Understanding the variant landscape, and genetic epidemiology of Multiple Endocrine Neoplasia in India

Aastha Vatsyayan1,2, Juhi Bhardwaj1,2, Srashti Jyoti Agrawal1,2, Bhaskar Jyoti Saikia1,2, Arvinden VR1,2, Vigneshwar Senthivel1,2, Suruchi Trehan1,2, Kavita Pandhare1,2, Vinod Scaria1,2,3#

1CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi 110025, India; 2Academy of Scientific and Innovative Research (AcSIR), 3Present address: Vishwanath Cancer Care Foundation, B 702, Neelkanth Business Park Kirol Village, Mumbai, 400 086, India

Address for correspondence: vinods@igib.in * Tel. no. +919650466002

Grant Sponsors:
This work was supported by the CNP-0007 project funded by the Council for Scientific and Industrial Research (CSIR-India)

Conflict of interest: The authors declare that they have no conflict of interest.

Abstract
Aim: Multiple Endocrine Neoplasia (MEN) is a familial cancer syndrome that encompasses several different types of endocrine tumors. It has three main types, namely MEN1, MEN2 and MEN4 that may or may not overlap phenotypically, but are caused by genetic mutations in three different genes, namely RET, MEN1 and CDKN1B respectively. Genetic testing for effective diagnosis, improved prognosis, and treatment is recommended as part of of clinical practice guidelines, which makes establishment of accurate pathogenicity classification of variants across the three genes essential. However, few resources offer such classification, especially in a population specific manner.

Materials and Methods: Using the gold-standard ACMG/AMP guidelines for variant classification, we have systematically classified variants reported across the RET, MEN1 and CDKN1B genes reported in the IndiGen dataset, and established the genetic epidemiology of MEN in the Indian population. We have additionally classified variants from ClinVar and Mastermind, and made all variant classifications freely accessible in the form of a database called MAPVar.

Results: We have established the genetic prevalence of MEN in the Indian population to be the following: 1 in nearly 146 individuals are likely carriers of pathogenic RET mutations, and 1 in nearly 514 individuals are likely carriers of MEN1 pathogenic mutations. Overall, 1 in nearly 114 individuals are expected to be carriers of MEN-linked pathogenic mutations in the Indian population.
We have compiled ACMG-classified variants from three large datasets to create an exhaustive compendium of MEN-linked variants called MEN-Associated Pathogenic Variants (MAPVar). The database is available at: https://clingen.igib.res.in/MAPVar/

Conclusion: Our work establishes that MEN is prevalent disorder in India, with MEN2 variants being the most reported of the three types. This indicates the need of more genomic studies of MEN variants to establish a more comprehensive variant landscape specific to Indian populations.
Additionally, genetic testing is an effective tool used against MEN. Our resource MAPVar offers an exhaustive resource of ACMG-classified MEN variants, that can act as a ready resource to aid in interpretation of genetic testing results, as well as to better understanding genetic variants in clinical as well as research settings.

Keywords: Precision Medicine, Germline, Leukemia, Inherited susceptibility, Epidemiology, Genetic testing, NGS, Genomic Biomarkers
Introduction

Multiple Endocrine Neoplasia (MEN) is a familial or hereditary cancer syndrome encompassing a group of heterogenous clinical syndromes characterized by the occurrence of two or more endocrine gland tumors in a patient\(^1\). These syndromes include MEN1, MEN2, and MEN4. All three syndromes are autosomal dominant in nature, and are typically inherited, although sporadic cases are known to occur. MEN1, caused by inactivating mutations in the \(\text{MEN1} \) tumor suppressor gene, and is typically linked with parathyroid, gastro-entero-pancreatic neuroendocrine, and pituitary tumors. Patients may also develop cutaneous, adrenal cortex, and thyroid tumors, foregut carcinoids and meningiomas. Studies also report that women with MEN1 have a significantly higher risk of developing breast cancer.

MEN2 is caused by activation mutations in the \(\text{RET} \) proto-oncogene, and is further divided into three subtypes based on the disease phenotype: MEN2A, MEN2B and familial medullary thyroid carcinoma (FMTC). MEN2A typically presents with medullary thyroid carcinoma (MTC) and pheochromocytoma, while MEN2B additionally presents with manifestations such as “Marfanoid” body habitus, multiple mucosal neuromas, protruding lips, bone abnormalities, corneal nerve thickening etc. MEN2B patients exhibit more aggressive and penetrative MTC, but generally do not develop parathyroid disease. FMTC usually involves only MTC, and is considered a mild version of MEN2A.

