Dynamics of Hepatitis C Virus Seroprevalence: Evaluating Risk Factors among Pakistan's Sex Workers

Raza Tirmizi¹,², Rida Rashid²*, & Nousheen Zaidi³,⁴,

¹Dostana Male Health Society, Pakistan
²Action Research Collective
³Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Pakistan, ⁴Cancer Research Centre, University of the Punjab, Pakistan

*Corresponding Author

Email: rida.rashid92@gmail.com (RR)
Abstract

The current study investigates the seroprevalence of the Hepatitis C Virus (HCV) among sex workers in Pakistan, a task made challenging due to social and cultural barriers. Our primary objectives were to gauge the extent of HCV exposure in this marginalized group, identify disparities in seroprevalence between sexes, and examine the association between seropositivity and various demographic and risk factors. We enrolled 1,000 participants, predominantly male (87.7%) and female (12.3%) sex workers. The majority fell within the 26-35 years age category (39.9%). A significant proportion (47.1%) had not received formal education. Overall, HCV antibodies were found in 15% of the participants. Disparities were evident with a seroprevalence of 13% in male sex workers and a significantly higher 31% in female sex workers. HCV seropositivity increased with age, with female sex workers showing a sharper rise. A link between levels of formal education and HCV seroprevalence was observed, with female sex workers consistently exhibiting higher seroprevalence across educational levels. Risk factors such as shaving practices, sharing of blades, surgical history, and other medical exposures were assessed, revealing higher HCV seropositivity rates among those exposed, especially pronounced among female participants. Despite the societal challenges, this research paves the way for future investigations and interventions tailored to this population's unique needs and vulnerabilities.

Keywords

HCV; Seroprevalence; HCV risk factors; Sex workers
Introduction

Hepatitis C virus (HCV) infection remains a significant global health concern, exhibiting considerable prevalence variations across diverse populations and geographical regions (1-5). This variability is attributed to multiple factors, including disparities in socioeconomic conditions, accessibility to healthcare services, and the availability of harm reduction programs (6, 7). Predominantly, HCV infection affects two age demographics: individuals aged 20-40 years and those over 50 years (8-11).

Transmission of HCV is primarily through exposure to contaminated blood, occurring through means such as contaminated surgical instruments, blood transfusions, and sharing needles or syringes (2, 12). While the risk of sexual transmission is generally lower, it is notably elevated among certain populations, including sex workers (13-15), due to risk behaviors that facilitate acquiring and transmitting these viruses through sexual and parenteral routes (2, 13).

Previous research shows significant disparities in HCV prevalence among sex workers across various regions and demographics. For instance, a study conducted in Glasgow highlighted an alarming 81% HCV seroprevalence among female sex workers who inject drugs, significantly surpassing the rates for general injecting drug users in Glasgow and any recorded in the UK from 1991 to 2005 (15). Conversely, a Canadian study reported a baseline prevalence of 42.7% among female sex workers. This study also showed that HCV incidence was highest among women who inject drugs. They also reported higher HCV prevalence among women living with sexually transmitted infections or HIV. Moreover, the use of non-injection stimulants was found to be associated with HCV seroconversion (14). Other studies also reported varying prevalence rates and associated risk factors, emphasizing the diverse nature of HCV prevalence among sex worker populations globally (16, 17).

In Pakistan, a nation confronting one of the most substantial burdens of HCV, the vulnerability of male and female sex workers is accentuated. Nevertheless, a pronounced void exists in exhaustive research dedicated to these demographics, notably in an environment characterized by significant impediments to education.
and healthcare. With a staggering approximation of 10 million individuals living with HCV in Pakistan, the
dearth of intricate data on HCV seroprevalence within the sex worker community is palpable (18-20).

