Re-evaluation and revision of Eating Habits Questionnaire

Dávid Simon
ELTE Eötvös Loránd University, Faculty of Social Sciences, Department of Statistics,
Budapest
E-mail: simon.david@tatk.elte.hu

Nikolett Bogár
Semmelweis University, Faculty of Medicine, Institute of Behavioural Sciences, Budapest
E-mail: nikolett.bogar@gmail.com

Szilvia Dukay-Szabó
ELTE Eötvös Loránd University, Budapest
E-mail: dukayszabolzsilvia@gmail.com

Ferenc Túry
Semmelweis University, Faculty of Medicine, Institute of Behavioural Sciences, Budapest
E-mail: turyferenc@gmail.com

Correspondence:
Ferenc Túry
Hungary, 1085 Budapest
Úllói út 26
E-mail: turyferenc@gmail.com
Phone: +36309638140
Fax: +3612102953
ORCID: 0000-0002-7283-5088

Statements
Funding: No financial support was received for this study.
Conflict of interest disclosure: The authors declare no conflict of interest.
Authors’ contribution:
D. S.: study concept and design, statistical analysis, interpretation of data
N. B.: literature research, proofreading of the manuscript
Sz. D.-Sz.: data analysis
F. T.: study supervision

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background and aims: The Eating Habits Questionnaire (EHQ) serves as the second most widely used measurement tool for assessing orthorexia nervosa. EHQ has undergone multiple translation and re-evaluations, leading to notable variations in factor structure and the final number of items. This study aimed to reassess the English version of the EHQ, utilizing the original 35 items from its second-stage of the validation process, on two diverse populations with English predominantly as a second language.

Methods: An online survey was conducted with 163 female models and 243 female non-models, participants completed the EHQ, the Eating Disorder Inventory (EDI), and the SCOFF questionnaire. Confirmatory factor analysis was used to test the factorial validity of EHQ subscales, and items not fitting the factor structure were eliminated. The reliability was further assessed through Cronbach’s alpha, while convergent validity was checked by correlation with EDI. Mean differences between groups based on SCOFF threshold were also examined.

Results: After eliminating 17 items from the original 35-item questionnaire, the model fit for the EHQ was acceptable. Cronbach’s alpha values indicated acceptable reliability. EHQ Problems subscale displayed significant positive correlations with all EDI subscales, while all EHQ subscales demonstrated significant positive correlations with the EDI Drive for Thinness subscale. Comparing groups based on SCOFF threshold revealed positive and significant differences across all subscales.

Discussion and conclusions: Our analysis supports the factorial and convergent validity, as well as the reliability of the EHQ-18. Furthermore, the findings suggest potential discriminant validity of the EHQ-18 among diverse population mostly with English as second language.

Key words: orthorexia nervosa, Eating Habits Questionnaire, evaluation, fashion models, confirmatory factor analysis
Abbreviations:

AN = Anorexia nervosa

BMI = Body Mass Index

BN = Bulimia nervosa

CFA = Confirmatory factor analysis

DSM-5-TR = Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision

ED = Eating disorder

EDI = Eating Disorder Inventory

EDI-B = Bulimia subscale of Eating Disorder Inventory

EDI-BD = Body Dissatisfaction subscale of Eating Disorder Inventory

EDI-DT = Drive for Thinness subscale of Eating Disorder Inventory

EHQ = Eating Habits Questionnaire

EHQ – F = Feeling subscale of Eating Habits Questionnaire

EHQ – K = Knowledge subscale of Eating Habits Questionnaire

EHQ – P = Problems subscale of Eating Habits Questionnaire

ON = Orthorexia nervosa
INTRODUCTION

Orthorexia nervosa (ON) is a subtype of eating disorders (ED) that shows similarities with obsessive-compulsive disorder (OCD) regarding one’s overly healthy eating habits (Mathieu, 2005), but not yet included in the nosological system DSM-5-TR (American Psychiatric Association, 2022). ON was first described by Bratman (1997) as an obsessive, often extreme, and physically damaging disorder, related to but different from anorexia nervosa (AN). ON is characterised by the consumption of food considered to be pure and healthy, spending an excessive amount of time purchasing the right ingredients and preparing the appropriate meal, leading to a restrictive diet and social isolation.

