Abstract

In Sub Saharan Africa, there is a growing burden of non-communicable diseases, which poses a big challenge to the weak health system in these resource-limited settings. The aim of this study was to determine the feasibility and preliminary efficacy of a community health workers (CHW) home-based lifestyle interventions to improve blood pressure (BP) control and body composition among hypertensive patients in low-income populations of Kiambu County, Kenya. This was a randomized controlled trial (RCT) involving 80 patients with uncontrolled high BP (systolic BP (SBP) ≥140mmHg and/or diastolic BP (DBP) ≥90) randomized to either a CHW homebased intervention or a usual care (control) arm and followed up for 6 months. The intervention involved monthly CHW home-visits for health education and audits on behavioral risk factors that affect BP. An adapted WHO stepwise questionnaire and international physical activity questionnaire was used to collect data on behavioral cardiovascular risk factors. To assess the main outcomes of BP, body mass index (BMI) and waist-height-ratio (WHtR), a survey was conducted at baseline, 3
months, and 6 months. Data regarding univariate, bivariate and multivariate (repeated measurements between and within groups) analysis at 5% level of significance were analyzed using STATA 18. Generalized estimating equations (GEE) for repeated measures were used to estimate changes in BP, BMI and WHtR, and to examine the association between the CHW intervention and BP control. The study revealed that 77.5% and 92.5% of the participants in usual care and intervention groups completed the follow-up, respectively. After 6 months of follow-up, there was a reduction in the mean SBP and DBP for both arms, and reductions in BMI and WHtR only in the intervention arm. The adjusted mean reduction in SBP (-8.4 mm Hg; 95% CI, -13.4 to -3.3; P=0.001) and DBP (-5.2 mm Hg 95% CI, -8.3 to -2.0; P<0.001) were significantly higher in the intervention group compared to the control group. The proportion of participants who achieved the controlled BP target of <140/90 mm Hg was 62.2% and 25.8% for the intervention and usual care arm, respectively. The proportion with controlled BP was significantly higher in the intervention arm compared to the usual care arm after adjusting for baseline covariates (AOR 2.8, 95% CI 1.3- 6.0, p=0.008). There was no significant effect of the intervention on BMI and WHtR.

In conclusion, a home-based CHW intervention was significantly associated with reduction in BP among hypertensive patients compared to usual care. Future fully powered RCTs to test the effectiveness of such interventions among low-income populations are recommended.

Key words: Community health workers, hypertension, blood pressure control, lifestyle intervention.

Trial registration number: PACTR202309530525257
BACKGROUND

In Sub Saharan Africa (SSA) there is a growing burden of non-communicable diseases (NCDs), which poses a big challenge to the weak health systems in these resource limited settings (Gouda et al., 2019; Moucheraud, 2018). Further, management of cardiovascular diseases (CVDs) in low resource settings is difficult due to limited human and financial resources. There is a need for research to explore innovative, cost effective, and contextually relevant primary care interventions to control BP levels and other cardiovascular risks factors amidst the growing dual burden of infectious and NCDs in SSA ("Poster Abstracts from the 7th Annual CUGH Conference: Bridging to a Sustainable Future in Global Health," 2016).

Community health workers (CHWs) are an affordable and sustainable solution for behavioural intervention delivery, and an important linkage between community and health care system (Gilmore & McAuliffe, 2013). In light of critical shortages in the health workforce in low and medium income countries (LMICs), CHWs, defined as members of a community with minimal formal training on health problems who provide basic health and medical care to their community, are increasingly recognized as an essential part of the health workforce needed to achieve public health goals (Jeet et al., 2017; Kok et al., 2015; Woldie et al., 2018; World Health Organization).

The CHWs have been used effectively in LMICs to deliver NCDs preventive services, using informational as well as behavioural approaches with focus on primordial prevention of NCDs and screening as part of early diagnosis and management.