MEN4 presents similarly to MEN1, but is caused by inactivating mutations in \(\text{CDKN1B} \) gene. The age of onset of MEN4 is later than MEN1, and the incidence of gastro-entero-pancreatic endocrine tumors is lower. Pituitary tumors are also less common in MEN4.

While MEN is linked with high penetrance (93-95%), and presents at a young age (30 - 50 years)\(^2\) it remains an under-studied familial cancer syndrome in India, with outdated prevalence numbers reported only in global populations. With creation of IndiGen\(^3\), the population-scale whole-genome sequencing dataset from 1029 healthy individuals from across the country, it is now possible to estimate and establish the genetic prevalence and variant landscape of variants linked with MEN in Indian populations. Essential to this endeavor are the variant classification guidelines provided by the American College of Medical Genetics and Genomics (ACMG) along with the Association for Molecular Pathology (AMP).

In this study, we systematically classify variants linked with MEN across the \(\text{RET}, \text{MEN1}, \) and \(\text{CDKN1B} \) genes reported in the IndiGen dataset in order to establish the genetic epidemiology of MEN in the Indian populations. We additionally classify variants in the three genes reported across 2 other large-scale datasets, namely ClinVar\(^4\) and Mastermind\(^5\), and create a compendium called MEN-Associated Pathogenic Variants (MAPVar) for ready reference to be utilized in clinical as well as research settings. We also prove the utility of the database by querying the GUaRDIAN\(^6\) cohort data, a nation-wide collaborative framework for decoding rare diseases in India. The MAPVar database is accessible at: \url{https://clingen.igib.res.in/MAPVar/}
Materials and Methods

Data collection and variant annotation
We queried three large datasets for all reported variants across the RET, MEN1 and CDKN1B genes; these included all variants reported in Mastermind and IndiGen, as well as all ClinVar VUS variants. We annotated all collected variants using the ANNOVAR tool (ver 2018-04-06), which utilized several databases to annotate variants with positional information (RefGene database), details regarding protein change (dbSNP), as well as allele frequencies from global population datasets including gnomAD v3, the 1000 Genomes Project (1KG), Esp6500 and Greater Middle East (GME). It also added computational predictions and pathogenicity scores generated by benchmarked tools including SIFT, PolyPhen2, and CADD.

We further queried the ClinVar database programmatically, and annotated the variants with the clinical significance reported there. We removed all variants reported as ClinVar benign/likely benign, as well as all non exonic variants, and also filtered in all Mastermind variants reported as being high-confidence variants reported in literature.

ACMG/AMP classification and establishment of genetic epidemiology
The variants for the three genes thus obtained were classified using the ACMG/AMP guidelines. Each variant was individually assessed for all 28 attributes that included variant allele frequencies reported across different populations, pathogenicity prediction scores from several tools, variant annotations obtained from various databases, and a thorough literature survey of studies performed on each variant. A detailed explanation of each attribute is provided in Supplementary Data 1. The attributes that were thus assigned to a variant were tallied using the Genetic Variant Interpretation Tool which generated the final classification for the variant.

Using the pathogenic mutations obtained in the IndiGen dataset, we established the genetic epidemiology of MEN in India.

Comparison with other populations
Upon classification, we collected all pathogenic/likely pathogenic variants obtained and compared their allele frequencies reported across 18 global populations datasets. These included 1KG, gnomAD, China Metabolic Analytics Project (ChinaMAP), the Hong Kong Cantonese population (HKG), TogoVar (Japanese population), Korea1K Variome (KGP), Korean Variant Archive 2 (KOVA 2), Qatar, Taiwan Biobank, GME populations and subpopulations, the Gambian dataset (Gambian), the GenomeAsia100K Project (GenomeAsia), Human Genome Diversity Project (HGDP), the Andamanese population (Andamanese), the Simons Genome Diversity Project (Simons), the Singapore Sequencing Indian Project (SSIP), the Singapore Sequencing Malay Project (SSMP), and the Iranome.
Establishing Haplotypes of Pathogenic RET variants
Since RET haplotypes are often implicated in MTC33-35, we decided to investigate their presence in the IndiGen data. We queried the RET gene coordinates across IndiGen, and ran it through Haploview 4.236. Concurrently, we ran the data through Plink37 to obtain scores for r^2 and D’ measures of Linkage Disequilibrium (LD).