To bridge this informational gap, the presented work aimed to study the HCV seroprevalence among male
and female sex workers and examine the associated risk factors. The undertaking of research within such
marginalized communities as the sex workers in Pakistan mandated an approach imbued with collaboration
and empathy. To this end, we established a partnership with Dostana, an organization steadfastly dedicated
to the empowerment and health advocacy of vulnerable communities. This alliance enabled an effective
and considerate engagement with the sex worker community in Pakistan, ensuring the study was conducted
with due deference while addressing the distinctive needs and challenges faced by this community.
Methodology

Research Design and Participant Selection

This cross-sectional study determines the seroprevalence of the Hepatitis C Virus (HCV) among sex workers in Pakistan. A total of 1000 participants, male and female, were included in this study. The inclusion criteria stipulated that participants must be sex workers aged 15 years or older and possess proficiency in Punjabi or Urdu. Participants were recruited through the Dostana Male Health Society, a recognized society that addresses key populations' healthcare concerns. Due to Pakistan's societal and cultural barriers, engaging with individuals in these marginalized communities is challenging. As a solution, community members were educated and guided to gather data from the sex workers population enlisted through Dostana.

The data collection process involved structured interviews. After the necessary training, data enumerators administered the structured questionnaires through one-on-one interviews. This method ensured that the process was consistent, comprehensive, and aimed at minimizing potential bias or misinterpretation of the questions. The data were collected on demographic characteristics, common risk factors, and history of HIV.

Ethical Considerations

The study protocol is reviewed and approved by the Bioethics Committee of the Cancer Research Centre, University of the Punjab. All participants provided informed written consent before participating in the study. The study is conducted following the Declaration of Helsinki.

Serological Testing

Blood samples are collected from participants for serological testing. The presence of HCV antibodies is determined using the SD BIOLINE HCV Hepatitis C Virus Antibody Test. All tests are conducted in a certified laboratory following standard procedures.
Statistical Analysis

Descriptive statistics are used to summarize the demographic characteristics of the participants and the Prevalence of HCV. All analyses are performed using MS Excel.
Results

Demographic Characteristics of the Study Participants

The study comprised a total of 1000 participants, with a significant majority being men (87.7%) and a smaller proportion being women (12.3%) (Table 1). The participants spanned a wide age range, with the largest group falling within the 26-35 years category (39.9%). This was followed by the 18-25 years age group (25.0%), the 36-45 years age group (20.8%), those older than 45 years (13.3%), and a small fraction under 18 years (1.0%) (Table 1).

<table>
<thead>
<tr>
<th>Demographic Criteria</th>
<th>Number of Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Participants</td>
<td>1000</td>
</tr>
<tr>
<td>Age Distribution</td>
<td></td>
</tr>
<tr>
<td><18</td>
<td>10</td>
</tr>
<tr>
<td>18-25</td>
<td>250</td>
</tr>
<tr>
<td>26-35</td>
<td>399</td>
</tr>
<tr>
<td>36-45</td>
<td>208</td>
</tr>
<tr>
<td>>45</td>
<td>133</td>
</tr>
<tr>
<td>Years of Formal Education</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>471</td>
</tr>
<tr>
<td>≤8</td>
<td>229</td>
</tr>
<tr>
<td>9-12</td>
<td>229</td>
</tr>
<tr>
<td>>12</td>
<td>71</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>611</td>
</tr>
<tr>
<td>Single</td>
<td>388</td>
</tr>
<tr>
<td>HIV Status</td>
<td></td>
</tr>
<tr>
<td>HIV Positive</td>
<td>1</td>
</tr>
<tr>
<td>HIV Negative</td>
<td>998</td>
</tr>
</tbody>
</table>

Regarding years of formal education, a significant proportion of the participants had not received formal education (47.1%). Those with eight years or less of formal education constituted 22.9% of the participants, while those with 9-12 years also comprised 22.9% of the total. A small fraction of the participants had more
than 12 years of formal education (7.1%). Most participants were married (61.1%), while a substantial proportion were single (38.8%) (Table 1).

The study also evaluated the HIV seroprevalence of participants. The vast majority were found to be HIV negative (99.8%), with only one individual (0.1%) being HIV positive.

HCV Seroprevalence of the Study Participants

Next, the seroprevalence of HCV was assessed in this cohort of sex workers. Overall, HCV antibodies were found in 15% of the population, suggesting that these individuals had been exposed to the virus at some point (Fig 1a).