The CHWs are an integral part of health-care delivery system in Kenya. With the shortage of health workers, CHWs have the potential to supplement the formal health system in the struggle to achieve universal health coverage in the era of dual burden of infectious diseases and NCDs in Kenya and other LMICs. The CHWs may remove barriers to BP control and medication adherence.
due to cultural, educational, and language differences between community members and the health care system (Brownstein et al., 2005). A systematic review on the effectiveness of CHWs interventions for management of hypertension in the United States showed significant improvement in BP control particularly among the poor, urban minority communities (Brownstein et al., 2007). Similarly, community health workers home-based interventions have shown positive impact in the management and control of hypertension in LMICs (Cappuccio et al., 2006; He et al., 2017; Jafar et al., 2009; Neupane et al., 2018; Vedanthan et al., 2019). Another systematic review in LMICs reported positive effects of CHW interventions on improved linkage of patients to care, reduction of BP, improving adherence of patients to medication and the overall reduction in the CVD risk score (Mbuthia, Magutah, & Pellowski, 2022).

One of the ways to address the emerging burden of hypertension could be through home BP monitoring and lifestyle interventions led by CHWs. Home BP monitoring has been proven as an effective tool in the management of hypertension (Glynn et al., 2010; Pickering et al., 2008). Compared to measurements in a health facility, home BP monitoring minimizes the “white coat” effect and allows for frequent and multiple readings (Stergiou & Bliziotis, 2011; Verberk et al., 2005) which provide additional BP measurements leading to better treatment decisions. It has been shown that use of electronic cuffs for home BP monitoring is effective in reaching target BP reduction goals than BP monitoring in a clinical setting alone (Cappuccio et al., 2004) and when combined with other interventions such as patients’ education and lifestyle counselling is associated with even better BP control (Tucker et al., 2017).

Hypertension is the leading risk factor for deaths due to CVDs and as such, the World Health Organization (WHO) targets to have a worldwide 25% reduction in its prevalence by the year 2025 (World Health Organization, 2014). The STEPwise survey shows 24% of Kenyans either had
elevated BP or were on treatment for hypertension. Only 8% of the hypertensive persons were on
treatment, and among them, only 4.6% had controlled BP (Kenya Ministry of Health, 2016). Based
on literature, modification of lifestyle factors can delay onset of hypertension and can contribute
to lowering of BP in treated patients (Gabb et al., 2016; Whelton et al., 2002). Systematic reviews
have shown efficacy of interventions focused on physical activity (Pescatello et al., 2019; Smart
et al., 2020) and dietary approaches to stop hypertension (Filippou et al., 2020; Saneei et al., 2014;
Siervo et al., 2015) in lowering BP among adults with or without hypertension in different settings.
The feasibility and effectiveness of CHWs primary health intervention in the control of
hypertension in Kenya is not well explored. Previous research conducted in Western Kenya
demonstrated efficacy of CHWs intervention in improving linkage to hypertension health care
(Vedanthan et al., 2019) in the general population. However, there is a lack of uptake of evidence-
based community based CHWs interventions for reduction of BP in the Kenyan settings. There is
a need for further studies to support primary health interventions geared towards control of
hypertension and CVD outcomes among hypertensive patients in the Nairobi metropolitan area
where the current study is set. While previous CHWs hypertension interventions in LMICs have
focused on screening and health education, the current study proposes to adapt a multicomponent
evidence-based lifestyle intervention that incorporates behaviour change communication and
practical individualized lifestyle interventions to reduce high BP and other CVD risks among low-
income population in Kiambu County. The aim of this study is to test the feasibility and
preliminary efficacy of a CHW-led lifestyle homebased intervention for BP reduction among
hypertensive patients.
METHODS

Research design: This was a randomized controlled trial (RCT). Hypertensive patients were randomised at individual level to either the CHW-led homebased intervention or the usual care arm. Those assigned to the intervention arm were advised to continue receiving their usual care. The intervention was implemented for 6 months with outcome assessment after 3rd and 6th month.

