Common and Distinct Drug Cue Reactivity Patterns Associated with Cocaine and Heroin: An fMRI Meta-Analysis

Jordan M. Dejoie\(^1\), Nicole Senia\(^1\), Anna B. Konova\(^2\), David V. Smith\(^3\) & Dominic S. Fareri\(^1\)

\(^1\) Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY
\(^2\) Department of Psychiatry, Rutgers University
\(^3\) Department of Psychology and Neuroscience, Temple University

Corresponding Author:
Dr. Dominic Fareri
Adelphi University
Gordon F. Derner School of Psychology
Blodgett Hall, Rm. 212C
Garden City, NY 11530
Phone: 516-877-4824
E-mail: dfareri@adelphi.edu

This manuscript is supported in part by funding from National Institute on Mental Health (R15MH122927 to DSF), the National Institute on Drug Abuse (R01DA053282, R01DA054201 to AK), and the National Institute on Aging (RF1-AG067011 to DS).

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Substance use and substance use disorders (SUDs) represent ongoing major public health crises. Specifically, the use of illicit substances such as cocaine and heroin are responsible for over 50,000 drug related deaths annually. Our study used a comparative meta-analysis procedure to contrast activation patterns that may help explain the behavioral differences observed. PubMed and Google Scholar were searched for studies with within-subject whole brain analyses comparing drug to neutral cues for users of cocaine and heroin. A total of 18 studies were included, 9 in each subgroup. Voxel-based meta-analyses were performed using seed-based d mapping with permuted subject images (SDM-PSI) for subgroup mean analyses and a contrast meta-regression comparing the two substances. Mean analysis results indicated that users of heroin showed more widespread activation in the nucleus accumbens, right inferior and left middle temporal gyrus, the right thalamus, and the right cerebellum while cocaine use was associated with recruitment of lateral prefrontal cortex. Direct comparison of cue reactivity studies in heroin relative to cocaine users revealed greater activation in dopaminergic targets for users of heroin compared to users of cocaine. Differential activation patterns between substances may underlie behavioral differences observed across users of illicit substances, including seeking mood numbing effects in users of heroin. More consistent research methodology is needed to provide adequate studies for stringent meta-analyses examining common and distinct neural activation patterns across substances.

Key Words: fMRI, cocaine, heroin, whole-brain, cue-reactivity, drug
1. Introduction

Substance misuse is a costly public health problem that has only been exacerbated by the ongoing COVID-19 pandemic. According to the Substance Abuse and Mental Health Services Administration’s (SAMHSA) 2021 annual report, individuals using substances before the global pandemic reported an exponential increase in use following the pandemic (National Center for Health Statistics, 2020; Substance Abuse and Mental Health Services Administration, 2021). Additionally, data from the National Survey on Drug Use and Health identified 21.4%, or approximately 59.3 million people 12 or older, had used illicit drugs (e.g., cocaine, heroin, methamphetamine) within the last few years (National Center for Health Statistics, 2020). These data further highlight that of the 59 million affected individuals, approximately 40 million met criteria for a substance use disorder, and 18 million of these individuals met criteria for an illicit substance use disorder. The growing prevalence of substance use disorders among the US population, particularly related to illicit substances lacking regulation, thus represents a significant threat to public health as these drugs remain particularly lethal and are responsible for a significant number of deaths annually. While this public health threat certainly dates back prior to the COVID-19 pandemic, there has been a substantial increase in concern since the onset of the pandemic, evidenced by an increase of over 6,000 publications on the topic in the two years following the onset of the pandemic (2020-2022) relative to the two years prior (2017-2019).

Further, though the variety of illicit drugs available for use has increased over time, stimulants (e.g., cocaine) and opioids (e.g., heroin, fentanyl, prescription medications) remain two of the most lethal classes of illicit drugs (Degenhardt et al., 2013), with opioids accounting
for almost 20,000 deaths annually and stimulants accounting for over 30,000 deaths—(National Institute on Drug Abuse, 2022). Recent overdose data suggests that polysubstance use (the use of multiple substances at once) is on the rise as both classes of illicit drugs are increasingly present in drug-related deaths (CDC, 2023). Polysubstance use may point to a shared mechanism that encourages their co-use.

On the contrary, differences in usage patterns between these classes of drugs has also been well-documented. For example, heroin use is often associated with a more consistent, chronic and high rate of use whereas cocaine tends to involve more episodic, intermittent, and moderate use (Hser et al., 2008a; Hser et al., 2008b). Users of heroin also tend to begin use at a younger age and as a result have a longer duration of lifetime use than people who use cocaine (Hser et al., 2008a; Hser et al., 2008b). Behaviorally, users of cocaine demonstrate higher levels of impulsivity and impaired inhibition, resulting in higher rates of risk-taking and reward-seeking behaviors such as sexual promiscuity compared to people who use heroin (Lejuez et al., 2005; Bornovalova et al., 2005). These behavioral differences emerge both during periods of abstinence from drug use as well as periods of acute usage, making it difficult to determine whether the causality of the behavioral differences is related to the acute effects of the drug, latent neural variation, or neural effects following drug usage.

Interestingly, whether one is in a social or non-social environment appears to impact drug choice (Caprioli et al., 2009; De Pirro et al., 2018). In both animal and human models, heroin use was preferred in non-social contexts, whereas cocaine use was preferred in social contexts (Caprioli et al., 2009). Additional evidence indicates that such contextual preferences impact the effects of the drug, such that effects of heroin may be more intense when alone,
whereas effects of cocaine tend to be amplified in social situations (De Pirro et al., 2008). In sum, these differences suggest that in addition to shared mechanisms, there may also be divergent mechanisms that are important to identify to better understand patterns of usage of cocaine and heroin. The implications of identifying divergent mechanisms (i.e., pinpointing behavioral risk-factors for the development of a particular SUD, developing drug-specific treatment interventions) are imperative given the rapidly increasing rates of use and subsequent deaths caused by these illicit substances.