Fig 1. Prevalence of HCV seropositivity among Pakistani Sex Workers. (a) A pie-chart displaying seroprevalence of HCV in overall study population (n=1000). (b) A pie-chart displaying seroprevalence of HCV in male sex workers population. (c) A pie-chart displaying seroprevalence of HCV in female sex workers population.

When the data is analyzed based on sex, notable disparities become evident. Among male sex workers, the seroprevalence of HCV was 12%, whereas a significantly higher seroprevalence of 31% was observed in female sex workers (Fig 1b-c).

This difference in seroprevalence between male and female sex workers indicates a higher likelihood of past or present HCV infection among the female participants. However, it is imperative to note the significantly larger male sample size when interpreting these findings.

Association of HCV seroprevalence with selected demographic characteristics

Among participants aged less than 18 years, there were no positive cases of HCV detected, however, this age group only included male participants (Fig 2a-c). In the age group of 18-25 years, HCV seropositivity
was relatively low in both males (6.4%) and females (8.3%). The seropositivity percentage gradually increased with age in both sexes. In the 26-35 age bracket, HCV seropositivity increased to 12.8% in males and 14.3% in females. A more pronounced rise in seropositivity was observed in the 36-45 years age group, with rates reaching 23.6% in males and 53.6% in females. Similarly, in the age group over 45 years, the seropositivity rate was 22.6% for males and 44.1% for females. These data suggest that HCV seropositivity increases with age in both sexes, with female sex workers showing a sharper rise and overall higher seroprevalence than their male counterparts.

Fig 2: Prevalence of HCV seropositivity and associated risk factors in Pakistani sex workers

- **Population.** (a) Age-adjusted HCV seroprevalence in overall sex workers population
 (b) Age-adjusted HCV seroprevalence in male sex workers population
 (c) Age-adjusted HCV seroprevalence in female sex workers population
 (d) Education-wise HCV seroprevalence in overall sex workers population
 (e) Education-wise HCV seroprevalence in male sex workers population
 (f) Education-wise HCV seroprevalence in female sex workers population. The total number of sex workers in each age (a, b, c) and education (d, e, f) groups are plotted on left y-axis and represented as vertical gray bars and HCV seropositivity percentage is plotted on right y-axis and represented as a yellow stacked line.

Our data reveal a link between levels of formal education and HCV seroprevalence among the sex workers in our study. The HCV seroprevalence was 14.2% for participants without formal education (Fig 2d). Among those with ≤8 years of education, the seroprevalence rose slightly to 17.0%. For individuals with 9-12 years of education, the seroprevalence dropped to 13.1%. Interestingly, participants with more than 12 years of education had a seroprevalence of 14.1%.

On analyzing the data based on sex (Fig 2e-f), it was noted that male sex workers with no education had a lower seroprevalence of HCV at 12.0%, whereas the figure for their female counterparts was considerably higher at 26.4%. In participants with ≤8 years of education, the seroprevalence was 14.4% for men and sharply increased to 45.0% for women. Among individuals with 9-12 years of formal education, the
positivity rate dropped to 11.2% in men and 30.4% in women. For those with >12 years of education, the seroprevalence was lower in men (11.1%) compared to women (37.5%).

Among married male sex workers, the seroprevalence was 15.1%, whereas, for single males, it was significantly lower at 8.2% (Table 2). On the other hand, among female sex workers, married individuals showed a considerably higher seroprevalence at 35.2%, compared to single females who had a seroprevalence of 20.0%.

