Title: Rationale, design, and baseline characteristics of a cluster randomized controlled trial for management of salt intake and salt procurement in hypertensive individuals and households in rural Central India through a Community Health Worker delivered Behavior Change Communication Intervention

Authors: Raunaq Singh Nagi¹, Pankaj Prasad², Sanjeev Kumar³#

Affiliations: Department of Community & Family Medicine, All India Institute of Medical Sciences, Bhopal (MP), India

Email addresses:
raunaqsinghnagi@gmail.com, raunaq.ds@aiimsbhopal.edu.in
pankaj.cfm@aiimsbhopal.edu.in
sanjeev.cfm@aiimsbhopal.edu.in

#Corresponding author:
Dr Sanjeev Kumar
Additional Professor
Department of Community & Family Medicine
All India Institute of Medical Sciences, Bhopal (MP), India
sanjeev.cfm@aiimsbhopal.edu.in

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract:
Background: Cardiovascular diseases (CVD) contribute to highest number of non-communicable diseases associated morbidity and mortality. Uncontrolled hypertension has been linked to development and progression of CVDs. The global age-standardized prevalence of hypertension in 30-79 years age group is 32% for women and 34% for men. Hypertension is a metabolic risk factor that is drastically affected by dietary salt and can be controlled by dietary salt reduction in majority of cases. Excessive intake of dietary salt is a behavioral risk factor and has been a WHO global target for hypertension and CVD management. The per capita global and national dietary salt consumption estimates exceed the recommended cut-off of 5g/day. Apart from policy changes, dietary salt consumption reduction through health promotion activities has been mandated by WHO and initiated in many countries. Community health workers (CHWs) have been identified as a target cadre for successful implementation of health promotion intervention. We aim to ascertain the effectiveness of various counseling modes on relative reduction of per capita dietary salt intake and household level salt procurement at the end of six months of the intervention. And compare the effectiveness of various arms with standard care and each other.
Methods: A cluster-RCT was executed in rural central India. The trial was an open-labeled field trial of 2x2 factorial design. Intervention arms were individual, group and mixed (group followed by individual) counseling and one standard care arm. Salt intake was assessed using 24-hour urinary sodium excretion assessed via spot urine samples.
Results: A total of 127 adult hypertensive individuals were recruited in the study. One ASHA was considered as one cluster and a total of eight (8) clusters were randomized for the study. The baseline characteristics of the participants have been presented. The mean per capita salt intake at baseline was 10.65 ± 2.10 g/day for the total sample, and the mean salt procurement was 2.10 ± 0.93 kg/month. The mean SBP and DBP were reported to be 144.62 ± 20.63 mmHg and 94.45 ± 10.68 mmHg, respectively.
Conclusion: The results of this trial will inform up on effectiveness of different modes of behavior change communication intervention on reducing dietary salt-intake and procurement.

Keywords: ASHA, dietary intervention, healthy behavior, risk factors
Title: Rationale, design, and baseline characteristics of a cluster randomized controlled trial for management of salt intake and salt procurement in hypertensive individuals and households in rural Central India through a Community Health Worker delivered Behavior Change Communication Intervention

Introduction/Background:
Treatment of hypertension in India is unsatisfactory and requires further strengthening of primary healthcare system. (1) As per pooled estimates of studies from 2016-2020, only 22.5% hypertensive Indians have their blood pressure under control. (2) It is estimated that 36.5% hypertensive individuals are lost at screening stage itself. (3) Raised blood pressure is an important risk factor for cardiovascular diseases (CVDs). (4) In 2016, CVDs accounted for 28.1% total annual deaths and 14.1% of total annual DALYs, with Ischemic heart Disease (IHD; 8.7% DALYs; 17.8% deaths) and stroke (3.5% DALYs; 7.1% deaths) as leading CVDs. (5)

