in humans are mediated by endogenous GLP-1 and that the rerouted GI anatomy after GB and SG enhances GLP-1-stimulated beta-cell response to protein ingestion. Importantly, in our experiment, beta cell sensitivity to GLP-1 (Fig.3b) and to glucose (Fig.3a) following protein ingestion were markedly reduced by Ex-9, demonstrating a causative role for GLP-1. In addition to the stimulatory effect of endogenous GLP-1 on insulin secretion during protein absorption, we also observed that GLP-1R blockade increased insulin action in skeletal muscle in subjects with prior history of bariatric surgery, particularly after gastric bypass (Fig.5b). GLP-1-induced insulin secretion was not correlated with prandial plasma concentration of GLP-1 that mainly reflects intestinally produced peptide. Together, these observations in the context of recent clinical [14, 15] and preclinical studies[16, 17], are consistent with a model of non-endocrine effect of GLP-1 mediated by either CNS regulation of glucose-stimulated insulin secretion and glucose flux or paracrine regulation of beta-cell response or both in response to acute stimulus of orally ingested protein. Our results also indicate that rerouted gut after bariatric surgery, particularly gastric bypass, alters both pancreatic and extrapancreatic GLP-1 action during protein intake, where glucose concentration is maintained at basal level.

Using Ex-9, we [7, 8] and others [6] have shown that endogenous GLP-1 in humans with and without diabetes contributes to beta-cell secretory response to oral glucose or mixed meal ingestion. Further, rerouted GI anatomy after GB [2, 4, 9-11, 18] or SG [1] increases prandial GLP-1-stimulated insulin secretory response in these cohorts. However, little is known about the glucose-dependency of insulinotropic effect of GLP-1 in the fed state in humans with or without bariatric surgery.
The present study was designed to examine the role of endogenous GLP-1 on glucose kinetics and the insulinotropic effect of protein ingestion where glycemic concentrations are maintained at basal values and determine whether GB exaggerates beta-cell or glycemic effects of GLP-1 during protein intake, as well as to evaluate the differences between GB and SG on this outcome. Whey protein was used given its potency on the insulin response compared to other protein-containing compounds [19, 20].

In healthy humans, insulin secretion increases dose-dependently in response to enteral [20, 21] or parenteral amino acid administration [22] while glucose concentration declines or remains at basal values, indicating that amino acids can directly stimulate insulin secretion. Although, a previous observation [23] that oral ingestion versus IV infusion of amino acid mixture elicits a much larger insulin secretion at matched circulatory levels of amino acids indicates that gut-derived factors also play a role in beta-cell response after protein ingestion. An incretin role for GLP-1, however, was dismissed by this report since plasma concentration of GLP-1 remained unchanged after amino acid ingestion [23].

Blocking GLP-1R in our experiment resulted in a small but significant increase in glucose concentrations during fasting and fed conditions by ~5% and ~10%, respectively, in all 3 groups (Fig.1a inset). The glycemic enhancement in the first 60 min of protein intake, however, was much more prominent in GB and SG than controls (Fig.1a). Prandial glycemic effect of GLP-1R blockade was associated with a similar reduction in beta-cell sensitivity to glucose in the early phase of protein ingestion (Fig.3a), consistent with an incretin role for GLP-1 during protein ingestion in surgical and non-surgical obese subjects alike. Although, the overall beta-cell insulin secretory response to protein intake (AUC ISR3h) was reduced by ~30% in GB and SG and increased by ~20% in controls during Ex-9 infusion despite a similar increase in glucose concentrations (Fig.1b), indicating a larger insulinotropic effect of GLP-1 in GB and SG than controls.
Consistent with prior meal studies[18], we did not find any association between the size of GLP-1-stimulated ISR and plasma levels of GLP-1 after protein intake. Also, during saline studies, β-cell sensitivity to increasing plasma concentrations of GLP-1 from premeal values to peak concentrations was 2-3 times smaller in surgical than controls (Fig.3b), suggesting that insulinotropic effect of protein ingestion is not associated with prandial concentrations of GLP-1.