While ON is not a defined psychopathological entity by DSM-5, according to Google Scholar the term ‘orthorexia nervosa’ occurred in 2820 papers between 2017 and 2022 (the last closed year). Despite the lack of an exact clinical definition of ON, at least 13 distinct ON assessment tools exist (Brytek-Matera, Plasonja, & Décamps, 2020). A large number of ON assessment scales doesn’t mean, however, an even distribution of usage. According to a systematic review by Opitz, Newman, Mellado, Robertson, & Sharpe (2020), the most frequently used measurement tool was ORTO-15 (50.0%), while the second most used tool was Eating Habits Questionnaire (EHQ, 11.8%) developed by Gleaves, Graham, & Ambwani (2013). Another systematic review investigating the up-to-date diagnostic tools and prevalence of orthorexia found ORTO-15 the most frequently used measurement tool, although the authors addressed EHQ as a tool that offers promising psychometric qualities according to the relevant research (Niedzielski, & Kaźmierczak-Wojtaś, 2021). The authors of both systematic reviews agreed that, despite its frequent use, the ORTO-15 does not have adequate psychometric properties based on research. We found in our research that EHQ was used or quoted in 746 papers or books between 2017 and 2023 according to Google Scholar search for the term ‘Eating habits questionnaire’ (on 23rd of July 2023).

EHQ was developed through a three-step process. In the first step, the authors reduced the original 160 items to 59 items based on the assessment of independent experts. In the following step, the number of items was further reduced to 35 items on three factors by using exploratory factor analysis. In the final step, a confirmatory factor analysis (CFA) was conducted on an independent sample which resulted in the 21 items on a three-factor version that is used commonly. The authors of the original article found good internal consistency, test-retest reliability, convergent and discriminant validity.

A partial re-evaluation of EHQ was conducted by Oberle, Samaghhabadi, & Hughes (2017). The authors found a three-factor structure using exploratory principal component analysis; however, three of the items previously loaded on the EHQ-Problems subscale were found to be loaded on the EHQ-Knowledge subscale renamed by the authors to EHQ-Behaviour. It should also be mentioned that the authors didn’t test their results by CFA.

The EHQ has been adapted to at least five different languages, but factor structure and the final number of items has showed significant differences. The evaluated Italian version had the same factor construction and items as the original version (Novara, Pardini, Pastore, & Mulatti, 2017). The validated Spanish version of EHQ had a similar factor structure but consisted of 20 items (Parra-Fernández, Onieva-Zafra, Fernández-Muñoz, Głęboka, Fernández-Martínez, & Brytek-Matera, 2021). The validation of the French version resulted in a three-factor structure with 16 items only (Godefroy, Trinchera, & Dorard, 2021). The validation of the Polish version
yielded a three-factor structure, but only with 14 items (Brytek-Matera et al., 2020). An Australian validation of EHQ resulted in a four-factor structure (Halim, Dickinson, Kemps, & Prichard, 2020), but the authors used principal component analysis without further CFA on an independent sample, therefore their results should be taken with caution.

All the mentioned results and the fact that the subjects of the research were mostly non-native English speaker, underline the importance of the re-evaluation of EHQ. Our study aimed to re-evaluate the English version of EHQ using the original 35 items of the second step of the original validation on two different heterogeneous populations, among fashion models and university students whose mother tongue in most of the cases were not English.

METHODS

Participants

This paper is a component of a broader research focused on conducting a comparative analysis between female models and non-models with an international background. The survey questionnaire was completed by 196 female fashion models (sample 1) and 305 female persons with similar age (sample 2). Participants who did not meet the specified inclusion criteria related to age, height, and BMI were excluded from the analysis.

In Sample 1, the following inclusion criteria were used: inclusion of females with a minimum of one year of modeling experience, an age range of 16 to 37 years (with 17 cases excluded due to missing data), a minimum height of 170 cm (with 3 case excluded due to missing data), and a BMI ≤ 25 (with 4 cases excluded due to missing data). In Sample 2, only the age limit was applied, resulting in the exclusion of 30 cases. Participants who did not provide complete data for EHQ items were also excluded (18 cases from sample 1 and 21 cases from sample 2). One further participant was excluded due to multiple missing data. Imputation was not used to avoid introducing potential bias in evaluation. Considering the overlaps in the cases excluded, the final sample comprised 163 models and 243 non-models.