Increased blood pressure is a direct outcome of excessive salt intake. High salt (sodium) intake leads to disruption of metabolic balance of sodium and thus, to fluid retention. (6) Global Burden of Disease Study Diet Collaborators report high intake of sodium to be foremost dietary risk factor with 3 million deaths and 70 million Disability-Adjusted Life Years (DALYs) globally in 2017. (7) The age-standardized death rates due to high sodium intake were reported to be 32.96 per 100000 in males and 15.71 per 100000 in females, in the year 2019. (8) The World Health Organization (WHO) recommends reduction of 30% in mean population level sodium intake by 2025 and below 2000mg/day beyond 2025, via multitude of strategies such as, promotion of sodium reduced salt, integration of community-level behavioral health promotion activities targeting dietary salt in primary care, front-of-package labeling, salt taxation, and others. More than 90 national level salt reduction initiatives have been launched by WHO member states, most of which are multi-sectoral. (9) Cost of lifestyle modification interventions for CVD risk reduction is restricted in Low- and Middle-Income Countries (LMICs) due to financial constraints. (10) Pooled estimates demonstrate Community Health Workers (CHWs) led interventions have (limited) effectiveness in reducing systolic and diastolic blood pressures (SBP and DBP) in developing countries. (11) Task-shifting to non-physician healthcare workers (such as CHWs) for patient education has emerged as a noteworthy implementation strategy for CVD management. (12)
Community-based lifestyle modification interventions delivered by trained primary healthcare workers has been shown to significantly reduce systolic and diastolic blood pressure in rural India. (13) Culturally-adopted community-based interventions delivered by CHWs in rural India are feasible and scalable. (14) Furthermore, two modes of intervention, group and individual are widely used to target NCD-associated unhealthy behaviors. (15,16) However, the ambiguity regarding effectiveness of these modes of intervention compared to one-another, (15,16) causes a dilemma for policymakers while allocating monetary and human resources.

Rationale:
Reduction of per capita salt (sodium) consumption in hypertensive individuals is a global target for controlling development of CVDs and CVD associated morbidity and mortality. National governments and international agencies have mounted responses to regulate discretionary use of salt. One of the most crucial approaches in this context is introduction of behavior change communication strategies under the umbrella of health promotion and patient education. Engagement of CHWs in health promotion and patient education can prove effective task-shifting strategy and is considered appropriate due to cultural reasons. We present the rationale, design, and baseline characteristics for a cluster-randomized controlled trial (RCT) for evaluation of effectiveness of a culturally adapted, consumer (hypertensive individual) informed community-based communication intervention in reducing salt intake and procurement in rural central India.
Methods/Design:

Study objectives:
The study was conceived to assess the standalone effectiveness of delivering BCCI in individual and group counseling modes, in reducing per capita daily dietary salt intake in hypertensive individuals and in reducing household level monthly salt procurement; and interactive effect of both counseling modes; and to compare these with standard care.

Study design:
This study is a cluster randomized controlled trial consisting of four arms. Accredited Social Health Activists (ASHA-a word that translates to ‘hope’ in Hindi) are female CHWs in rural India. As per guidelines of National Rural Health Mission (2005-06-when ASHA program was launched in the country) there is provision of one ASHA per 1000 residents of a village.(17) Hence, one ASHA was considered as one cluster. The trial was conducted in 2x2 factorial design where clusters were randomized into one of the four arms: Individual Counseling (IC), Group Counseling (GC), Mixed Counseling (MC) and Standard Care (SC).

Study setting:
The study was conducted in villages under the Goharganj Community Health Center (CHC) in the Obedullahganj administrative block of Raisen district of Madhya Pradesh, India. Under the Indian Public Health Standard (IPHS) guidelines, CHCs are secondary healthcare units catering to a population of 50,000. And provide administrative and clinical support to primary healthcare units called Health and Wellness Centers (HWCs) that cater to a population of 5,000. These HWCs are direct reporting centers of ASHAs in rural and urban areas alike. We selected two HWCs-Goharganj and Dhamdhusar-within five km range of CHC-Goharganj.

Study participants and sample size:
As mentioned earlier, we selected HWCs located within five km distance from the CHC. All the ASHAs in both the HWCs were approached for participation. They were briefed regarding the requirements of the study and intervention process and were requested to provide consent for participation. Obedullahganj administrative block contains a population of 22,845 individuals, of which 12,000 are males (Census, 2011). National Family Health Survey round five (NFHS-5)
reports the prevalence of hypertension in rural men to be 21.5% and in rural women to be 19.9% in individuals above the age of 15 years.