Study area: The study was conducted in level 3 primary health care (PHC) facilities in Juja and Ruiru Sub-counties in Kiambu County, Kenya.

Study population: Patients with high BP (systolic ≥140 mmHg and/or diastolic ≥90 mmHg measured on at least 2 separate screening measurements), aged 18 years and above, receiving primary care from the selected level 3 PHC facilities and available to be followed up for 6 months. Participants commenced on antihypertensive medications were included. Elderly hypertensive patients aged above 70 years, hypertensive patients already on hypertension follow-up and management elsewhere or wished to relocate from the study area during the study period were excluded.

Sample size and power calculation: With changes in BP as the primary outcome, we calculated a sample of 52 participants for the 2 arms (26 in each). This would show changes in BP between the intervention and control arms at a significance level of 0.05 for a two-sided test with 80% statistical power of finding a large effect (Cohen’s d=0.80). This study was underpowered to find significantly small effect (Cohen’s d=0.30) and moderate effect (Cohen’s d=0.50). However, we were able to calculate an effect size and show the direction of its impact. After adjusting for 20% loss to follow-up, the total sample was 62 participants.
Sampling and participants recruitment: The participants were recruited at Ruiru and Juja level 3 primary health facilities following referral from a community-based door-to-door BP screening in the study area (Fig 1). The recruitment took place from October to November 2022. Participants with high BP (systolic ≥140 mmHg and/or diastolic ≥90 mmHg) were given a referral note to either Juja or Ruiru primary health facility. After clinician’s assessment and commencement of management, participants with high BP willing to participate were recruited into the study. Simple random sampling was used to allocate the two PHC facilities (and the patients receiving care there) to either the control usual care or CHW home-based intervention arms.

Data collection: An adapted WHO stepwise questionnaire (Supplementary material 1) was used to collect information on demographic characteristics and health behaviours (smoking, alcohol drinking, diet and physical activity (PA)) of participants at baseline and follow-up visits. The international PA questionnaire (IPAQ)(Craig et al., 2003) was used to collect data on PA. Three BP measurements, body weight, height and waist circumference were obtained at each data collection visit by outcome assessors masked to intervention assignment. Blood pressure was measured using a digital (Omron M1) BP machine according to American Heart Association Guidelines. The guidelines include resting seated for 5 minutes prior to monitoring, abstaining from smoking, drinking, and exercise 30 minutes prior, and recording three measurements each time the monitor is used and an average obtained (Pickering et al., 2008). Weight was measured using a bathroom scale (CAMRY Mechanical scale, BR9012, Shanghai, China) with the subject in light clothing and without shoes.

The primary outcomes were the differences in systolic and diastolic BP (SBP and DBP respectively) changes from baseline to the 6 month follow-up survey while secondary outcomes included the proportion of patients with controlled hypertension (BP <140/90 mm Hg) according
to the Kenyan national guidelines (Division of Non-Communicable Diseases-Ministry of Health, 2018), body composition – body mass index (BMI) (World Health Organization, 2000), and waist height ratio (WHtR) (Ashwell, Gunn, & Gibson, 2012). The outcome measures were assessed at baseline, 3 months, and 6 months of follow-up. Physically active was defined as having attained 150 minutes of moderate PA or 75 minutes of vigorous PA each week.

Study procedure: The research assistants completed a baseline assessment for the eligible participants. Those in the intervention arm received a homebased community health worker–led intervention (health coaching, home BP monitoring, BP audit and feedback) implemented over a period of 6 months. This entailed two home visits by the trained CHWs during the first month after randomisation, followed by monthly follow-up visits for a period of 6 months. The initial visit was a 90-minute home visit to discuss general knowledge about hypertension and offer tailored counselling on lifestyle modification as well as set PA targets. Subsequent monthly visit was focused on social support, goal setting, BP, and weight monitoring.