Recently the endocrine function of GLP-1 in stimulating insulin secretion has been challenged. In a rodent model of obesity, glycemic improvement of sleeve gastrectomy is mediated by pancreatic rather than intestinally secreted GLP-1[17]. Further, in non-operated subjects, blocking GLP-1R in fasting condition at near-zero concentrations of GLP-1 diminishes insulin secretion [14, 15]. Thus, our findings in the context of these recent reports [14, 15, 17] raise the possibility that prandial beta-cell effect of GLP-1 to increasing amino acids in euglycemic condition, especially in non-operated subjects, is mediated by the paracrine action of pancreatic produced peptide rather than intestinally secreted GLP-1 which makes up majority of circulatory concentrations of this peptide.

Furthermore, in our experiment, beyond a greater glucose-independent insulinotropic effect of GLP-1 in surgical versus non-surgical subjects, Ex-9 infusion also increased insulin action in skeletal muscles after bariatric surgery, particularly in GB (Fig.5b). Therefore, disposition index, a product of insulin secretion and insulin action remained unaffected by administration of GLP-1R antagonist among 3 groups (Fig.3c).

It has previously been shown that ingestion of oral glucose compared to intravenous glucose administration in obese subjects blunts insulin action and diminishes insulin efficacy in suppressing lipolysis despite a higher insulin secretory response[24] but the gut factor responsible for reduced prandial insulin action has not been identified. In our study, insulin action after protein ingestion is diminished by endogenous GLP-1 after GB and SG. While our methodology is limited to address the underlying mechanism, it has been recognized that GLP-1
signal is detected by visceral afferent nerves in hepatoportal [25] or directly in the central nervous system [16, 26], where it controls glucose metabolism. Thus, it is plausible that larger prandial GLP-1 secretion due to increased nutrient flux after GB or SG elicits the neural-mediated extrapancreatic effect of GLP-1 that has previously reported in preclinical experiments [16, 27].

In mice, acute infusion of Ex-9 into the lateral ventricle of the brain has been shown to reduce prandial insulin secretory response by 60% and liver glycogen content by 70% and increase muscle glycogen content by 100% and whole body insulin sensitivity (M/I) by 300% during hyperglycemic clamp [16]. Improved peripheral insulin sensitivity by Ex-9 infusion into the brain in these experiments were eliminated by muscle denervation [16], suggesting that peripheral insulin sensitivity is mediated by neural input to muscles.

While the translational significance of these findings in humans is difficult to establish, an exaggerated extrapancreatic effect of GLP-1 on insulin action in GB-treated subjects could explain the previously reported discord in Ex-9 effect on prandial insulin and glucose response, where a significant reduction in insulin secretion by GLP-1R blockade in GB-treated subjects is not reciprocated by an increase in plasma glucose concentration [9-11].

In addition to the differences in insulin secretion and insulin action protein ingestion in GB and SG patients was associated with a marked stimulation of EGP compared to controls in whom no change in EGP was observed. Further, blocking GLP-1R increased prandial EGP in GB subjects but not in SG or CN (Fig.2b).

In healthy individuals, exogenous GLP-1 infusion during a euglycemic [28] or hyperglycemic clamp [29, 30] in the fasting state diminished EGP, independent of plasma insulin and glucagon concentrations, suggesting a direct effect of GLP-1 on liver glucose metabolism. Our study design cannot distinguish between a direct versus indirect effect of GLP-1 on hepatic glucose output given the differences in plasma insulin and glucagon concentrations among the groups.
and between the studies performed with and without Ex-9. Nonetheless, the absolute differences in prandial glucagon/insulin ratio between the two studies was minimal in controls and was almost identical between the two surgical groups (Supplementary.Figure2). Yet, blocking GLP-1R increased EGP in GB and not in SG, suggesting that either hepatic sensitivity to insulin and glucagon is altered after GB compared to SG or that the GLP-1 effect on EGP in GB is independent of hormonal factors.