Examination of the self-declared racial distribution unveiled diversity within both samples: sample 1 included 70.6% identifying as white, 2.5% as Asian, 3.7% as black, and 7.9% as other; sample 2 consisted of 91.8% white, 2.9% Asian, 1.6% black, and 3.6% other. In sample 1, there was a 29.4% proportion of missing ethnicity data, whereas all participants in sample 2 provided information about their ethnicity.

Comparing the two groups, the mean age of the model group and the non-model group were similar, with means of 26.0 (SD=4.7) and 25.1 (SD=5.0), respectively. However, a notable disparity was observed in the mean BMI between the model group (M=18.1, SD=1.7) and the non-model group (M=22.0, SD=4.2), with the former group displaying a significantly lower BMI (p<.001).

Measures

The survey consisted of the EHQ, items of the SCOFF questionnaire, and three diagnostic subscales of the Eating Disorder Inventory (EDI) along with general sociodemographic and anthropometric questions. The language of the questionnaire was English.

The EHQ is a measurement tool for ON consisting of three dimensions: ‘knowledge’, ‘feelings’, and ‘problems’ (Gleaves et al., 2013). Our questionnaire included all the 35 items that were
used by the authors in their evaluation research in the second part of their study. Each ordered-category item (e.g., ‘I am more informed than others about healthy eating.’) is scored on a four-point scale from 1 (false, not at all true) to 4 (very true).

The SCOFF questionnaire is constructed as a simple screening tool for testing mainly AN and BN (Morgan, Reid, & Lacey, 1999). The questionnaire consists of five questions (e.g., ‘Do you make yourself sick because you feel uncomfortably full?’) that should be answered by yes or no, related to the main features of AN and BN. The screening threshold for SCOFF is at least two ‘yes’ answers.

The EDI is one of the most frequently used self-rating instruments for the assessment of disturbed eating attitudes and behaviour and the main psychopathological symptoms found in patients with EDs (Garner, Olmstead, & Polivy, 1983). The three diagnostic subscales of EDI are: Drive for Thinness (DT), Bulimia (B), and Body Dissatisfaction (BD) (Nagel, Black, Leverenz, & Coster, 2020). The three diagnostic subscales of EDI consist of 23 ordered-category items (e.g., ‘I eat sweets and carbohydrates without feeling nervous.’), each scored on a six-value scale (always, usually, often, sometimes, rarely, or never), scoring 0-3 (least frequent three occurrences scored by 0), where higher scores represent more severe symptoms.

Procedures

The current analysis is part of a comparative research targeting fashion models. The research was conducted by online survey. The survey was shared by non-profit organisations of fashion models, international fashion model networks, and through social media platforms (Sample 1). A similar survey was distributed among university students by snowball method (Sample 2). The survey data did not contain any personal data.

Statistical analysis

Factorial validity of the three subscales of the EHQ was checked with CFA, eliminating the items not fitting to the factor structure (similar to Gleaves et al. 2013). Normality of each item were assumed if absolute value of skewness or kurtosis was smaller than 2. If distribution of items were not considered as normal, Satorra-Bentler correction was used (Satorra, & Bentler, 1988). The model fit was measured by the comparative fit index (CFI), Tucker–Lewis index (TLI), standardized root mean square residual (SRMR), and root mean square error of approximation (RMSEA). For CFI and TLI the minimum threshold of .9 was used, according to Kline (1998), and for SRMR and RMSEA, the maximum threshold of .06 (Hu, & Bentler, 1999). If model fit was not proper, items were removed step by step based on modification indicis and factor loadings.

The factorial validity was also tested on the two separate subsamples assessing configural, metric and scalar invariance. Invariance across groups was assessed by the changes in the fit indices from the less constrained to the more constrained model. According to the large sample size (N>300) and relatively equal subsample sizes the following thresholds were used: DCFI<-.01 or DRMSEA<.015 (Chen, 2007).