To assess the outcome of the intervention, the survey was conducted by two trained research assistants (who were not part of nor had relationship with the CHWs team) to evaluate the participants at baseline, 3 months, and 6 months. The research assistants were blinded to the randomization status of the participants. The home visits for evaluation were scheduled during the first half of the day to minimize the effect of diurnal variations in BP.

Figure 1: Consolidated Standards of reporting Trials describing recruitment and completion of study procedures
Data analysis: The *Stata* 18 software (Stata Corporation, College Station, Texas, USA) was used for data entry and analysis. Descriptive statistics were used for participants’ characteristics. Categorical data were analyzed and reported in frequency and percentages. Independent samples t-test was used to determine whether baseline characteristics (continuous variables) differed significantly between the control and the usual care arms at baseline while differences in the categorical variables between the arms were analyzed using a test for 2-sample differences in proportions. Mean BP and BMI changes from baseline were estimated with using generalized estimating equations (GEE) model for repeated measures using gaussian identity link function while adjusting for baseline characteristics; antihypertensive treatment and demographic characteristics. The GEE model was also used to examine the association between the CHW intervention with BP control normal BMI, specifying logit link function and reporting odds ratios, after controlling for baseline BP, baseline BMI, baseline WHtR, age, sex, and use of antihypertensive medication. Statistical significance was considered at P < 0.05.

Ethical considerations: The study was approved by Jomo Kenyatta University of Agriculture and Technology (JUKUAT) Institutional scientific and ethical review committee (approval number JKU/IERC/02316/0652). Similarly, research permit was obtained from the National Commission of Science, Technology, and Innovation before commencement of the study (license number NACOSTI/P/22/19977). Confidentiality and anonymity of patients was guaranteed by excluding unique identifiers from the data collected from participants. Participation in the study was on voluntary basis and written informed consent was obtained from the participants before data collection.

This study is registered in the Pan African Clinical Trial Registry database, registration number PACTR202309530525257.
RESULTS

A total of 80 participants (40 in each arm) were recruited in the study. Of these, 31(77.5%) of the participants in usual care and 37(92.5%) in intervention arm completed the follow-up (Figure 1).

The mean age of the participants was 46.8±11.1 years and ranged from 25-68 years. At baseline, the mean SBP, DBP and BMI were 153 mmHg, 97 mmHg and 29.5 kg/m\(^2\), respectively. A majority of the participants were physically active in both arms with 81% and 90% in the intervention and usual care arm respectively, reporting having achieved at least 75 minutes of vigorous intensity or 150 minutes of moderate intensity activity per week. Only 6% of the participants smoked cigarettes and a quarter (25%) consumed alcohol. Approximately half of the respondents, 43% in the intervention and 54% in the usual care arms, were on antihypertensive treatment. There were no statistically significant differences in the baseline characteristics between the two arms (Table 1).