MAPVar database and web interface design
We compiled all variants classified from across the three databases, along with the annotations used for ACMG classification, as well as the final classification category of the variant into the MAPVar database. The database interface was equipped with a search panel that enables users to access data through a wide variety of search queries including variant ID, nucleotide change, amino acid change, as well as rsIDs from dbSNP. The data was ported onto MongoDB (ver. 3.4.10), an open-source NoSQL database system, after being transformed into JavaScript Object Notation format. The web interface is running on Apache HTTP server, using PHP 7.0. The web interface was coded in PHP, AngularJS, HTML, CSS and Bootstrap4.

Patient Validation
We queried the pathogenic / likely pathogenic variants obtained in MAPVar database across the GUaRDIAN data, which encompasses multiple rare disease cohorts from across the country.

Results & Discussion
ACMG/AMP classification and establishment of genetic epidemiology
A total of 4,477 RET, MEN1 and CDKN1B variants were obtained from ClinVar, 1,369 from Mastermind, and 1,787 from IndiGen databases respectively. The collected variants were processed using bash scripts to obtain their coordinates as per the GRCh38 genome assembly; the ANNOVAR tool was then run to annotate the variants with gene name, allele frequencies and pathogenicity scores. Scripts were then used to annotate the variants with clinical significance from ClinVar. The resulting exonic variants across the three genes that were not reported as benign/likely benign in ClinVar were filtering in. A total of 1,324 unique variants were thus obtained. All the variants were systematically classified according to the ACMG/AMP guidelines.

Upon final classification using the Genetic Variant Interpretation Tool, all pathogenic variants across the three genes reported in the IndiGen dataset were used to calculate the genetic prevalence of MEN in India, using the following formula:

$$GP = 2\Sigma xi$$

where, $GP =$ Genetic Prevalence, $xi =$ allele frequency of pathogenic variants
We determined that 1 in nearly 146 individuals are likely carriers of pathogenic \textit{RET} mutations, and 1 in nearly 514 individuals are likely carriers of \textit{MEN1} pathogenic mutations.

Overall, 1 in nearly 114 individuals are expected to be carriers of MEN-linked pathogenic mutations in the Indian population.

These pathogenic mutations are detailed in Table 1.

<table>
<thead>
<tr>
<th>ID</th>
<th>Variant</th>
<th>rsID</th>
<th>Gene</th>
<th>Attributes</th>
<th>ACMG Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:43114541:C:T</td>
<td>NM_020975:exon11:c.1941C>T:p.I647I</td>
<td>rs75225191</td>
<td>\textit{RET}</td>
<td>PS3, PM2, BP7</td>
<td>Likely pathogenic (II)</td>
</tr>
<tr>
<td>11:64806357:T:G</td>
<td>NM_001370259:exon7:c.924A>C:p.S308S</td>
<td>-</td>
<td>\textit{MEN1}</td>
<td>PM5, PM2, BP7, PM1</td>
<td>Likely pathogenic (IV)</td>
</tr>
</tbody>
</table>

\textbf{Table 1:} Table depicting the Pathogenic variants in the IndiGen data obtained after application of quality cut-offs and classification through ACMG guidelines

\textbf{Comparison with other populations}

We compared all the pathogenic/likely pathogenic variants we obtained from the IndiGen database in the three MEN genes with 18 population-scale datasets. Of the 4 pathogenic/likely pathogenic variants obtained, we found matches for all 4 in 3 global datasets, namely !KG, ChinaMAP, and gnomAD. We applied the Fisher’s Exact test of significance to the allele frequencies of these variants, and determined variants present at statistically significantly different allele frequencies across different populations with respect to IndiGen. Figure 1 depicts a bubbleplot displaying these variants. The bubbles represent allele frequencies across each given population, while the yellow circles depict the statistically significant variants.
Establishing Haplotypes of Pathogenic RET variants

Using Haploview, we observed 4 haplotype blocks across the \textit{RET} gene (Figure 2), with Block 1 of 23kb, Block 2 of 358 bases, Block 3 of 8kb, and Block 4 of 17 kb size. Of our 3 pathogenic \textit{RET} IndiGen variants, two fell within the Block 4 region (rs561276725 and rs75225191), while 1 was seen in the Block 3 region (rs751572082). However, none of the variants were tag SNPs in any of the Blocks. Figure 2 show the LD Blocks obtained, while Supplementary Figure 1 shows the LD plot for the Blocks.