<table>
<thead>
<tr>
<th>Table 2: Marital Status-Based Analysis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Female</td>
</tr>
</tbody>
</table>

Identified Risk Factors and Their Relationship to HCV

Seroprevalence

Next, we analyzed the impact of Identified risk factors on HCV seroprevalence in male and female sex workers (Table 3). In the context of shaving practices, individuals shaving at home had a higher overall HCV seropositivity of 18.97% compared to those using salon services (12.62%) or both (13.27%). This trend was consistent among men, with 10.81% positivity in those who shaved at home versus 12.58% and 13.54% for those who used salon services and both, respectively. However, for women, the pattern diverged. Women who shaved at home had a significantly high HCV seropositivity of 33.33%, while women who used salon services showed seropositivity of 14.29%.
<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Exposure</th>
<th>Sex</th>
<th>Participant Number</th>
<th>HCV Seropositivity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of Shaving</td>
<td>Home</td>
<td>Overall</td>
<td>290</td>
<td>18.9651724</td>
</tr>
<tr>
<td></td>
<td>Salon</td>
<td>Overall</td>
<td>610</td>
<td>12.62295082</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>Overall</td>
<td>98</td>
<td>13.26530612</td>
</tr>
<tr>
<td></td>
<td>Home</td>
<td>Men</td>
<td>185</td>
<td>10.81081081</td>
</tr>
<tr>
<td></td>
<td>Salon</td>
<td>Men</td>
<td>596</td>
<td>12.58389262</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>Men</td>
<td>96</td>
<td>13.54166667</td>
</tr>
<tr>
<td></td>
<td>Home</td>
<td>Women</td>
<td>105</td>
<td>33.33333333</td>
</tr>
<tr>
<td></td>
<td>Salon</td>
<td>Women</td>
<td>14</td>
<td>14.28571429</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>Women</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Sharing of Blade</td>
<td>Yes</td>
<td>Overall</td>
<td>41</td>
<td>19.5122</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Overall</td>
<td>957</td>
<td>14.31557</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Men</td>
<td>39</td>
<td>20.51282</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Men</td>
<td>838</td>
<td>11.93317</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Women</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Women</td>
<td>119</td>
<td>31.09244</td>
</tr>
<tr>
<td>Sharing of Toothbrush</td>
<td>Yes</td>
<td>Overall</td>
<td>37</td>
<td>13.51351</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Overall</td>
<td>963</td>
<td>14.64174</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Men</td>
<td>36</td>
<td>11.11111</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Men</td>
<td>841</td>
<td>12.36623</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Women</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Women</td>
<td>122</td>
<td>30.32787</td>
</tr>
<tr>
<td>History of Surgery</td>
<td>Yes</td>
<td>Overall</td>
<td>150</td>
<td>18.66667</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Overall</td>
<td>850</td>
<td>13.88235</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Men</td>
<td>137</td>
<td>13.86861</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Men</td>
<td>740</td>
<td>12.02703</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Women</td>
<td>13</td>
<td>69.23077</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Women</td>
<td>110</td>
<td>26.36364</td>
</tr>
<tr>
<td>History of Blood Transfusion</td>
<td>Yes</td>
<td>Overall</td>
<td>178</td>
<td>17.97753</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Overall</td>
<td>822</td>
<td>13.86861</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Men</td>
<td>164</td>
<td>15.2439</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Men</td>
<td>713</td>
<td>11.64095</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Women</td>
<td>14</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Women</td>
<td>109</td>
<td>28.44037</td>
</tr>
<tr>
<td>History of Injection</td>
<td>Yes</td>
<td>Overall</td>
<td>189</td>
<td>15.34392</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Overall</td>
<td>811</td>
<td>14.42663</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Men</td>
<td>168</td>
<td>11.30952</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Men</td>
<td>709</td>
<td>12.55289</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Women</td>
<td>21</td>
<td>47.61905</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Women</td>
<td>102</td>
<td>27.45098</td>
</tr>
<tr>
<td>History of Dental Procedure</td>
<td>Yes</td>
<td>Overall</td>
<td>79</td>
<td>22.78481</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Overall</td>
<td>921</td>
<td>13.89794</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Men</td>
<td>70</td>
<td>18.57143</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td>-----------</td>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Men</td>
<td>807</td>
<td>11.772</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Women</td>
<td>9</td>
<td>55.55556</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Women</td>
<td>114</td>
<td>28.94737</td>
</tr>
<tr>
<td>History of Hospitalization</td>
<td>Yes</td>
<td>Overall</td>
<td>147</td>
<td>21.76871</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Overall</td>
<td>853</td>
<td>13.3646</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Men</td>
<td>132</td>
<td>17.4242</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Men</td>
<td>745</td>
<td>11.4094</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Women</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Women</td>
<td>108</td>
<td>26.85185</td>
</tr>
<tr>
<td>History of Drug Abuse</td>
<td>Yes</td>
<td>Overall</td>
<td>14</td>
<td>21.42857</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Overall</td>
<td>986</td>
<td>14.50304</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Men</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Men</td>
<td>865</td>
<td>12.13873</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Women</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Women</td>
<td>121</td>
<td>31.40496</td>
</tr>
</tbody>
</table>