Sample size calculation was done using effect sizes for individual, group and interaction interventions, derived from the studies of Yamasaki T et al (2015)(18), Hirota S et al (2012)(19) and Daivadanam M et al (2018)(20), respectively. Calculation of effect sizes (Cohen’s F) was done using G*power(21) application. The effect sizes were found to be 0.174 for group, 0.85 for individual and 0.425 for mixed counselling. The sample size calculation for factorial design was conducted using easypower package for R programming language in RStudio IDE. For a desired power of 80% and significance level of 0.05, the total sample size was achieved to be 42 (11 each arm), 7 (2 each arm) and 15 (4 each arm), respectively for the three effects. Up on adjusting for design effect of 1.5 to account for intra-cluster variation and attrition rate of 10% a final sample size of 63 is attained.

We also calculated the sample size for evaluation of within arm variation using G*power software. Studies by Yamasaki T et al and Hirota S et al (referred above) were used for calculation. T-test: means: difference between two dependent means (matched pairs) was used to calculate the sample sizes. Total sample size of 51 and 29 was attained for assessment of group and individual counselling respectively, at 80% power and alpha error probability of 5%.

To attain a combined sample size of at least 51 in group counselling arm, 26 participants were to be recruited in group counselling and mixed counselling arms. Therefore, minimum 26 participants were required to be recruited for each arm. A total sample size of 104 participants was achieved.

Recruitment:

Based on the total sample size a total of eight ASHAs were recruited, two in each of the arms. Hence, the size of each cluster was 16 participants.

List of eligible participants was obtained from the records of NCD patients maintained at the HWC. All the individuals above the age of 30 years and with a systolic blood pressure ≥ 140 mm Hg and/or diastolic blood pressure ≥ 00 mm Hg (measured in-clinic by trained healthcare worker) were considered to be hypertensive(22) and were approached for participation in the study. Figure 1 shows the COSORT flow diagram of the participants recruited in the study. Table 1 contains the eligibility criteria for clusters and trial participants.
Figure 1 CONSORT flow diagram of the clusters of intervention

Table 1 Eligibility criteria for clusters and participants

<table>
<thead>
<tr>
<th>Unit</th>
<th>Inclusion</th>
<th>Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster/ASHA</td>
<td>Reports to HWC within 5 km periphery of CHC</td>
<td>Pregnant/lactating mothers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-response to meeting requests on two consecutive phone calls</td>
</tr>
<tr>
<td>Participants</td>
<td>At least 30 years of age</td>
<td>Pregnant/lactating mothers</td>
</tr>
<tr>
<td></td>
<td>No comorbidity</td>
<td>Self-declared or clinically recorded physical or learning limitation which might impede attendance and/or comprehension of verbal instructions or pictorial data</td>
</tr>
<tr>
<td></td>
<td>Clinically confirmed case of HTN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(SBP of 140 mm Hg or more and/or DBP of 90 mm Hg or more)</td>
<td></td>
</tr>
</tbody>
</table>

Randomization and allocation:

Medical Officer (MO) of the CHC performed randomization and random allocation of the clusters to intervention arms. The MO assigned sequential numbers to ASHAs and concealed the number in optically opaque papers folded twice. Another staff member of the CHC was prepared sequentially numbered opaque containers with codes for intervention arms. Folded papers with codes of ASHA were randomly placed in these boxes by the MO (two folded
papers in each box). The MO held the boxes and the codes, which were provided to the investigators before start of the intervention.

Interventions:
ASHAs have been tasked with community-level identification of individuals suffering from NCDs. Additionally, they are also responsible for conduction of health promotion activities and community mobilization for such activities. Furthermore, ASHAs are also a mediator for task-sharing activities for enhanced primary care coverage and proper referral. All interventions of this trial shall be executed by ASHAs after receiving relevant training to understand dietary salt-related variables viz, detrimental effects of excessive salt consumption, correct daily salt consumption limit, overt and covert sources of dietary salt, dietary practices that lead to excessive salt intake, and behavioral targets for salt consumption and procurement reduction. Quality control shall be maintained via post-training and mid-intervention assessment. The total duration of intervention shall be six months. Delivery of intervention shall be spanned over two months with incremental change in intervals between consecutive intervention sessions (from one week to one month). Interventions will consist of messages in vernacular language that can be enunciated verbatim by the ASHAs. These messages will be accompanied by colorful pictorial references to be shown to the participants. Additionally, interventions will be stage-matched according to readiness or stage of change of individual participant. Readiness to change shall be assessed during each session and customized intervention shall be provided to the participant. An induction session shall be conducted before commencement of intervention.