A common component of substance use disorders that is closely tied to reuse and relapse is drug craving (i.e., the strong wanting or desire for a substance; Vafale & Kober, 2022). Characterizing the ways in which the brain differentially responds to craving in people who use cocaine and heroin may provide an important way to assess shared and distinct vulnerability mechanisms and may have implications for developing more targeted interventions to prevent their use. Cue-reactivity paradigms are reliably related to subjective experiences of drug cravings and are thus widely used well–supported laboratory assessments in samples of individuals using substances (Drummond, 2000), and (Carter & Tiffany, 1999; Janes et al., 2020; but see also Tolliver et al., 2010). Typically, such paradigms involve exposure to a drug cue or set of drug cues (e.g., visual images of a drug or associated paraphernalia, auditory drug cues via stories or sounds) and the subsequent measurement of self-reported craving or physiological responses to said cues (e.g., psychophysiological signals, patterns of neural activation; Carter & Tiffany, 1999; Drummond, 2000; Courtney et al., 2016).

Task-based fMRI studies implementing cue-reactivity paradigms in people who use cocaine have suggested that targets of dopaminergic input such as the striatum, prefrontal
cortex, and thalamus (Haber & Knuston, 2010; Wang, Smith & Delgado, 2016; Bartra et al., 2013; Huang et al., 2018) play a key role in craving and sustaining the cycle of addiction, consistent with rodent models (Jentsch & Taylor, 1999; Goldstein & Volkow, 2002; Everitt & Robbins, 2005; Huang et al., 2018). Indeed, this circuitry is well-established as important for encoding subjective value, decision-making and reward-processing (Haber & Knuston, 2010; Bartra et al., 2013; Fareri & Delgado, 2013; Konova & Goldstein, 2015; Dennison, Sazhin, & Smith, 2022). Specifically, studies on people who use cocaine have shown an increase in activation in the bilateral ventral striatum, dorsal caudate, and amygdala when users of cocaine were exposed to cocaine cues, as well as during go no-go tasks using drug cues (Prisciandaro et al., 2014). Evidence also shows increased activation among people who use cocaine to cocaine cues (vs. neutral cues) in the cerebellum, orbitofrontal, inferior frontal, and premotor cortices, and insula during cue-reactivity and stop-signal tasks (Tomasi et al., 2015; Ersche et al., 2011). Furthermore, increased activation has been reported in the left occipital cortex, left superior frontal gyrus, right dorsolateral prefrontal cortex, bilateral hippocampus, right amygdala, and posterior cingulate cortex during cue-reactivity to drug v neutral cues, and stop-signal tasks in people who use cocaine (Prisciandaro et al., 2014). Taken together, these findings suggest cocaine use strongly impacts brain regions within the dopaminergic reward circuit, which likely serve as the neural underpinnings to the observable changes in reward processing, response inhibition and impulsivity, and emotional symptoms in people who use cocaine.

People who use heroin similarly demonstrate altered reactivity within dopaminergic and reward processing circuits. For example, people who use heroin showed increased activation during cue-reactivity tasks in the dorsolateral prefrontal cortex (DLPFC), insula, and
orbitofrontal cortex (OFC; Liu et al., 2021), as well as in the mesolimbic dopaminergic system and visuospatial-attention regions (Li et al., 2014). Interestingly, people who use heroin that relapsed, compared with those who did not relapse, showed increased activation in the bilateral nucleus accumbens/subcallosal cortex and cerebellum, suggesting this differential activation pattern may be indicative or predictive of risk for relapse (Li et al., 2014). Attenuation of activation in regions associated with behavioral regulation and impulsivity (e.g., Anterior cingulate) has also been observed in people who use heroin during tasks requiring cognitive control (Lee et al., 2005), suggesting that an increase in impulsivity and behavioral dysregulation may be associated with heroin use.

Taken together, studies have begun to identify common neural circuits implicated in cocaine and heroin use (Cooper et al., 2017; Hassani-Abharian et al., 2015; Jasinska et al., 2015; Pollard et al., 2023; Wang et al., 2015). Convergent cortical activation can be seen in various subregions within the prefrontal cortex including the dorsolateral, medial, and ventromedial regions as well within the cingulate cortex (Duncan et al, 2007; Elton et al., 2015; Goldstein et al., 2015; Hassani-Abharian et al., 2015; Hanlon et al., 2018; Kaag et al., 2018; Li et al., 2013; Li et al., 2012). Convergent subcortical activation is often seen in regions such as the caudate nucleus, nucleus accumbens, the hippocampus and parahippocampal gyri (Elton et al., 2015; Goldstein et al., 2009; Hassani-Abharian et al., 2015; Kaag et al., 2018; Li et al., 2013; Li et al., 2012).

Yet, despite these areas of overlap, there are also distinct differences between neural regions implicated in people who use cocaine and heroin, and a variety of differences in methodological approaches applied in service of study of this topic. For example, evidence
suggests that cocaine use appears to recruit more tightly constrained circuits including canonical reward circuitry and the default mode network (Goldstein et al., 2009; Elton et al., 2015; Kaag et al., 2018) whereas activation associated with heroin use appears to be more widespread and more likely to include regions supporting motor function (Hassani-Abharian et al., 2015; Li et al., 2012; Li et al., 2013). Further, prior meta-analyses studying users of these substances have largely utilized broad inclusion criteria, examined users of a single drug (rather than a direct comparison across substances) or examined outcomes other than functional activation (e.g., gray matter, structural differences); these differences in methodology impact the ability to isolate activation patterns solely in response to reactivity to drug cues to neutral cues between users of these difference substances (Hall et al., 2015, Wollman et al., 2015; Wollman et al., 2017; Devoto et al., 2020; Suchting et al., 2020; Dang et al., 2022; Pollard et al., 2023). Thus, in order to completely understand differential activation patterns across these two substances a more stringent synthesis regarding the neural circuits implicated in cocaine and heroin usage is needed. Another important question is whether observed activation patterns in response to drug versus neutral cues vary as a function of important covariates such as length of drug use and/or abstinence from use. This more targeted investigation of reactivity to drug cues between users of cocaine and heroin may help to better characterize involvement of differential neural circuitry, potentially laying the groundwork for more targeted interventions and treatment.