Sharing of blades revealed a slightly higher overall HCV seropositivity among individuals men who shared blades had significantly higher seropositivity (20.51%) than those who did not (11.93%). For sharing toothbrushes, the overall HCV seropositivity was lower in those who shared (13.51%) than those who did not (14.64%).

History of surgery showed a pattern where individuals with a surgical history had higher overall HCV seropositivity (18.67%) than those without (13.88%). This was mirrored in men with a history of surgery (13.87%) versus those without (12.03%). However, among women, a striking difference was observed. Women with a surgical history exhibited an alarmingly high HCV seropositivity rate of 69.23%, whereas women without a surgical history demonstrated a seropositivity rate of 26.36%.

The pattern of other risk factors such as blood transfusion history, history of injections, dental procedures, hospitalization, and drug abuse revealed similar patterns. All risk factors showed higher HCV seropositivity rates among those exposed to the risk factor, with the differences being more pronounced among women compared to men. Notably, these differences among women should be interpreted with caution due to the smaller sample sizes.
Discussion

The presented work studied the seroprevalence of the Hepatitis C Virus (HCV) among sex workers in Pakistan. This work aimed to examine the extent of HCV exposure within this marginalized community, identify any disparities in seroprevalence between sexes, and study the association of seroprevalence with various demographic characteristics and risk factors. Our study population predominantly consisted of men (87.7%), with women making up 12.3%. The overall seroprevalence of HCV antibodies, indicative of exposure to the virus, was 15%. Notably, a marked gender disparity was observed, with male sex workers exhibiting a seroprevalence of 12%, while their female counterparts showed a significantly higher seroprevalence of 31%. We also found variations in seroprevalence across different age groups, educational levels, and marital statuses. It was observed that increasing age, lower education, and marriage were associated with higher seroprevalence.

Studies focusing on HCV seroprevalence among sex workers have yielded diverse results. For example, research conducted in Thailand (21) revealed a relatively low HCV prevalence of 2.3% among migrant sex workers, contrasting sharply with a Glasgow-based study (15) that reported a striking 81% HCV seroprevalence among female street sex workers who inject drugs. Meanwhile, a Canadian study (14) documented a baseline prevalence of 42.7% among female sex workers. A study from Brazil [4] also indicated a higher exposure prevalence to HCV, at 7.7%, among female sex workers. These findings underscore the significant variability in HCV seroprevalence across different regions and populations of sex workers, shedding light on the impact of various risk factors, demographic characteristics, and regional healthcare infrastructures.

Our study found pronounced disparities in HCV seroprevalence between male and female sex workers. This finding aligns with existing literature documenting elevated rates of HCV seroprevalence among female sex workers (14). The heightened vulnerability of female sex workers is often a byproduct of precarious working conditions, limited access to healthcare, and an increased likelihood of injecting drug
use—each a significant contributor to elevated HCV risk (17). The intersection of sex work and drug use
is particularly accentuated among female sex workers (14, 17), amplifying their susceptibility to HCV
infection. The multifaceted, gender-specific risks inherent in sex work necessitate the development of
tailored interventions and harm reduction strategies. These strategies should address the unique needs and
challenges faced by female sex workers, particularly in enhancing access to HCV prevention and healthcare
services.