Table 1: Baseline characteristics of the participants

<table>
<thead>
<tr>
<th>Variable</th>
<th>Usual Care arm (N=31) Mean (SD) or n (%)</th>
<th>Lifestyle Intervention arm (N=37) Mean (SD) or n(%)</th>
<th>Absolute difference (95% CI)</th>
<th>P- Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years</td>
<td>46.3(9.7)</td>
<td>47.3(14.4)</td>
<td>-0.55(-6.04-4.93)</td>
<td>-0.841†</td>
</tr>
<tr>
<td>SBP(mmHg)</td>
<td>155.7(18.3)</td>
<td>151.7(10.4)</td>
<td>4.03(-3.04-11.1)</td>
<td>0.258†</td>
</tr>
<tr>
<td>DBP(mmHg)</td>
<td>97.1(11.8)</td>
<td>95.7(11.2)</td>
<td>1.42(-4.17-7.01)</td>
<td>0.613†</td>
</tr>
<tr>
<td>BMI(kg/m(^2))</td>
<td>29.7(5.5)</td>
<td>29.3(6.1)</td>
<td>0.50(-2.3-3.32)</td>
<td>0.722†</td>
</tr>
<tr>
<td>WHtR</td>
<td>0.59(0.12)</td>
<td>0.61(0.10)</td>
<td>-0.01(-0.06-0.04)</td>
<td>0.682†</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>5(16.7)</td>
<td>5(13.5)</td>
<td>-0.02(-0.19-0.14)</td>
<td>0.761*</td>
</tr>
<tr>
<td>Female</td>
<td>25(83.3)</td>
<td>32(86.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physically active (achieved 75 minutes of vigorous intensity or 150 minutes of moderate intensity activity)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>28(90.3)</td>
<td>30(81.1)</td>
<td>0.09(-0.07-0.25)</td>
<td>0.284*</td>
</tr>
<tr>
<td>No</td>
<td>3(9.7)</td>
<td>7(18.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3(10)</td>
<td>1(2.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>27(90)</td>
<td>36(97.3)</td>
<td>0.06(-0.04-0.19)</td>
<td>0.223*</td>
</tr>
<tr>
<td>Alcohol Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td>p-value</td>
<td>CI</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>On anti-hypertensive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>22 (70.9)</td>
<td>29 (78.4)</td>
<td>0.07</td>
<td>-0.13-0.28</td>
</tr>
<tr>
<td>Yes</td>
<td>9 (29)</td>
<td>8 (21.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption of deep fried foods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rarely</td>
<td>17 (54.8)</td>
<td>16 (43.2)</td>
<td>-0.11</td>
<td>-0.35-0.12</td>
</tr>
<tr>
<td>Frequently</td>
<td>14 (45.2)</td>
<td>21 (56.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SBP- Systolic blood pressure DBP- Diastolic blood pressure BMI- Body mass index WHtR- Waist height ratio.

P value for differences in continuous variables was generated using independent samples t-test.

*P values for categorical variables was generated using a test for 2-sample differences in proportions.

Implementation and adherence to the Intervention

In addition to the usual care, the intervention arm received monthly home visits by the CHW for a period of 6 months. A majority (92.5%) received all the planned visits while the rest only completed 33% of the visits and were not available for outcome assessment thus were loss to follow-up. Using a health education checklist (Supplementary material 2) the initial visit was focused on general knowledge about hypertension and tailored counselling on lifestyle modifications on PA and diet (reduction of salt intake, increase fruits and vegetables and reduction of deep fried foods) as well as goal setting. Subsequent monthly visits were focused on BP and weight audits, review on achievement of at least 150 minutes of moderate PA and counselling on treatment adherence (for those on anti-hypertensives). Thirty-one (77.5%) of the participants in the usual care arm were available for the 3 home visits focused on outcome assessments while 5 and 4 participants were available for one and two visits, respectively.
Table 2 presents the mean measurements of the sample at different time points. After 6 months of follow-up, there was a reduction in the mean SBP, DBP in all the arms and a reduction in BMI and WHtR only among the intervention arm (Table 2).

Table 2: Mean Blood pressure and body composition measures over 6 months

<table>
<thead>
<tr>
<th>Variable</th>
<th>Arm</th>
<th>Month 0 Mean (SD)</th>
<th>Month 3 Mean (SD)</th>
<th>Month 6 Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP (mmHg)</td>
<td>Usual Care</td>
<td>155.7(18.3)</td>
<td>155.3(13.6)</td>
<td>147.8(18.1)</td>
</tr>
<tr>
<td></td>
<td>Intervention</td>
<td>151.7(10.4)</td>
<td>140.8(17.1)</td>
<td>132.7(9.5)</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>Usual Care</td>
<td>97.1(11.8)</td>
<td>98.9(7.8)</td>
<td>93.3(10.1)</td>
</tr>
<tr>
<td></td>
<td>Intervention</td>
<td>95.7(11.2)</td>
<td>90.8(11.7)</td>
<td>85.7(7.7)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>Usual Care</td>
<td>29.7(5.5)</td>
<td>29.4(4.8)</td>
<td>30.1(4.9)</td>
</tr>
<tr>
<td></td>
<td>Intervention</td>
<td>29.3(6.1)</td>
<td>28.9(5.7)</td>
<td>28.4(5.4)</td>
</tr>
<tr>
<td>WHtR</td>
<td>Usual Care</td>
<td>0.60(0.1)</td>
<td>0.62(0.1)</td>
<td>0.61(0.1)</td>
</tr>
<tr>
<td></td>
<td>Intervention</td>
<td>0.61(0.1)</td>
<td>0.61(0.1)</td>
<td>0.59(0.1)</td>
</tr>
</tbody>
</table>