Finally, the effect of insulin to suppress plasma FFA in the latter phase of protein absorption was decreased in GB subjects by GLP-1R blockade (Fig.5c), similar to the effect of Ex-9 infusion on EGP after GB (Fig.2b). It is unclear whether prandial FFA is directly or indirectly affected by Ex-9 infusion, although, based on previous reports, neither lipolysis nor FFA concentrations are changed by exogenous GLP-1 or GLP-1R agonist administration during hyperglycemic clamp [30] or oral glucose challenge[31], respectively. Nonetheless, reduction in FFA flux to the liver by endogenous GLP-1 observed in our experiments, can also contribute to EGP lowering effect of this peptide, as previously suggested in non-surgical individuals[32].

There are several limitations to this study. We used a cross-sectional rather than longitudinal design which imposes limitations on the effect of weight loss surgery on the outcomes of interest. Nonetheless, using this method, we were able to compare the outcomes in bariatric surgical subjects when they were completely adapted to the metabolic effects of these procedures beyond the first 2 years. GB-treated subjects had a larger weight loss than SG subjects, mainly due to weight loss in the first 6-12 months of their surgery, but the current BMI was similar among the groups and the participant’s body weight was stable for 3 months prior to study. We did not measure the plasma amino acid concentration; however, it can be assumed, based on previous studies [33] there is an earlier and higher peak amino acid concentration after GB compared to SG and in SG subjects versus controls.

5. Conclusions
We demonstrate that GLP-1 plays an important role in the stimulatory effect of oral protein ingestion on insulin secretion in humans and that this action is independent of the plasma glucose concentration. Further, rerouted GI anatomy after gastric bypass or sleeve gastrectomy augments the stimulatory effect of GLP-1 in insulin secretion. As demonstrated by the present results, there are important effects of GLP-1 signaling that occur independently of the plasma levels of peptide. Our results lay the foundation for future mechanistic studies to examine the relevance of the pancreatic and extrapancreatic effects of GLP-1 on multi-targeted treatment approach utilizing surgical, medical, and nutritional interventions or combinations thereof for treatment of diabetes and obesity. These findings are also significant for future clinical trials which utilize exendin-(9-39) for the treatment of hypoglycemia in GB patients in whom increased protein and reduced carbohydrate consumption is recommended [13].

Acknowledgements

We thank Andrea Hansis-Diarte, Nancy Yegge, and John Adams from the Department of Medicine of University of Texas Health at San Antonio for their technical support and nursing staff as well as nutritionist from Bartter Research Unit, Audie Murphy Hospital, STVHCS, for their expert technical assistance. We owe a great debt to our research participants.

Funding

This work was supported by grants from the National Institute of Health, DK105379 (MS), KL2 TR002646 (MR), and in part by National Center for Advancing Translational Sciences, National Institute of Health grant UL1 TR002645. A.G. acknowledges the financial support from the European Union’s Horizon 2020 Research and Innovation Programme for the project “Stratification of Obesity Phenotypes to Optimize Future Obesity Therapy” (SOPHIA). SOPHIA has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No. 875534. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation program, EFPIA, T1D Exchange, JDRF, and Obesity
Action Coalition. The communication reflects the author’s view. Neither IMI nor the European Union, EFPIA, or any Associated Partners are responsible for any use that may be made of the information contained herein.

Author Contributions

Disclosure

Parts of this study were presented at American Diabetes Association, 81st Scientific Sessions (virtual) and Endocrine Society Annual Meeting 2022 (virtual). All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Declaration of Interests

The authors declare no competing interests.
FIGURE TITLES & LEGENDS

Figure 1. Glucose concentrations and beta-cell responses. (a) Plasma glucose and (b) insulin secretion responses to oral protein ingestion with (dashed line) and without (solid line) intravenous infusion of exendin-(9-39) (Ex-9), GLP-1R antagonist, in subjects who underwent gastric bypass (left panel) or sleeve gastrectomy (middle panel) and non-operated controls (left panel). The corresponding individual changes from saline to Ex-9 study for fasting and AUC 3h values are shown (insets). *P < .05 compared with saline study; # P < 0.05 for interaction.

Figure 2. Glucose kinetics. The rates of (a) total glucose utilization (R_d), (b) endogenous glucose production (EGP) during oral protein ingestion with (dashed line) and without (solid line) intravenous infusion of exendin-(9-39) (Ex-9), GLP-1R antagonist, in subjects who underwent gastric bypass (left panel) or sleeve gastrectomy (middle panel) and non-operated controls (left panel). The corresponding AUCs from 0 to 180 min are shown (insets). § P< 0.05 compared with GB or SG; # P < 0.05 for interaction.

Figure 3. Beta cell sensitivity to glucose, GLP-1 and Disposition Index. (a) The slope of post-OGTT ISR plotted against increasing plasma concentrations of glucose and (b) GLP-1 as well as (c) disposition index during saline (solid line) and GLP-1R blockade (Ex-9) (dashed line) conditions in subjects who underwent gastric bypass (black line) or sleeve gastrectomy (red line) and non-operated controls (blue line). * P < 0.05 compared with control study; § P< 0.05 compared with GB; # P < 0.05 for interaction.

Figure 4. Alpha-cell and incretin responses. Plasma concentrations of (a) glucagon, (b) GLP-1, and (c) GIP during protein ingestion with (dashed line) and without (solid line) intravenous infusion of exendin-(9-39) (Ex-9), GLP-1R antagonist, in subjects who underwent gastric bypass (left panel) or sleeve gastrectomy (middle panel) and non-operated controls (left panel). The corresponding AUCs from 0 to 60 min and from 0 to 180 min are shown (insets). * P < 0.05 compared with control study; § P< 0.05 compared with GB; # P < 0.05 for interaction.

Figure 5. Insulin action. Plasma concentrations of (a) insulin, (b) metabolic glucose clearance (MCG) adjusted for insulin concentration, and (c) free fatty acid concentration (FFA) adjusted for insulin concentration with (dashed line) and without (solid line) intravenous infusion of exendin-(9-39) (Ex-9), GLP-1R antagonist, in subjects who underwent gastric bypass (left panel) or sleeve gastrectomy (middle panel) and non-operated controls (left panel). The corresponding prandial AUCs from 0 to 180 min are shown (insets). * P < 0.05 compared with control study; § P< 0.05 compared with GB.
TABLES

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>GB (10)</th>
<th>SG (9)</th>
<th>CN (7)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>47.6 ± 2.8</td>
<td>46.7 ± 2.3</td>
<td>46.4 ± 2.9</td>
<td>0.95</td>
</tr>
<tr>
<td>Sex (female/male)</td>
<td>6/4</td>
<td>6/3</td>
<td>5/2</td>
<td>0.88</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.5 ± 1.8</td>
<td>33.9 ± 0.8</td>
<td>31.5 ± 1.5</td>
<td>0.12</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>82.9 ± 6</td>
<td>90.9 ± 3.0</td>
<td>92.3 ± 4.9</td>
<td>0.35</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>98.5 ± 4.5</td>
<td>104.0 ± 3.2</td>
<td>100.0 ± 2.9</td>
<td>0.55</td>
</tr>
<tr>
<td>Total fat mass (kg)</td>
<td>27.32 ± 2.7</td>
<td>34.7 ± 2.7</td>
<td>34.8 ± 3.1</td>
<td>0.11</td>
</tr>
<tr>
<td>Total Lean mass (kg)</td>
<td>54.2 ± 4.2</td>
<td>55.2 ± 3.6</td>
<td>55.7 ± 4.1</td>
<td>0.44</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.2 ± 0.1</td>
<td>5.5 ± 0.1*</td>
<td>5.5 ± 0.1*</td>
<td>0.05</td>
</tr>
<tr>
<td>HbA1c (mmol/mmol)</td>
<td>33.3 ± 0.9</td>
<td>36.2 ± 1.2*</td>
<td>36.5 ± 1.2*</td>
<td>0.05</td>
</tr>
<tr>
<td>Pre-operative BMI (kg/m²)</td>
<td>46.3 ± 1.1</td>
<td>45.3 ± 2.0</td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>Weight loss since surgery (kg)</td>
<td>61 ± 16</td>
<td>32 ± 7</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Maximum weight loss (kg) §</td>
<td>78 ± 15</td>
<td>49 ± 6</td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>Percent weight loss (%)</td>
<td>39 ± 5</td>
<td>24 ± 4</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Percent excess body weight loss (%)</td>
<td>81 ± 8</td>
<td>51 ± 8</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Time since surgery (years)</td>
<td>5.2 ± 1.0</td>
<td>5.0 ± 0.9</td>
<td></td>
<td>0.88</td>
</tr>
</tbody>
</table>