Individual counseling:
The messages/verbatims for IC shall be grouped according to stage of change of the participant. ASHAs will assess the stage of change and deliver only the stage-appropriate messages for management of salt consumption and procurement individually at participant’s home.

Group counseling:
In GC, all the messages will be grouped according to stages of change of the participants. However, these messages will not be as comprehensive as the messages included in IC. Group counseling will take place in a group of 5-7 participants, and all the messages for all the stages will be spoken for full audience at an establishment of community gathering.

Mixed counseling:
Mixed counseling will consist of first session of GC where all the messages of all stages of readiness of salt reduction will be vocalized in a group of 5-7 participants at an establishment of community gathering. This will be followed by two sessions of IC at participants’ homes consisting of delivery of stage-appropriate messages. This will be followed by one group-based session and subsequently one individual session, in the manner described previously.

*Standard care:

Training of ASHAs for counseling NCD patients for adopting healthy behaviors and discarding unhealthy behaviors has been conducted by state government. ASHAs will be requested to conduct ascribed visits and/or deliver ascribed messages to participants as per government mandated schedule.

*Study Outcomes:

Primary outcomes of the study include reduction in per capita daily salt consumption and monthly household salt procurement. Dietary salt consumption was estimated by measurement of urinary salt/sodium excretion. We considered thirty (30) days to be one month. For the measurement of monthly household salt procurement, we recorded dates of last two salt purchases and the amount (weight) of salt purchases on these two dates. Then we used unitary method to calculate salt procured for one day at household level and estimated salt procured for one month (30 days).

Secondary outcomes of the trial include change in SBP and change in DBP.

The following table shows the schedule of the activities of the trial.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Baseline</th>
<th>Sessions-1 to 5</th>
<th>End-line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informed consent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induction/sensitization session</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthropometric measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement of BP at HWC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavior and practice data collection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary sodium/salt estimation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection of salt procurement data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment of readiness to change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivery of intervention</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data collection:
Anganwadi Workers (AWWs) is a cadre of CHWs working under the Integrated Child Development Services (ICDS) Scheme, catering primarily to mother and child health services. AWWs of the clusters included in the intervention were approached for incentivized data collection. An incentive of INR 25.00 per participant was offered to the CHWs. KoboToolbox was used for paperless data collection. Baseline data collection consisted of following sections: socio-demography of the participants (including awareness about status of hypertension and medication), salt-related knowledge (regarding daily consumption limit, health effects), knowledge of hypertension and its effects on health, cooking-related practices, purchase-related practices and self-efficacy in food purchase and consumption, and behaviors and practices related to dietary salt. Measurement of BP was conducted in-facility at the Anganwadi center or HWC (AWC is a facility for dissemination of ICDS scheme provisions). Measurement of BP was done using an OMRON HEM 7121 automated blood pressure monitor (OMRON, Kyoto, Japan). Measurements were conducted in clinical settings, obtaining three readings at an interval of five minutes each, and averaging the lower two readings.

Analysis:
Summary statistics will be presented for describing the total sample and trial arms, separately. It will include measures of central tendency and dispersion of all the parameters. An intention-to-treat analysis will be conducted after collection of end-line data of the study. Within- and between-arm comparisons will be conducted for all the outcome variables. This shall be conducted using ANOVA and Tukey’s HSD, or Kruskal-Wallis Test and Dunn’s Test. Pairwise comparison with corrections to reduce False Discovery Rate (FDR) will be conducted wherever necessary. Factorial ANOVA type III will be conducted for the assessment of main effects and interactions. Confidence Intervals (95%) will be used wherever required. And a p-value of 0.0.5 or less will denote statistical significance. All the data collected via KoboToolbox shall be exported in Microsoft Excel program of Office 365 Suite (Microsoft Corporation, USA). The final data file shall be imported in RStudio IDE for further analysis in R programming language/software. Packages including but not limited to, tidyverse, gtsummary, readxl and markdown shall be used for analysis of data.

Results:

Recruitment, randomization, and allocation:
Cluster (ASHA) and participant recruitment commenced during the month of April-2021 and completed in August-2021. All the eligible ASHAs (Table 1. N = 19) were approached for participation. Eight (8) ASHAs were finally recruited in the study, randomized, and allocated to different intervention/control arms. Figure 1 provides the depiction of flow of clusters during the intervention and plan for intention-to-treat analysis.