To address these gaps, we conducted a meta-analysis of fMRI studies aimed at comparing activation patterns during cue-reactivity tasks for drug relative to neutral cues in people who use cocaine and people who use heroin. We applied strict inclusion criteria for our
meta-analysis such as utilizing studies implementing within subjects, wholebrain analyses of drug vs neutral cues. We expected that studies of both people who use cocaine and people who use heroin will show significant engagement of reward-related and dopaminergic circuits during cue-reactivity tasks, given the well-documented recruitment of these circuits by both substances. We also expected that, people who use cocaine will exhibit greater activation in corticostriatal circuits than people who use heroin, given possible differences in levels of impulsivity, risk taking, and impaired inhibition observed in cocaine relative to heroin. We also explored the impact of length of use on neural correlates of cue reactivity, with the expectation that length of use would be negatively associated with activation in dopaminergic regions including the prefrontal cortex and regions associated with reward processing such as the striatum.

2. Method

2.1 Literature search and study selection

A literature search was conducted via PubMed and Google Scholar (up to April 2022) to identify applicable studies. Keywords used were (‘cocaine’, ‘heroin’, OR ‘substance use’) AND (‘cue-reactivity’, ‘fMRI’, ‘images’). All reference lists from identified studies were checked manually for additional applicable studies. In the current meta-analysis, studies were included if (1) analyses were conducted via fMRI; (2) participants were healthy adults over the age of 18; (3) participants were either abstaining from or currently engaging in drug use; (4) the study included a substance vs. neutral whole-brain contrast; (5) the study utilized a cue-reactivity paradigm; (6) reported coordinates in either Montreal Neurological Institute (MNI) or Talairach...
and Tournoux space. Studies were excluded if (1) they lacked a substance vs. neutral whole brain contrast analysis; (2) included PET data; (3) there was insufficient reporting of fMRI data or findings; (4) they did not report coordinates from whole-brain analyses; (5) neither people who use cocaine nor heroin were included in the study; (6) analyses were not separated according to drug type.

Studies were selected based on the above inclusion and exclusion criteria and were reviewed and corrected by multiple authors (JD, NS, DF). Figure 1 depicts the process of literature search and study selection. A total of 1025 studies were initially identified via the literature search; any duplicates from searches were removed. Next, 949 studies were excluded based on title/abstract review. The remaining 76 full text articles were assessed for eligibility. Exclusion of studies occurred for a variety of reasons including: 1) participant groups were composed of people who use opiates, in general, as opposed to solely people who use heroin; 2) only between-group analyses were conducted comparing people who use substances to healthy controls—no within-subjects analyses examining responses to drug versus neutral cues; 3) lack of reporting of whole brain analyses, a focus on only connectivity or solely ROI analyses; 4) Lastly, an implementation of experimental tasks other than a drug versus neutral cue task (i.e., stroop word task, drug versus food cues, etc.). Of the 76 full-text studies, 58 studies were excluded based on the above criteria, leaving 18 studies remaining (total N = 447). -Each subgroup—cocaine and heroin—was composed of 9 studies ($N_{\text{cocaine}}=273; N_{\text{heroin}}=174$) that were included in this meta-analysis.

2.2 Seed based d mapping
Seed-based d mapping (SDM) SDM-PSI v. 6.22, (formerly Signed Differential Mapping) is a specific statistical method used for meta-analyzing structural and/or functional differences in the brain across studies using a variety of different neuroimaging techniques including fMRI, VBM, DTI, or PET (Albajes-Eizagirre et al., 2019a). The SDM method consists of a series of steps. To begin, coordinates of identified cluster peaks from individual studies are entered. Next, during pre-processing, the upper and lower bounds of possible effect sizes (Hedges g) and variances are calculated for each study. A mean-analysis is then performed where maximum-likelihood estimation (MLE) and MetaNSUE are implemented to estimate the most likely effect size for each included study and its standard error (Albajes-Eizagirre et al., 2019a). MetaNSUE is a meta-analytic method that decreases bias and permits inclusion of non-statistically significant unreported effects (NSUEs) (Albajes-Eizagirre et al., 2019b). MetaNSUE involves multiple imputations that are subsequently created by adding noise to the estimations within the previously calculated bounds (Albajes-Eizagirre et al., 2019b). Each of the imputed data sets are then meta-analyzed, and Rubin’s rules (a pooling of parameter estimates in an imputed data set to provide confidence intervals and p-values) are applied to combine the imputed meta-analyzed datasets. Lastly, a subject-based permutation test is conducted in which the maximum statistics, (i.e., the largest z-value reflecting the peak of activation across the whole brain in each study), from the combined meta-analysis images are saved (Albajes-Eizagirre et al., 2019b). A family-wise error rate correction (FWER) for multiple comparisons is then performed using the distribution of the maximum statistic.

2.3 Meta-Analysis Procedure
Coordinates of peak activation and additional pertinent information (e.g., statistical values [p-value, t-value, z-value], statistical thresholds, and sample sizes) for each within-group drug cue > neutral contrast from the included studies were collected and converted into text files. Any p-values or z-values reported in the studies were converted to t-values using the SDM online converter. We then conducted the voxel-based meta-analysis using SDM-PSI v. 6.22. For the general meta-analysis for each group and the subsequent linear model, the same parameters were utilized and are outlined as follows. Pre-preprocessing for each group was conducted within a gray matter mask using the default settings within SDM-PSI: a 20-mm anisotropic full width half maximum (FWHM) kernel and 2-mm voxel size (Albajes-Eizagirre et al., 2019a). The mean analysis and permutation tests were then performed within each group of studies separately (cocaine, heroin), with the number of imputations set to 50 and the number of permutations set to 1000. The results of the meta-analyses of the subgroups were then corrected using the FWER correction with 1000 permutations and subsequently thresholded at $p < .05$.