Table 1. Baseline characteristics of study subjects

Data are presented as mean ± SEM unless specified otherwise; GB, gastric bypass surgery subject; SG, subjects with prior history of sleeve gastrectomy; CN, non-operated controls; BMI, body mass index; HbA1c, glycated hemoglobin A1C; § weight loss achieved at 6-12 months after surgery; * p<0.05 compared to GB.
Table 2. Glucose, islet-cell, and incretin secretory responses to protein ingestion with and without GLP-1R blockade in GB, SG and CN subjects

<table>
<thead>
<tr>
<th>Variables</th>
<th>Time (min)</th>
<th>Exendin-(9-39) study</th>
<th>Saline study</th>
<th>Statistical test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GB</td>
<td>SG</td>
<td>CN</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>Basal</td>
<td>5.3 ± 0.1</td>
<td>5 ± 0.1</td>
<td>5.4 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>Premeal</td>
<td>5.6 ± 0.2</td>
<td>5.4 ± 0.1</td>
<td>5.9 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>Nadir</td>
<td>5.6 ± 0.2</td>
<td>5.2 ± 0.1</td>
<td>5.7 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>6.6 ± 0.2</td>
<td>6 ± 0.2</td>
<td>6.4 ± 0.2</td>
</tr>
<tr>
<td>AUC Glucose (mmol.min)</td>
<td>(0-60min)</td>
<td>36.6 ± 5.8</td>
<td>21.6 ± 5</td>
<td>13.9 ± 3.3</td>
</tr>
<tr>
<td></td>
<td>(0-180min)</td>
<td>73.1 ± 16.5</td>
<td>43.8 ± 15</td>
<td>34.3 ± 18</td>
</tr>
<tr>
<td>ISR (pmol.m⁻².min⁻¹)</td>
<td>Basal</td>
<td>179 ± 42</td>
<td>116 ± 12</td>
<td>107 ± 10</td>
</tr>
<tr>
<td></td>
<td>Premeal</td>
<td>152 ± 35</td>
<td>102 ± 13</td>
<td>86 ± 7</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>742 ± 129</td>
<td>489 ± 61</td>
<td>335 ± 48</td>
</tr>
<tr>
<td>AUC ISR (nmol.m⁻²)</td>
<td>(0-60min)</td>
<td>20 ± 4.4</td>
<td>14.1 ± 2.1</td>
<td>8.9 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>(0-180min)</td>
<td>29.2 ± 7.8</td>
<td>24.2 ± 4.1</td>
<td>17.7 ± 3.3</td>
</tr>
<tr>
<td>Insulin (µU.ml⁻¹)</td>
<td>Basal</td>
<td>7.5 ± 1.4</td>
<td>7.8 ± 1.1</td>
<td>11.2 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>Premeal</td>
<td>6.6 ± 1.1</td>
<td>6.2 ± 0.7</td>
<td>8.9 ± 1</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>45.7 ± 9.3</td>
<td>50.5 ± 8.8</td>
<td>52.5 ± 8.4</td>