A list of 160 hypertensive adults (candidates) was obtained from the records maintained at HWC. Of these, 127 participants were included in the study. Reasons for exclusion included age of <30 years (5 candidates), pregnancy (5 candidates), non-residence in the village/cluster (3 candidates), ongoing psychiatric treatment (3 candidates), and 15 candidates refused participation in the study.

Among the recruited participants, 28 (22.04%) belonged to IC arm, 33 (25.98%) to GC arm, 30 (23.62%) to MC arm and 36 (28.34%) to SC arm based on the identity of the cluster.

Baseline characteristics:
Study participants between the ages of 30 and 80 years have been recruited for the study with a mean age of 52.08 ± 12.04 years. Of these, 57.48% of the participants are females and most of the participants belong to 51-60 years of age (37 or 29.13%). The description of these and other parameters for total sample and each arm of the trial separately has been depicted in Table 3.

Table 3 Description of the Study Participants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All, N = 127²</th>
<th>Individual, N = 28²</th>
<th>Group, N = 33²</th>
<th>Mixed, N = 30²</th>
<th>Standard care, N = 36²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>30.00, 80.00</td>
<td>30.00, 75.00</td>
<td>32.00, 73.00</td>
<td>30.00, 65.00</td>
<td>30.00, 80.00</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>52.08 ± 12.04</td>
<td>50.75 ± 11.85</td>
<td>52.70 ± 13.15</td>
<td>47.90 ± 10.13</td>
<td>56.03 ± 11.72</td>
</tr>
<tr>
<td>Age groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-40 years</td>
<td>27 (21.26%)</td>
<td>6 (21.43%)</td>
<td>9 (27.27%)</td>
<td>8 (26.67%)</td>
<td>4 (11.11%)</td>
</tr>
<tr>
<td>41-50 years</td>
<td>35 (27.56%)</td>
<td>9 (32.14%)</td>
<td>5 (15.15%)</td>
<td>11 (36.67%)</td>
<td>10 (27.78%)</td>
</tr>
<tr>
<td>51-60 years</td>
<td>37 (29.13%)</td>
<td>7 (25.00%)</td>
<td>10 (30.30%)</td>
<td>7 (23.33%)</td>
<td>13 (36.11%)</td>
</tr>
<tr>
<td>61-70 years</td>
<td>22 (17.32%)</td>
<td>5 (17.86%)</td>
<td>8 (24.24%)</td>
<td>4 (13.33%)</td>
<td>5 (13.89%)</td>
</tr>
<tr>
<td>71-80 years</td>
<td>6 (4.72%)</td>
<td>1 (3.57%)</td>
<td>1 (3.03%)</td>
<td>0 (0.00%)</td>
<td>4 (11.11%)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>73 (57.48%)</td>
<td>15 (53.57%)</td>
<td>19 (57.58%)</td>
<td>19 (63.33%)</td>
<td>20 (55.56%)</td>
</tr>
<tr>
<td>Male</td>
<td>54 (42.52%)</td>
<td>13 (46.43%)</td>
<td>14 (42.42%)</td>
<td>11 (36.67%)</td>
<td>16 (44.44%)</td>
</tr>
<tr>
<td>BMI (kg / square m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>14.38, 40.26</td>
<td>20.03, 31.05</td>
<td>18.55, 40.26</td>
<td>15.60, 32.44</td>
<td>14.38, 36.48</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>23.82 ± 4.19</td>
<td>24.76 ± 3.61</td>
<td>24.37 ± 4.31</td>
<td>23.58 ± 3.24</td>
<td>22.77 ± 5.03</td>
</tr>
<tr>
<td>BMI categories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4 shows the status of outcome variables at baseline. The overall per capita daily salt intake of the trial participants at baseline is observed to be 10.65 ± 2.10 grams and the monthly household salt procurement is observed to be 2.10 ± 0.93 kg. The mean SBP and DBP of all the trial participants and of trial arms separately were above 140 and 90 mm Hg, respectively.