SD- Standard deviation
SBP- Systolic blood pressure
DBP- Diastolic blood pressure
BMI- Body mass index
WHtR- Waist height ratio.

The mean SBP in the intervention arm reduced by 19 mm Hg (95% CI -21.04 to -16.9), while in the usual care arm it had reduced by 7.9 mm Hg (95% CI -11.8 to -4.0). Similarly, the mean unadjusted DBP fell by 9.9 mm Hg (95% CI -13.1 to -6.6) in the intervention arm and 3.8 mmHg (95% CI -8.5 to -0.9) in the usual care arm (Fig 2). The mean BMI increased by 0.40 kg/m² in the usual care arm whereas in the intervention arm it reduced by -0.90 kg/m². Similarly, the mean WHtR in the usual care arm increased by 0.003 while that of the intervention arm reduced by -0.02 as shown in table two.

Figure 2: Mean change in blood pressure after 6 months of follow-up
Between group differences in mean changes

Table 3 presents the difference in the net changes in BP, BMI and WHtR between the intervention groups. The adjusted mean reduction in SBP was 8.4 mm Hg greater in the intervention group than in the control group (95% CI, -13.4 to -3.3; P=0.001) while the adjusted mean reduction in DBP in the intervention arm compared to the control was 5.2 mm Hg (95% CI, -8.3 to -2.0; P<0.001) (Table 3). However, the observed adjusted net mean difference in BMI (-1.5; 95% CI, -3.7 to 0.6; P=0.158) and WHtR (0.0; 95% CI, -0.03 to 0.03; P=0.999) between the two groups were not statistically significant.

Table 3: Effect of the intervention on Mean changes in blood pressure and body composition measures after 6 months of follow-up

<table>
<thead>
<tr>
<th>Variable</th>
<th>Arm</th>
<th>Unadjusted mean change within each arm (95% CI)</th>
<th>Unadjusted net mean change between the arms (95% CI)</th>
<th>P Value</th>
<th>Adjusted net mean change (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP (mmHg)</td>
<td>Usual Care</td>
<td>-7.9 (-11.8 to -4.0)</td>
<td>-11.2 (-16.9 to -5.6)</td>
<td><0.001</td>
<td>-8.4 (-13.4 to -3.3)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Intervention grp</td>
<td>-19 (21.04 to -16.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>Usual Care</td>
<td>-3.8 (-8.5 to -0.9)</td>
<td>-5.7 (-9.5 to -1.8)</td>
<td>0.004</td>
<td>-5.2 (-8.3 to -2.0)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Intervention grp</td>
<td>-9.9 (-13.1 to -6.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>Usual Care</td>
<td>0.40 (-0.002 to 0.81)</td>
<td>-1.0 (-3.5 to 1.6)</td>
<td>0.453</td>
<td>-1.5 (-3.7 to 0.6)</td>
<td>0.158</td>
</tr>
<tr>
<td></td>
<td>Intervention grp</td>
<td>-0.90 (-1.3 to -0.49)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHtR</td>
<td>Usual Care</td>
<td>0.003 (-0.01 to 0.01)</td>
<td>-0.006 (-0.04 to 0.04)</td>
<td>0.792</td>
<td>0.0 (-0.03 to 0.03)</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>Intervention grp</td>
<td>-0.02 (-0.03 to -0.01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SBP- Systolic blood pressure DBP- Diastolic blood pressure BMI- Body mass index WHtR- Waist height ratio.