Several studies have reported high HCV seroprevalence among men who have sex with men (MSM) (22-
24). However, only a few studies have undertaken a comparative analysis of sex-based differences among
sex workers (25, 26). There is a pressing need for additional research to further elucidate the variations in
HCV prevalence rates based on gender within the sex worker population.

We observed an increase in HCV seropositivity with advancing age, particularly among female sex
workers. This demographic exhibited a sharper rise and consistently higher seroprevalence than their male
counterparts. This age-related increase in HCV seropositivity is consistent with several other studies (9),
suggesting a cumulative risk of exposure and infection over time (9). The more pronounced increase among
female sex workers could be attributed to many factors, including prolonged exposure to high-risk
environments, compounded vulnerabilities, and potential barriers to accessing preventive services and
healthcare.

A noticeable relationship was observed between years of formal education and HCV seroprevalence among
the participating sex workers. Individuals with lower educational levels exhibited higher rates of HCV
seroprevalence, a markedly pronounced trend among female sex workers. This observed association
between education and HCV seroprevalence underscores the importance of addressing educational
disparities as a critical determinant of health. Tailored interventions to enhance health literacy and improved
access to education, are essential for reducing HCV seroprevalence and promoting health equity within this
population.
Our data indicates a notable difference in HCV seroprevalence in relation to marital status, particularly among female sex workers. Married female sex workers manifested a considerably elevated seroprevalence compared to their single counterparts. One plausible explanation for this occurrence could be that married individuals may face complexities related to spousal relationships, familial responsibilities, and societal expectations, potentially influencing their risk behaviors and access to healthcare. The dynamics of marital relationships, including the potential for intimate partner violence and power imbalances, may limit the autonomy of married female sex workers in negotiating safer practices and accessing preventive services. Additionally, married female sex workers might experience dual sources of stigma and discrimination—both as sex workers and as married women engaged in sex work. This compounded stigma can pose barriers to healthcare access, hinder utilization of harm reduction services, and exacerbate vulnerabilities to infections such as HCV (27, 28).

This study also examined the impact of various identified risk factors on HCV seroprevalence. The sharing of blades emerged as a significant risk factor, with individuals engaging in this practice demonstrating higher seropositivity. This observation aligns with the established knowledge that sharing sharp objects can facilitate the transmission of blood-borne viruses like HCV, underscoring the importance of promoting safe practices and awareness. Individuals with a surgical history, especially women, manifested alarmingly high HCV seropositivity rates. This finding accentuates the critical role of medical procedures as potential avenues for HCV transmission, necessitating stringent infection control measures and adherence to sterilization protocols in healthcare settings. The exploration of other risk factors such as blood transfusion history, history of injections, dental procedures, hospitalization, and drug abuse revealed analogous patterns. These factors contributed to elevated HCV seropositivity rates, with the disparities being more pronounced among women. The heightened vulnerability of women to these risk factors necessitates a gender-sensitive approach to addressing HCV transmission.

One of the major limitations of our study is the smaller sample size of female participants. This disproportion in representation between male and female participants could potentially introduce bias and
affect the robustness of the associations and patterns observed, particularly in relation to gender-specific findings. This smaller female cohort size limits the generalizability of our findings to the broader population of female sex workers in Pakistan and beyond. The gender-specific disparities and trends observed in our study warrant further exploration through more extensive, more representative studies focusing on female sex workers. Another potential limitation of our study is the self-reported data, which may be subject to recall bias. Despite these limitations, our study contributes valuable insights into the HCV seroprevalence among sex workers in Pakistan, laying the groundwork for future research and interventions tailored to address the unique needs and vulnerabilities of this population. The insights garnered from this research underscore the pressing need for concerted action and commitment to address the health disparities faced by sex workers and to foster an environment conducive to their well-being and access to healthcare.

Acknowledgments

We would like to offer our gratitude to all the community members who helped us in sampling and collecting data from this marginalized community.

Declarations

Generative AI

During the preparation of this work the author(s) used ChatGPT for editing the manuscript. After using this tool, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.
References