Table 4 Status of Outcome variables at Baseline

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All, N = 127*</th>
<th>Individual, N = 28*</th>
<th>Group, N = 33*</th>
<th>Mixed, N = 30*</th>
<th>Standard care, N = 36*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt intake (g/d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>10.65 ± 2.10</td>
<td>11.16 ± 2.43</td>
<td>10.14 ± 2.00</td>
<td>10.82 ± 2.09</td>
<td>10.57 ± 1.88</td>
</tr>
<tr>
<td>Salt procurement (kg/m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>2.10 ± 0.93</td>
<td>2.18 ± 1.05</td>
<td>2.07 ± 0.92</td>
<td>2.27 ± 1.03</td>
<td>1.91 ± 0.72</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>144.62 ± 20.63</td>
<td>139.50 ± 24.29</td>
<td>143.91 ± 17.62</td>
<td>150.30 ± 23.64</td>
<td>144.53 ± 16.77</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>94.45 ± 10.68</td>
<td>93.96 ± 8.23</td>
<td>94.45 ± 10.97</td>
<td>97.17 ± 12.81</td>
<td>92.56 ± 10.10</td>
</tr>
</tbody>
</table>

Discussion:
In this manuscript, we have described the rationale and design of a community-based cluster RCT of behavior change interventions aimed at reducing salt consumption and salt procurement at individual and household level. In addition, we have described the baseline characteristics and baseline status of outcome variables of a sample of 127 hypertensive adults recruited to participate in the study.

This trial is a part of a bigger study aimed at evaluating the efficiency of a culturally acceptable, patient-informed, family- and society-inclusive communication intervention customized according to the needs of beneficiaries and delivered by ASHAs.

The package of services rolled out in 2022, under the NPCDCS program’s Comprehensive Primary Health Care update enlists population-based screening of individuals aged 30 years or above at HWC.(25) Additionally, it also included health promotion via community-level targeted communication.(25) Therefore, we restricted the current interventional study to individuals of the same age bracket.

Recruitment of participants of our study was enabled by engaging CHWs for the process. Community Health Workers have been known to increase recruitment and retention of even hard-to-reach populations.(26) Recruitment for the study was also aided by the use of pre-existing records of the patients residing in the community. However, recruitment of ASHAs and study participants was delayed due to COVID-19 associated protocols and engagement of CHWs in COVID-19 vaccination drive.

The number of participants ranged between 11 and 16. And the number of female participants was more than 50% in each arm. This female participation dominance, particularly in community-based studies has been observed in previous from rural India too.(20) This might be attributed to CHWs being women themselves.

Although, participants were distributed almost equally based on their BMI, only two of the arms (MC and SC) had participants had underweight participants, of which SC had a disproportionately higher number of underweight participants (25%). The association between hypertension and BMI has been established previously.(27) We may observe how weight influences control of blood pressure up on daily salt consumption reduction.

In our intervention, we deliver messages pertaining to medication, particularly threats of reducing dosage or frequency of medicines or discontinuation of treatment without medical supervision. Additionally, we have also excluded participants who have altered physiological needs, such as pregnant/lactating women. Hence, this intervention poses no health risk to the participants. Also, we do not speculate any out-of-pocket expenditure to be borne by the participants.
The delivery of intervention is diffused across 56 days or approximately two months. The temporal distance between consecutive session increases for each follow-up (7 days, 14 days, 28 days, and 56 days). These intervals shall enable assessment of readiness to adopt salt-restricting behaviors, and how, if at all, the readiness changes with increment in duration of reminders.

Furthermore, the study shall also attempt to resolve the conflicting evidence regarding comparative effectiveness of individual and group interventions in a community-based setting.

Conclusion:
Our trial will report effectiveness of participant-accepted and culturally adapted behavior change communication intervention delivered via individual and group modes of counseling, as compared to standard care and to each other. Additionally, the trial will also resolve the interaction, if any, between the two modes of counseling, as assessed in the mixed counseling arm. The results of the trial will be expandable to all hypertensive individuals above the age of 30 years, particularly to the candidates residing in rural India and/or with similar dietary practices and cultural background. The results will also be applicable to policymaking and NCD control programs.

Ethics Statement:
This trial was a part of a larger study undertaken by RSN for fulfilling the requirement of doctoral degree in the institution of affiliation. The ethics clearance was obtained from Intuitional Human Ethics Committee (IHECPGRPDG067) and the trail was registered with Clinical Trial Registry of India (CTRI; CTRI/2020/11/029341).

Source of Funding:
No financial aid was obtained from any source for conducting this study.

Conflict of Interest/Competing Interests:
The authors declare no conflicts of interest.
References:

