Abstract
In a severe epidemic such as the COVID-19 pandemic, social distancing can be a vital tool to stop the spread of the disease and save lives. However, social distancing may induce profound negative social/economic impacts as well. How to optimize social distancing is a serious social, political, as well as public health issue yet to be resolved. This work investigates social distancing with a focus on how every individual reacts to an epidemic, what role he/she plays in social distancing, and how every individual’s decision contributes to the action of the population and vice versa. Social distancing is thus modeled as a population game, where every individual makes decision on how to participate in a set of social activities, some with higher frequencies while others lower or completely avoided, to minimize his/her social contacts with least possible social/economic costs. An optimal distancing strategy is then obtained when the game reaches an equilibrium. The game is simulated with various realistic restraints including (i) when the population is distributed over a social network, and the decision of each individual is made through the interactions with his/her social neighbors; (ii) when the individuals in different social groups such as children vs. adults or the vaccinated vs. unprotected have different distancing preferences; (iii) when leadership plays a role in decision making, with a few leaders making decisions while the rest of the population just follow. The simulation results show how the distancing game is played out in each of these scenarios, reveal the conflicting yet cooperative nature of social distancing, and shed lights on a self-organizing, bottom-up perspective of distancing practices.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Yes
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Not Applicable
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study does not involve any human participants or human participants' data. It is all done through computer simulation.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Not Applicable
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Not Applicable
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Not Applicable
Data Availability
All relevant data are within the manuscript and its Supporting Information files.