</tr>
<tr>
<td>AUC Insulin (mU.ml⁻¹.min)</td>
<td>(0-60min)</td>
<td>1.4 ± 0.3</td>
<td>1.6 ± 0.3</td>
<td>1.5 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>(0-180min)</td>
<td>1.9 ± 0.6</td>
<td>2.9 ± 0.6</td>
<td>3.6 ± 0.8</td>
</tr>
<tr>
<td>Glucagon (pg.ml⁻¹)</td>
<td>Basal</td>
<td>40.7 ± 5.3</td>
<td>43.9 ± 8.7</td>
<td>51.5 ± 6.2</td>
</tr>
<tr>
<td></td>
<td>Premeal</td>
<td>44.6 ± 4.6</td>
<td>42.3 ± 5.5</td>
<td>50.5 ± 5.6</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>169 ± 21</td>
<td>174 ± 14</td>
<td>150 ± 18</td>
</tr>
<tr>
<td>AUC Glucagon (ng.ml⁻¹.min)</td>
<td>(0-60min)</td>
<td>4.8 ± 0.6</td>
<td>4.9 ± 0.4</td>
<td>3.3 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>(0-180min)</td>
<td>10.8 ± 1</td>
<td>13.9 ± 1.5</td>
<td>10.9 ± 1.4</td>
</tr>
<tr>
<td>GLP-1 (pg.ml⁻¹)</td>
<td>Premeal</td>
<td>9.9 ± 3.4</td>
<td>13 ± 3.8</td>
<td>10.1 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>(0-60min)</td>
<td>5.4 ± 0.6</td>
<td>4.7 ± 0.6</td>
<td>3.1 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>(0-180min)</td>
<td>5 ± 1.1</td>
<td>8.9 ± 1.4</td>
<td>8.1 ± 0.7</td>
</tr>
<tr>
<td>GIP (pg.ml⁻¹)</td>
<td>Premeal</td>
<td>117 ± 19</td>
<td>101 ± 32</td>
<td>117 ± 21</td>
</tr>
<tr>
<td></td>
<td>(0-60min)</td>
<td>8.8 ± 0.9</td>
<td>14.9 ± 2.9</td>
<td>11.9 ± 2.6</td>
</tr>
<tr>
<td></td>
<td>(0-180min)</td>
<td>15.5 ± 1.9</td>
<td>30.9 ± 6.7</td>
<td>29 ± 4.5</td>
</tr>
<tr>
<td>Insulin action (MCG/insulin)</td>
<td>Premeal</td>
<td>51 ± 8</td>
<td>47 ± 6</td>
<td>34 ± 5</td>
</tr>
<tr>
<td></td>
<td>(0-180min)</td>
<td>6369±1023</td>
<td>4207±1086</td>
<td>2290±319</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SEM; GB, gastric bypass subjects; SG, subjects with prior history of sleeve gastrectomy; CN, non-surgical controls; ISR, insulin secretion rate; GLP-1, glucagon-like peptide-1; GIP, glucose-dependent insulino tropic peptide; MCG, metabolic clearance of glucose;
Statistical effects p values (treatment [control/sitagliptin], group status [GB/SG/CN], and their interaction) are provided in the last 3 columns - T, treatment vs control; G, group status; I, interaction; * p<0.05 compared to GB or SG groups; § p<0.05 compared to GB.