For change values, negative number demonstrates improvement. Adjusted analysis were conducted using GEE (specifying gaussian family and identity link function) adjusted for age, gender, BP at baseline, use of antihypertensive medications, BMI and WHtR at baseline.
The proportions of participants who achieved the controlled BP target of <140/90 mm Hg were 62.2% (23) and 25.8% (8) for the intervention and usual care arms, respectively. The odds of attaining blood pressure control in the intervention arm were significantly higher compared to the usual care arm after adjusting for baseline BMI, baseline WHtR, age, gender and being on antihypertensive drugs (AOR 2.8, 95% CI 1.3- 6.0, p=0.008) (Table 4). However, we did not observe a significant difference in the odds of normal BMI between the treatment arms (AOR 2.5, 95% CI 0.6- 10.4, p=0.181) (Table 4).

Table 4: Difference in odds of attaining BP control and normal BMI between treatment arms

<table>
<thead>
<tr>
<th>Variable</th>
<th>Arm</th>
<th>Unadjusted net mean change between the arms (95% CI)</th>
<th>P Value</th>
<th>Adjusted net mean change (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP Controlled (Yes/No)</td>
<td>Usual Care (reference)</td>
<td>3.2 (1.5-6.9)</td>
<td>0.004</td>
<td>2.8 (1.3-5.9)</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>Intervention grp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal BMI (Yes/No)</td>
<td>Usual Care</td>
<td>1.3 (0.4-3.8)</td>
<td>0.634</td>
<td>2.6 (0.6-10.4)</td>
<td>0.181</td>
</tr>
<tr>
<td></td>
<td>Intervention grp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adverse outcome

There were no adverse outcomes (deaths) reported during the study.

Discussion

Our study provides evidence that a homebased lifestyle and BP monitoring intervention, delivered by CHWs, was more effective in reducing SBP and DBP and in improving control of hypertension in low-income urban population, compared to usual care. The completion rates of the follow-up care were favorable for both the usual care (77%) and intervention arms (92%), indicating the feasibility of implementing such interventions among an urban population. The better completion rates for the intervention may be attributed to the interest among the participants cultivated through the regular CHW home visits and audits of the progress that was not the case in the usual care arm.
After 6 months of follow-up, the study showed a significantly greater reduction in the mean adjusted SBP and DBP among the intervention than the usual care arm. Our findings are consistent with other studies (Gamage et al., 2020; He et al., 2017; Neupane et al., 2018) on the effect of lay health worker intervention programs for control of BP in LMICs. Our findings compare to those in a study done in Nepal with CHWs home-monitoring and education, which found 4.9 mmHg and 2.6 mmHg greater decrease in SBP and DBP, respectively, for the intervention arm compared to usual care arm after one year of follow-up (Neupane et al., 2018). Similarly, in a study done in Argentina among low-income population showed that participants with uncontrolled hypertension who participated in a community health worker–led multicomponent intervention had 6.6/5.4 mmHg greater decrease in SBP and DBP, respectively, than did patients who received usual care after 18 months of follow-up (He et al., 2017). The personalised health education and BP audits delivered by home visits in the current study might have encouraged participants to adopt healthy lifestyles and adhere to physicians instructions leading to controlled BP. Additionally, the CHW intervention comprised components that are evidence-based for lowering BP. These included regular home BP audits (Agarwal et al., 2011), encouraging lifestyle changes of increased PA and losing weight (Aucott et al., 2009) as well as encouraging adherence to antihypertensive drugs for those on treatment (Matsumura et al., 2013).