2.4 Contrast Analysis

We conducted a linear regression to compare the two subgroups, Heroin > Cocaine and Cocaine > Heroin. The inter-study heterogeneity of each cluster surviving correction was measured by the I^2 index, which represents the proportion of total variation due to study heterogeneity (Higgins and Thompson, 2002). $I^2 > 50\%$ commonly indicates considerable heterogeneity. The maps resulting from the contrast analyses were also corrected to a level of $p < .005$ TFCE-FWER, with a cluster extent threshold of ≥ 10 voxels. Subsequent bias tests (e.g.,...
funnel plots, I^2 index, metabias tests, and excess significance tests) were conducted for this analysis using the SDM software.

2.5 Exploratory Meta-Regression

We additionally tested several moderators that could influence differences in activation in these samples. These included lengths of substance use and length of abstinence, if any, from use. To examine this relationship, we conducted a meta-regression incorporating length of use and a substance type x length of use interaction into the model. The inter-study heterogeneity of each cluster surviving correction was measured by the I^2 index, which represents the proportion of total variation due to study heterogeneity (Higgins and Thompson, 2002). $I^2 > 50\%$ commonly indicates considerable heterogeneity. The maps resulting from the contrast analyses were also corrected with $p < .005$ TFCE-FWER, with a cluster extent threshold of ≥ 10 voxels. MRicroGL (http://www.mccauslandcenter.sc.edu/microgl) was used to visualize results from all analyses.

3. Results

3.2 Mean analysis of subgroups

Fourteen clusters/peaks were identified as statistically significant in the heroin subgroup for drug cues > neutral cues following the general meta-analysis in SDM (Figure 2). Regions within these clusters (peak x, y, z coordinates reported in MNI space) include the (1) left medial cingulate (-2,30,32), (2) right superior (6, 48, 42) and inferior (48,14,32) frontal gyri, (3) right anterior thalamus (6,48,42), (4) left amygdala (-28,-2,-22), (5) left inferior temporal gyrus (-48,-66,-6), and (6) right cerebellum (24,-74,-44). For a full list of significantly activated regions and
their respective coordinates, see Table 3. Only one cluster/peak—right precentral gyrus/inferior frontal gyrus (46, 4, 30) was identified as statistically significant in the cocaine subgroup for drug cues > neutral cues following the general meta-analysis (Figure 3).

Considering the small number of studies (less than ten) that fell within each subgroup, bias test statistics were not reliable for the within substance mean analyses and were not interpreted (SDM-PSI v. 6.22).

3.3 Contrast analysis

Our primary interest was in examining differential recruitment of neural circuits at the whole brain level between the cocaine and heroin subgroups in response to drug relative to neutral cues. We performed a contrast analysis to investigate this question. We observed increased activation in the Heroin > Cocaine contrast in several regions (see Figure 4) including: (1) right inferior (48,-74,-4) and superior (30, -68,50) parietal gyrus; (2) thalamus (6,-14,2); (3) caudate nucleus (-10,10,10); (4) right superior frontal gyrus (6,48,40); and (5) right cerebellum (20,-80,-40). For a full list of significantly activated regions and their respective coordinates see Table 4. Low between-study heterogeneity was found for each significant peak ($I^2 = 0.74 - 32.2\%$). Funnel plots were symmetric, suggesting that none of the results were a function of a small subset of included studies or by studies with a small sample size. Metabias tests supported these findings as results were all non-significant (all p’s > 0.58). No significant clusters/peaks survived correction for the Cocaine > Heroin contrast. No study had an I^2 value that exceeded 32% suggesting that the between-study variance was low with most variance attributed to within study sampling error.
3.4 Exploratory Meta-Regression

An important consideration when examining activation differences across groups is whether they are moderated by the lifetime length of use of the particular substance, as resulting activation patterns to drug cues may vary in accordance with acute and chronic usage. To address this question, we conducted an exploratory meta-regression examining a whole-brain interaction between drug type and average length of use (in months). Fifteen of the eighteen original studies were used for this analysis, as three studies did not provide average length of use data (see Table 2 for full list of included studies). This exploratory analysis revealed a negative interaction in clusters including the left superior frontal gyrus (both the medial (-2,62, 20) and dorsolateral areas, (-18.38, 46), which suggests that activation here decreased as length of use increased in people who use cocaine. Low between-study heterogeneity was found for each significant peak ($I^2 = 1.48-3.14\%$). Funnel plots were symmetric, suggesting that none of the results were a function of a small subset of included studies or by studies with a small sample size. The potential publication bias tests were all non-significant ($p = .998$). No significant clusters of activation survived whole-brain correction for people who use cocaine. No study had an I^2 value that exceeded 32%.

4. Discussion

4.1 Mean Analyses

Substance use poses an increasing and significant public health threat, prompting a need for better understanding of the mechanisms of vulnerability to use substances and their targeted clinical interventions. Opioids and stimulants have remained two of the most
frequently used and lethal classes of substances, accounting for a significant proportion of drug
related deaths annually, with cocaine and heroin representing commonly used substances in
each of these drug classes. Despite cocaine and heroin use being associated with different
behavioral and clinical presentations, the neural differences between these substances have
not been well delineated. In the present study, we sought to investigate the differential neural
underpinnings in two major drugs of abuse, cocaine and heroin. We specifically focused on
studies implementing cue-reactivity paradigms, a gold-standard approach to the clinical
neurobiology of craving, with a focus on responses to drug cues relative to neutral cues. Our
results demonstrate that there are previously underappreciated differences in activation
between people who use heroin and people who use cocaine, for example increased (rather
than decreased) activation in dopaminergic regions in people who use heroin.

We found differential activation patterns across people who use cocaine and people
who use heroin in both mean analyses of the subgroups and in a contrast analysis. Specifically,
mean analyses within each subgroup (i.e., cocaine and heroin) revealed consistent activation in
dopaminergic targets of the brain, supporting our hypotheses. However, the mean analyses for
individuals who use heroin showed more widespread recruitment (e.g., left middle cingulate,
right superior frontal gyrus, left inferior frontal gyrus, left caudate nucleus) within these circuits
than people who use cocaine. Further, directly comparing studies investigating cue-reactivity in
people who use cocaine and people who use heroin showed that those who use heroin
demonstrated increased recruitment of the striatum (caudate nucleus), right inferior and left
middle temporal gyrus, the right thalamus, and the right cerebellum than people who use
cocaine. Taken together, these findings provide further evidence that heroin use recruits
dopaminergic targets within the brain, specifically within the striatum (caudate nucleus) when viewing drug-related cues. When compared with people who use cocaine, nuanced differences emerge between functional activation patterns during cue reactivity, including increased activation in the right inferior and left middle temporal gyrus, the right thalamus, and the right cerebellum in people who use heroin.

Results from the mean analysis of heroin studies revealed that people who use heroin showed significant activation in the left cingulate, the right superior and inferior frontal gyrus, the right anterior thalamic projections, the right and left amygdala, the left caudate nucleus, and the right cerebellum. These findings are consistent with rodent work indicating that acute heroin administration within the VTA enhanced calcium signaling in dopaminergic neurons (as well as in serotonin neurons within the dorsal raphe nucleus (DRN)) (Wei et al., 2018); this increased activity within dopaminergic and serotonergic neurons corresponded with increased locomotor function at the same time. We note that similar patterns of results were reported in this study for administration of cocaine into the VTA and DRN (Wei et al., 2018), though we did not see consistent recruitment of dopaminergic regions in our mean analysis of cocaine studies. Instead, results for the cocaine mean analyses revealed significant peaks of activation in the right precentral gyrus. No overlap in areas of recruitment was found across the two subgroups of studies.

Our findings converge with some prior fMRI studies examining cue-reactivity in people who use heroin and people who use cocaine. For example, Yang et al. (2009) conducted a study examining neural responses to cue-reactivity in people who use heroin, reporting significant activation in the amygdala and cerebellum. Significant activations were also found in frontal
regions and reward circuity, albeit with some variation in the specific peak locations when compared with our findings (Yang et al., 2009; Pollard et al., 2023). However, support for this result is variable, with some studies finding significantly decreased activation in the left precentral gyrus (Moeller et al., 2010). It is difficult to compare across these studies as methodology and task design varies greatly. More replication within one task design is needed.

4.2 Contrast Meta-Regression

Interestingly, and contrary to our hypotheses, our direct comparison of cue reactivity between substances revealed increased recruitment of dopaminergic and other areas in people who use heroin relative to people who use cocaine. These findings may provide preliminary neural underpinnings for the behavioral and clinical differences between heroin and cocaine use, including frequency of use and impulsive behavior, but replication and further research is needed (Hser et al., 2008a; Hser et al., 2008b; Lejuez et al., 2005; Bornovalova et al., 2005).

A study examining attention across individuals who use substances found that heroin use was associated with delayed attentional responses, whereas cocaine use was associated with increased interference with attention (Bjork et al., 2022). Opiate use has also been linked to impacts on decision-making impacting including response inhibition and delayed gratification (Psederska & Vassileva, 2023). Opiate use may affect other aspects of decision making, such as risky choices, differentially depending on length of abstinence (Psederska & Vassileva, 2023). Our results may parallel these findings, as both cocaine and heroin users show general activation in regions associated with attention and cognitive control (e.g., prefrontal cortex, parietal regions) however, users of heroin seem to show more significant activation in regions...
associated with cognitive control compared to users of cocaine, a finding which may related to the differences in attentional disruptions found in behavioral tasks (Bjork et al., 2022; Psederska & Vassileva, 2023).

A recent study comparing whole-brain white matter (WM) abnormalities in people who use cocaine and heroin found that while both people who use heroin and people who use cocaine showed abnormalities in WM, people who use heroin showed significantly decreased fractional anisotropy (FA) overall in the brain compared with people who use cocaine (Gaudreault et al., 2022), suggestive of decreased white matter integrity. Our results may dovetail with these in that we find studies of people who use heroin showing more diffuse activation than people who use cocaine in dopaminergic regions, specifically the right inferior and left middle temporal gyrus, the right thalamus, and the right cerebellum.

Additional evidence from studies examining volumetric impacts of cocaine and heroin use have also converged on the involvement of the nucleus accumbens, which has shown significant gray matter reduction, in people who use -both substances when compared to healthy controls; however, we note that this pattern was more robust in people who use heroin (Ceceli et al., 2022; Seifert et al., 2015; Carlezon & Thomas, 2009). Similar findings were reported in the vmPFC (Ceceli et al., 2022). These observed volumetric differences may suggest biomarkers of susceptibility to substance (ab)use or consequences of prolonged use, which may in turn be related to alterations in functional activation (Ceceli et al., 2022; Seifert et al., 2015). The incorporation of both functional and volumetric measurements, while controlling for contextual factors (e.g., duration of use, recency of use, age of onset) when examining the
implications of substance use in future studies may help address these questions (Oakes et al., 2007).

4.3 Length of Use

Our exploratory meta-regression demonstrated that activation in the left superior frontal gyrus, both the medial and dorsolateral areas, decreased as length of use increased in people who use cocaine. However, no significant relationship between heroin and length of use was found. Literature examining the effect of duration of use on brain activation is limited; however, our findings fit within literature suggesting that drug use is known to impact the prefrontal cortex (Goldstein & Volkow, 2012). A model put forth by Volkow et al. (2010) posits that one of the effects of chronic drug use is decreased reward sensitivity or hypoactivation in the prefrontal cortex (PFC). It is unclear whether this is a direct reflection of the effects of chronic drug use on the brain or perhaps better explained by the tolerance hypothesis—i.e., that over time, one needs an increasing amount of a drug to produce the same effect (Peper, 2004). Additionally, Ferenzci et al. (2016) also found a similar pattern of deactivation in the PFC with length of substance use, though they also demonstrated a subsequent increase in BOLD activation in the striatum. While our findings did not show an increased BOLD response in the striatum, this relationship warrants further exploration as our lack of findings in this area may be a function of duration of use for study participants as well as our small sample size. Future studies in larger samples could evaluate both length of use and amount of use over time to provide to explore this relationship further. Additionally, future studies should further examine the relationship between length of use and heroin as our study may not have incorporated...
enough variation in length of heroin use to fully capture whether a relationship was meaningful.

4.4 Limitations

Limitations of this study include a small sample size due to limited availability of literature for within-group cue-reactivity studies examining only people who use heroin or cocaine. The small sample size impacts the generalizability of these results to widespread populations of people who use cocaine and heroin. Another limitation of the current study is the lack of or inconsistencies in demographic data collected across studies further limiting external validity. Important co-variates such as additional/co-occurring diagnoses, amount of use, frequency of use, etc. need to be collected across all studies to enhance generalizability and provide opportunities for answering more complex and nuanced questions related to drug addiction. Further, there was variability across studies in the duration of use and time since recent use, preventing the ability to control for these factors in the analysis.

4.5 Future Considerations

Given the clinical and behavioral findings that social context is related to drug choice, future studies should consider incorporating a social context into cue-reactivity tasks. This would expand the clinical and behavioral findings to include the effects of social context on functional activation. Future studies should consider implementing a standardized demographic and clinical data collection procedure that includes relevant contextual factors (e.g., time since last use, length of use, amount used) to enhance external validity and better understand the relationship between these factors and neural responses to drug cues (Ekhatiari et al., 2022).
Further, future research should examine how the nuanced activation differences identified here may relate to differences identified in other areas of substance use, such as responsiveness to treatment (Lichenstein et al., 2021). Lastly, future longitudinal studies may help answer whether and how such neural activation patterns during cue reactivity precede or succeed problematic substance use.

Taken together, our findings show that while there is some overlap in neural activation across heroin and cocaine use, there are distinct neural patterns uniquely associated with each substance. Additionally, these differential activation patterns in people who use heroin may be a function of length of use. Therefore, it is imperative that research continue to evaluate both the convergence and divergence of activation patterns across substances, as well as individual differences in length of use among other variables in order to relate such findings to behavioral differences as well as individualized treatments.

CredIT Statement

Jordan Dejoie (Data Acquisition, Methodology, Writing – original draft, Visualization). Nicole Senia (Conceptualization, Data Curation), David Smith (Conceptualization, Methodology, Writing – review & editing, Visualization), Anna Konova (Conceptualization, Writing – review & editing, Visualization), Dominic Fareri (Supervision, Formal Analysis, Writing – review & editing, Visualization)

Data Availability

All text files used in this meta-analysis are accessible via Open Science at https://osf.io/gmu5v.

Declaration of Competing Interests

The authors hereby declare that there are no competing financial or personal interests that could have appeared to influence the work reported in this paper.

Ethics Statement

Not applicable due to meta-analytic study.
References

Drummond, D.C. (2000). What does cue-reactivity have to offer clinical research? *Addiction*, 95 (Supplement 2), S129-S144.

Substance Abuse and Mental Health Services Administration (2021). Key substance use and mental health indicators in the united states: Results from the 2020 national survey on drug use and health. https://www.samhsa.gov/data/sites/default/files/reports/rpt35325/NSDUHFFRPDFWHTMLFiles2020/2020NSDUHFFR1PDFW102121.pdf

pharmacotherapy in heroin dependence. *Translational Psychiatry, 5*, e531.doi:10.1038/tp.2015.20

Figure 1. Flowchart PRISMA diagram outlining the process of literature search and study selection.
Figure 2. Activated peaks associated from mean analysis of 9 heroin cue-reactivity studies where drug > neutral cue. Threshold was set at $p<.005$ TFCE-FWER and cluster size ≥ 10 voxels. Coordinates reported in MNI space. See Table 3 for a full list of activated peaks.

Figure 3. Activated peaks associated with the mean analysis of 9 cocaine cue reactivity studies where drug cue < neutral cue. Threshold was set at $p<.005$ TFCE-FWER and cluster size ≥ 10 voxels. Coordinates reported in MNI space. Image shows precentral gyrus.

Figure 4. Peak activations associated with the contrast analysis of heroin > cocaine subgroups for drug > neutral cues. Threshold was set at $p<.005$ TFCE-FWER and cluster size ≥ 10 voxels. Coordinates reported in MNI space. Left panel: thalamus and right superior frontal gyrus. Center panel: Superior parietal gyrus, right panel: right inferior parietal gyrus, left caudate nucleus, thalamus.
Figure 5. Peak activations across 15 studies of the interaction between length of use and drug type for drug > neutral cues. Threshold was set at p<.005 TFCE-FWER and cluster size ≥ 10 voxels. Coordinates reported in MNI space. Left panel: left superior frontal gyrus, medial. Right panel: Left superior frontal gyrus, dorsolateral.
Table 1. Characteristics of 18 fMRI studies included in the contrast meta-analysis and sub-group mean analyses.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>N</th>
<th>Task</th>
<th>Drug</th>
<th>Space</th>
<th>LOU</th>
<th>Mean Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duncan, E., Boshoven, W., Harenski, K. et al.</td>
<td>2007</td>
<td>10</td>
<td>Script guided mental imagery</td>
<td>C</td>
<td>MNI</td>
<td>15.9</td>
<td>43.6</td>
</tr>
<tr>
<td>Elton, A., Smitherman, S., Young, J. et al.</td>
<td>2014</td>
<td>20</td>
<td>Script guided mental imagery</td>
<td>C</td>
<td>MNI</td>
<td>176.4</td>
<td>40</td>
</tr>
<tr>
<td>Goldstein, R., Tomasi, D., Alla-Klein, N. et al.</td>
<td>2009</td>
<td>15</td>
<td>Word-Cue Task</td>
<td>C</td>
<td>TAL</td>
<td>188.4</td>
<td>43.6</td>
</tr>
<tr>
<td>Hassani-Abharian, P., Ganjgahi, H., Tabatabaei-Jafari, H., et al.</td>
<td>2015</td>
<td>20</td>
<td>CRET task</td>
<td>H</td>
<td>MNI</td>
<td>36.24</td>
<td>31.9</td>
</tr>
<tr>
<td>Kaag, AM, Reneman, L., Homberg, J., et al.</td>
<td>2018</td>
<td>59</td>
<td>Image-Cue Task</td>
<td>C</td>
<td>MNI</td>
<td>72</td>
<td>31.4</td>
</tr>
<tr>
<td>Li, Q., Wang, Y., Zhang, Y., et al.</td>
<td>2012</td>
<td>24</td>
<td>Image-Cue Task</td>
<td>H</td>
<td>MNI</td>
<td>78.6</td>
<td>32.8</td>
</tr>
<tr>
<td>Li, Q., Wang, Y., Zhang, Y., et al.</td>
<td>2013</td>
<td>19</td>
<td>Image-Cue Task</td>
<td>H</td>
<td>MNI</td>
<td>80.5</td>
<td>32.2</td>
</tr>
<tr>
<td>Mei, W., Zhang, J.X., & Xiao, Z</td>
<td>2010</td>
<td>12</td>
<td>Image-Cue Task</td>
<td>H</td>
<td>MNI</td>
<td>54</td>
<td>33.5</td>
</tr>
<tr>
<td>Prisciandaro, J.J., McRae-Clark, A.L., Myrick, H., et al.</td>
<td>2014</td>
<td>38</td>
<td>Image-Cue Task</td>
<td>C</td>
<td>MNI</td>
<td>213.5</td>
<td>47.7/43.96</td>
</tr>
<tr>
<td>Walter, M., Denier, N., Gerber, H., et al.</td>
<td>2014</td>
<td>27</td>
<td>Image-Cue Task</td>
<td>H</td>
<td>MNI</td>
<td>253</td>
<td>41.1</td>
</tr>
<tr>
<td>Wang, W., Li, Q., Wang, Y. et al.</td>
<td>2011</td>
<td>14</td>
<td>Image-Cue Task</td>
<td>H</td>
<td>MNI</td>
<td>94.8</td>
<td>36.1</td>
</tr>
<tr>
<td>Name</td>
<td>Year</td>
<td>N</td>
<td>Task</td>
<td>Space</td>
<td>Tal</td>
<td>Na</td>
<td>T statistic</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td>----</td>
<td>---</td>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Zhang, S., Zhornitsky, S., Wang, W. et al.</td>
<td>2020</td>
<td>52</td>
<td>Image-Cue Task</td>
<td>C</td>
<td>MNI</td>
<td>189.4</td>
<td>46.7/41.0</td>
</tr>
<tr>
<td>Zijlstra, F., Veltman, D.J., Booji, J., et al.</td>
<td>2009</td>
<td>12</td>
<td>Image-Cue Task</td>
<td>H</td>
<td>MNI</td>
<td>192</td>
<td>42.8</td>
</tr>
</tbody>
</table>
Table 2. Characteristics of 15 fMRI studies included in the exploratory interaction meta-regression.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Sample</th>
<th>Task</th>
<th>Drug</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duncan, E., Boshoven, W. Harenski, K. et al.</td>
<td>2007</td>
<td>10</td>
<td>Script guided mental imagery</td>
<td>Cocaine</td>
<td>MNI</td>
</tr>
<tr>
<td>Elton, A., Smitherman, S., Young, J. et al.</td>
<td>2014</td>
<td>20</td>
<td>Script guided mental imagery</td>
<td>Cocaine</td>
<td>MNI</td>
</tr>
<tr>
<td>Hassani-Abharian, P., Ganjgahi, H., Tabatabaei-Jafari, H., et al</td>
<td>2015</td>
<td>20</td>
<td>CRET task</td>
<td>Heroin</td>
<td>MNI</td>
</tr>
<tr>
<td>Li, Q., Wang, Y., Zhang, Y., et al.</td>
<td>2013</td>
<td>19</td>
<td>Image-Cue Task</td>
<td>Heroin</td>
<td>MNI</td>
</tr>
<tr>
<td>Mei, W., Zhang, J.X., & Xiao, Z</td>
<td>2010</td>
<td>12</td>
<td>Image-Cue Task</td>
<td>Heroin</td>
<td>MNI</td>
</tr>
<tr>
<td>Wang, W., Li, Q., Wang, Y. et al.</td>
<td>2011</td>
<td>14</td>
<td>Image-Cue Task</td>
<td>Heroin</td>
<td>MNI</td>
</tr>
<tr>
<td>Zhang, S., Zhornitsky, S., Wang, W. et al.</td>
<td>2020</td>
<td>52</td>
<td>Image-Cue Task</td>
<td>Cocaine</td>
<td>MNI</td>
</tr>
<tr>
<td>Zijlstra, F., Veltman, D.J., Booji, J., et al.</td>
<td>2009</td>
<td>12</td>
<td>Image-Cue Task</td>
<td>Heroin</td>
<td>MNI</td>
</tr>
</tbody>
</table>
Table 4. Location of neural activations for Heroin > Cocaine contrast of drug > neutral cue studies.

<table>
<thead>
<tr>
<th>Region</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Voxels</th>
<th>P</th>
<th>SDM - Z (P value)</th>
<th>I2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right inferior temporal gyrus, BA 19</td>
<td>48</td>
<td>-74</td>
<td>-4</td>
<td>628</td>
<td>0.000</td>
<td>4.313</td>
<td>0.603</td>
</tr>
<tr>
<td>Right superior parietal gyrus, BA 7</td>
<td>30</td>
<td>-68</td>
<td>50</td>
<td>495</td>
<td>0.000</td>
<td>4.387</td>
<td>0.598</td>
</tr>
<tr>
<td>Right anterior thalamic projections</td>
<td>6</td>
<td>-14</td>
<td>2</td>
<td>305</td>
<td>0.000</td>
<td>4.345</td>
<td>0.641</td>
</tr>
<tr>
<td>Left caudate nucleus</td>
<td>-10</td>
<td>10</td>
<td>10</td>
<td>103</td>
<td>0.005</td>
<td>3.376</td>
<td>0.716</td>
</tr>
<tr>
<td>Right superior frontal gyrus, BA 9</td>
<td>6</td>
<td>48</td>
<td>40</td>
<td>89</td>
<td>0.005</td>
<td>3.318</td>
<td>0.703</td>
</tr>
<tr>
<td>Right cerebellum, crus II</td>
<td>20</td>
<td>-80</td>
<td>-40</td>
<td>83</td>
<td>0.026</td>
<td>2.655</td>
<td>0.771</td>
</tr>
<tr>
<td>Left middle temporal gyrus, BA 37</td>
<td>-54</td>
<td>-62</td>
<td>2</td>
<td>59</td>
<td>0.013</td>
<td>3.169</td>
<td>0.712</td>
</tr>
<tr>
<td>Left inferior parietal (excluding supramarginal and angular) gyr, BA 2</td>
<td>-50</td>
<td>-32</td>
<td>46</td>
<td>58</td>
<td>0.029</td>
<td>2.821</td>
<td>0.720</td>
</tr>
<tr>
<td>Left middle occipital gyrus, BA 19</td>
<td>-26</td>
<td>-84</td>
<td>32</td>
<td>16</td>
<td>0.041</td>
<td>2.76</td>
<td>0.774</td>
</tr>
</tbody>
</table>
Table 3. Location of neural activations for mean analysis Heroin and Cocaine subgroups for drug > neutral cues.

<table>
<thead>
<tr>
<th>Region</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Voxels</th>
<th>P</th>
<th>SDM - Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heroin Subgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left median cingulate/paracingulate gyri, BA 23</td>
<td>-2</td>
<td>-30</td>
<td>32</td>
<td>3194</td>
<td>0.001</td>
<td>6.521</td>
</tr>
<tr>
<td>Right superior frontal gyrus, medial, BA 9</td>
<td>6</td>
<td>48</td>
<td>42</td>
<td>2866</td>
<td>0.001</td>
<td>4.885</td>
</tr>
<tr>
<td>Right anterior thalamic projections</td>
<td>4</td>
<td>-16</td>
<td>-2</td>
<td>1402</td>
<td>0.001</td>
<td>5.766</td>
</tr>
<tr>
<td>Right inferior frontal gyrus, opercular part, BA 44</td>
<td>48</td>
<td>14</td>
<td>32</td>
<td>1096</td>
<td>0.001</td>
<td>5.554</td>
</tr>
<tr>
<td>Left amygdala, BA 36</td>
<td>-28</td>
<td>-2</td>
<td>-22</td>
<td>815</td>
<td>0.001</td>
<td>5.5</td>
</tr>
<tr>
<td>Left inferior temporal gyrus, BA 37</td>
<td>-48</td>
<td>-66</td>
<td>-6</td>
<td>815</td>
<td>0.001</td>
<td>5.082</td>
</tr>
<tr>
<td>Right cerebellum, hemispheric lobule, VIIB</td>
<td>24</td>
<td>-74</td>
<td>-44</td>
<td>781</td>
<td>0.001</td>
<td>5.082</td>
</tr>
<tr>
<td>Right amygdala, BA 36</td>
<td>28</td>
<td>-2</td>
<td>-24</td>
<td>653</td>
<td>0.001</td>
<td>5.186</td>
</tr>
<tr>
<td>Left inferior frontal gyrus, opercular part, BA 44</td>
<td>-50</td>
<td>8</td>
<td>28</td>
<td>663</td>
<td>0.001</td>
<td>5.65</td>
</tr>
<tr>
<td>Right angular gyrus, BA 7</td>
<td>32</td>
<td>-60</td>
<td>52</td>
<td>664</td>
<td>0.001</td>
<td>5.354</td>
</tr>
<tr>
<td>Right inferior temporal gyrus, BA 37</td>
<td>48</td>
<td>-70</td>
<td>4</td>
<td>670</td>
<td>0.001</td>
<td>5.179</td>
</tr>
<tr>
<td>Left inferior parietal (excluding supramarginal and angular) gyri,</td>
<td>-50</td>
<td>-32</td>
<td>46</td>
<td>590</td>
<td>0.003</td>
<td>4.263</td>
</tr>
<tr>
<td>BA 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>MNI Coordinates</td>
<td>Z Score</td>
<td>p Value</td>
<td>T Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left inferior parietal (excluding supramarginal and angular) gyri, BA 7</td>
<td>-36 -62 48 387 0.003 4.507</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left caudate nucleus</td>
<td>-8 10 10 249 0.001 4.629</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cocaine Subgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right precentral gyrus/inferior frontal gyrus, BA 44</td>
<td>46 4 30 150 0.009 5.394</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>