Table 3. Glucose flux responses to oral glucose ingestion with and without GLP-1R antagonist infusion in GB, SG and CN subjects

<table>
<thead>
<tr>
<th>Variables</th>
<th>Time (min)</th>
<th>GB</th>
<th>SG</th>
<th>CN</th>
<th>GB</th>
<th>SG</th>
<th>CN</th>
<th>T</th>
<th>G</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGP(µmol.min⁻¹.kg⁻¹)</td>
<td>Premeal</td>
<td>8.9 ± 0.5</td>
<td>8.1 ± 0.2</td>
<td>9.4 ± 0.4</td>
<td>9.5 ± 0.5</td>
<td>7.9 ± 0.3</td>
<td>9 ± 0.3</td>
<td>0.90</td>
<td>0.04</td>
<td>0.17</td>
</tr>
<tr>
<td>AUC_EGP (mmol.kg⁻¹)</td>
<td>(0-60min)</td>
<td>153 ± 24</td>
<td>91 ± 14</td>
<td>51 ± 18</td>
<td>114 ± 18</td>
<td>77 ± 8 §</td>
<td>22 ± 13 *</td>
<td>0.07</td>
<td>0.00</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>(0-180min)</td>
<td>303 ± 69</td>
<td>59 ± 54</td>
<td>-47 ± 42</td>
<td>44 ± 53</td>
<td>69 ± 32</td>
<td>-35 ± 31 §</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>AUC_Rd (mmol.kg⁻¹)</td>
<td>(0-60min)</td>
<td>130 ± 23</td>
<td>75 ± 24</td>
<td>13 ± 22</td>
<td>139 ± 31</td>
<td>77 ± 16 §</td>
<td>28 ± 14 §</td>
<td>0.67</td>
<td>0.00</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>(0-180min)</td>
<td>341 ± 65</td>
<td>93 ± 50</td>
<td>-33 ± 45</td>
<td>52 ± 57</td>
<td>85 ± 34</td>
<td>-8 ± 27</td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>MCG(ml.min⁻¹.kg⁻¹)</td>
<td>Premeal</td>
<td>1.6 ± 0.1</td>
<td>1.5 ± 0.1</td>
<td>1.6 ± 0.1</td>
<td>1.8 ± 0.1</td>
<td>1.6 ± 0.1</td>
<td>1.6 ± 0.1</td>
<td>0.06</td>
<td>0.59</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>(0-60min)</td>
<td>11 ± 5</td>
<td>8 ± 4</td>
<td>-1 ± 4</td>
<td>22 ± 6</td>
<td>12 ± 3</td>
<td>6 ± 3 §</td>
<td>0.05</td>
<td>0.02</td>
<td>0.70</td>
</tr>
<tr>
<td>MCG (ml.kg⁻¹)</td>
<td>(0-180min)</td>
<td>35 ± 12</td>
<td>6 ± 11</td>
<td>-14 ± 10</td>
<td>5 ± 14</td>
<td>14 ± 8</td>
<td>6 ± 7</td>
<td>0.99</td>
<td>0.20</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SEM; GB, gastric bypass subjects; SG, subjects with prior history of sleeve gastrectomy; CN, non-surgical controls; EGP, endogenous glucose production; Rd, total glucose disappearance; MCG, metabolic clearance of glucose (Rd/glucose); Statistical effects p values (treatment [saline/Ex-9], group status [GB/SG/CN], and their interaction) are provided in the last 3 columns - T, treatment vs control; G, group status; I, interaction. * p<0.05 compared to GB or SG groups; § p<0.05 compared to GB.
Additional Resources

This study is registered on ClinicalTrials.gov (NCT02823665).

Supplemental Titles and Legends

Supplementary Figure 1. Difference in glucagon/insulin ratio. (a) Glucagon / insulin ratio after oral protein ingestion during OGTT with (dashed line) and without (solid line) intravenous infusion of exendin-(9-39) (Ex-9), GLP-1R antagonist, and (b) difference in glucagon / insulin ration between the two studies, in subjects who underwent gastric bypass (black line) or sleeve gastrectomy (red line) and non-operated controls (blue line).

Supplementary Figure 2. Gastric Emptying. Plasma concentrations of acetaminophen after oral glucose ingestion during protein ingestion with (dashed line) and without (solid line) intravenous infusion of exendin-(9-39) (Ex-9), GLP-1R antagonist, in subjects who underwent gastric bypass (black line) or sleeve gastrectomy (red line) and non-operated controls (blue line).
REFERENCES