The current study showed a reduction in BMI and WHtR in the intervention arm, compared to slight increase in the usual care arm. However, we did not observe a significant difference in the mean change BMI and WHtR between the treatment arms. Our findings are consistent with those of Gamage et al (2020) and He et al (2017) that showed a CHW-led intervention for control of hypertension had no effect on BMI and WHR (Gamage et al., 2020; He et al., 2017). Our findings
could be attributed to the short period of follow-up of six, which may not have resulted in significant changes in body weight to affect the body composition measures.

This feasibility study had some limitations. First, the duration of the intervention was limited to 6 months, and therefore, it is difficult to determine the extent to which changes in BP and body composition could be sustained. Additionally, we cannot predict the effect of the intervention after 6 months. Secondly, as a feasibility study with limited resources, we recruited a small sample size. However, the findings are crucial in informing the design of a fully powered RCT. Thirdly, the study may have had measurement bias for anthropometric measurements, but this was minimized through training of the enumerators on standard procedures and their support supervision. The strengths of the study are that, to the best of our knowledge, this is the first study investigating the feasibility and effectiveness of CHW home-delivered interventions for the reduction of BP among a poor urban population in Kenya. Secondly, the baseline and follow-up outcome assessment surveys were done by independent outcome assessors and the key BP outcome was measured using an automated device to minimize the risk of assessor’s bias.

Conclusion

A CHW home based lifestyle intervention was effective in reducing BP and had a higher proportion of controlled hypertension compared to the usual care. These findings add to the body of knowledge on task-shifting interventions for treating high BP in LMICs. In particular, the study showed that utilization of CHWs from the already existing health-care systems of PHC in Kenya for management of hypertension is feasible in urban low-income settings of Kiambu County. Future fully powered RCT to test the effectiveness of such interventions are recommended.
Acknowledgement

Our special thanks go to the participants in this study for their invaluable contributions to this study. We thank the community health workers who conducted the intervention. We also thank the Sub-county management teams for their assistant during the data collection.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Funding statement

This research was supported by the Consortium for Advanced Research Training in Africa (CARTA). CARTA is jointly led by the African Population and Health Research Center and the University of the Witwatersrand and funded by the Carnegie Corporation of New York (Grant No. G-19-57145), Sida (Grant No:54100113), Uppsala Monitoring Center, Norwegian Agency for Development Cooperation (Norad), and by the Wellcome Trust [reference no. 107768/Z/15/Z] and the UK Foreign, Commonwealth & Development Office, with support from the Developing Excellence in Leadership, Training and Science in Africa (DELTAS Africa) programme. The statements made and views expressed are solely the responsibility of the authors.

References

Community BP screening
n=1656
 Eligible n=352 high BP (systolic ≤ 140 and/or diastolic ≤ 90 mmHg)

Excluded (n = 272)
Not meeting inclusion criteria
[n = 131(already on follow-up for BP in any health facility, n=110; >70 year, n= 21)]
Did not turn up in the recruiting facility during the recruitment period or refused to participate (n=141)

Recruited (n = 80) 40 from JuJa and 40 from Ruiru) – Facility randomized to intervention or usual care arm (simple random sampling)

Allocated to intervention (n = 40) (Ruiru primary Health facility)
Monthly home-visits for individualized counselling and BP audits
Received full allocated intervention (n = 37)

Allocated to usual care (Juja Primary health facility) (n = 40)
Follow-up clinic visits as prescribed.
Received full allocated intervention (n = 31)

Lost to follow up
(n =3) (2 were not available for home visits and 1 relocated)

Lost to follow up
(n = 9) (9 not available for outcome assessments visits and follow-up calls)

Analyzed = 37)

Analyzed (n = 31)
Figure 2

Mean Change in Blood Pressure after 6 Months

- Usual care arm
 - Systolic BP
 - Diastolic BP

- Intervention Arm
 - Systolic BP
 - Diastolic BP

The box plots show the distribution of mean change in blood pressure for systolic and diastolic blood pressure (BP) over 6 months, comparing the usual care arm to the intervention arm.