Figure 2: The four haplotype blocks obtained across the \textit{RET} gene

In our Plink analysis, the variant 10:43102608:G:A (rs751572082) had an \(r^2 \) score of 0.499755 and a D' score of 1. The low \(r^2 \) could be due to the fact that both variants are very rare (10:43102608:G:A AF=0.0010, and 10:43102014:G:C AF=0.0005). Since D' is not expected to be affected by allele frequencies, given the high score we can conclude that the two variants are in LD with each other.
The MAPVar database
We obtained a total of 1,324 unique variants across RET, MEN1 and CDKN1B genes from across IndiGen, ClinVar and Mastermind databases. We processed and annotated this data, and compiled it into the MAPVar database to act as a powerful reference resource for understanding the pathogenicity of MEN-linked variants. We additionally added all variants that had been annotated as per ACMG guidelines by a ClinVar expert panel to the database. Thus, we obtained 1097 Pathogenic, 1590 Benign, 1 Benign/risk factor, and 592 VUS variants, bringing the database to a total of 3280 ACMG-classified MEN-linked variants.

The database offers multiple formats to query the database with, all of which are enlisted on the homepage. Once a query in any of the enlisted formats is entered, a box containing the preliminary search results is displayed. Upon clicking on the “More Information” button in the box on the desired result entry, a new page bearing detailed information about the variant is opened. This includes information describing the variant, such as gene, chromosome, amino acid changes across various transcripts, alleles, as well as function of the gene and the disease it’s linked with. It also displays the allele frequencies across three global population sets (gnomAD, 1KG, and Esp6500), along with computational predictions made by SIFT14, PolyPhen215 and CADD16. Finally, the ACMG attributes associated with each variants, and the final classification obtained for the variant are provided in a separate section.

MAPVar is accessible at: https://clingen.igib.res.in/MAPVar/

Patient Validation
Using the MAPVar dataset, we obtained hits for 7 seven patient cases through the endocrine cohort of the GUaRDIAN project data. The cases encompassed 4 provisional diagnoses of MEN, and 3 suggestive of pheochromocytoma, which is often observed in MEN Type 2. A total of 5 unique variants were observed.

<table>
<thead>
<tr>
<th>ID</th>
<th>Variant</th>
<th>Gene</th>
<th>Classification</th>
</tr>
</thead>
</table>
Conclusions
Multiple Endocrine Neoplasia remains an understudied cancer syndrome in the Indian population. However, in our work we have established that MEN, especially linked with the RET gene is highly prevalent, and each gene, especially CDKN1B deserves more studies to establish the pathogenic variant landscape specific to India.

Genetic testing forms an important part of MEN diagnosis. Clinical practice guidelines recommend genetic diagnosis of the three MEN\(^1\) genes to identify the type of MEN disease. Further, it can be used to differentiate between MEN1 and MEN4, both of which present with similar clinical manifestations, but may result in a different disease prognoses\(^38\). Guidelines also state that presymptomatic tumor detection and undertaking treatment specific for MEN1 tumors could lead to an improved prognosis in MEN1 patients\(^39\). Patients diagnosed with MEN are further recommended to have their blood-related family members tested. Apart from early diagnosis and identification of asymptomatic carriers, genetic testing has also been shown to aid in preimplantation diagnosis\(^1,40–42\), thereby offering yet another way of tackling MEN cancers preemptively and more effectively.

Our database thus offers a powerful ready resource to access classification of variants linked with MEN, to enable easier interpretation of genetic testing reports, and also to understand variants in clinical as well as research settings better. The results obtained through the analysis of the GUaRDIAN endocrine cohort further prove the utility of the dataset in accurately identifying MEN-linked variants in patients.

Acknowledgements
Authors acknowledge funding from the Council of Scientific and Industrial Research (CSIR) through CNP-0007 Grant. The funders had no role in the preparation of the manuscript or decision to publish.

Declaration Of Interests
The authors declare no competing interests.

Author Contributions
VS conceptualized, designed and supervised the study.
AV performed ACMG classification, Epidemiology calculation, all other analyses, and compiled the manuscript.
KP created the database interface.
All other authors assisted with the ACMG classification.
Data Availability

All data produced are available online at: https://clingen.igib.res.in/MAPVar/
References

24. Wei, C.-Y. et al. Genetic profiles of 103,106 individuals in the Taiwan Biobank provide