After conducting CFA, reliability was checked by Cronbach’s α for each factor of EHQ for both subsamples as well as factors of EDI. Cronbach’s α values of 0.7–0.95 were considered acceptable (Tavakol, & Dennick, 2011).
The convergent validity of EHQ with subscales of EDI was assessed by Pearson’s correlation coefficients with two-tailed significance tests.

As ON has not yet been approved by clinical criteria, discriminant validity could not be assessed. However, we assumed that respondents above the cutoff score of SCOFF have higher EHQ values. The difference was tested by t-test or in case of unequal variance (tested by F-test) by Welch test independently of the distribution according to the sample size over 100. The effect size was measured by Cohen’s d.

A significance level of p<.05 was used for all statistical tests. SPSS 23 was used for the descriptive statistics, reliability analysis, and correlation analysis. Stata 14 was used for all calculations for factorial validity (CFA).

Ethics

The research is in accordance with the Helsinki Declaration and was approved by the Regional Research Ethical Board of the Semmelweis University Budapest (No. 3/2020). All participants gave their informed consent to participate.

RESULTS

Factorial validity

Skewness of the items were between -0.97 and 1.57, while kurtosis was between -1.27 and 1.60. The initial three-factor model with the original 35 items did not fit our data (Table 1). After removing 17 items the model fit was acceptable. The correlation between the subscales was positive and significant in the range of .37 to .70 (Table 2). Multigroup analysis had been carried out comparing fashion model and non-model samples. The configural invariance model for the two separate samples showed a similar fit as for the full sample. The metric invariance model showed smaller changes in fit indices compared to the thresholds. The scalar invariance model showed a smaller change in RMSEA but a larger change in CFI compared to the thresholds.

| Table 1 |

Reliability

Cronbach’s alpha values for models and non-models respectively in the case of EHQ-K were .81 and .79, in the case of EHQ-P they were .90 and .87, while in the case of EHQ-F, they were .80 and .77. All alpha values were in the acceptable range.

Convergent validity

All subscales of the EHQ showed a significant positive correlation with the EDI-DT, and EHQ-P showed a significant positive correlation with all EDI subscales, but EHQ-K and EHQ-F were not correlated significantly with EDI-B and EDI-BD (Table 2).

| Table 2 |

The relation of EHQ to SCOFF result

As a simulation of discriminant validity, we measured the difference of each EHQ subscale between those who scored equal to or above the cut-off score of SCOFF and the rest of the
sample. The differences were positive and significant in all subscales, the effect sizes were between .4–1.2. The largest effect size was measured in the case of EHQ-P (Table 3).

Table 3

DISCUSSION

The objective of the present study was to repeat the evaluation of EHQ among mostly non-native English speakers, based on the original set of items after exploratory factor analysis. According to the results of the CFA, a three-factor solution of EHQ was validated consisting of 18 items (EHQ-18) on a similar factor structure as it was proposed by Gleaves et al. (2013). Fit indices were similar to the original model of Gleaves et al. (2013), but our model also fitted with restriction to equal coefficients and (less strictly) equal intercepts for the two independent samples. Consequently, configural and metric invariance was proven fully for the two independent samples, while scalar invariance was proven partially.

The differences between the items of the currently proposed EHQ-18 version and the widely used EHQ-21 version are shown in Table 4. Regarding the EHQ-K, both the original and the revised version consist of five items, however, one of the items is different: the item ‘My diet is better than other people’s diets.’ was replaced by the more general and not comparative to ‘I eat only healthy foods.’ item in the revised version. Similarly, only one item is different in the EHQ-F subscale: the item ‘Eating the way I do gives me a sense of satisfaction.’ was replaced by the semantically similar ‘Eating healthily brings me fulfilment.’ in the revised version. On the contrary, the composition of the EHQ-P subscale shows more dissimilarities compared to the original version. In the revised version the EHQ-P consists of nine items in contrast to the 13 items of the original version. More importantly, only four items are identical in the two versions. Three of the four common items (3, 5, 34) are related to social relations, while the fourth (16) is related to the possibly compulsive character of ON. Parallelly, four of the five newly included items (2, 17, 23, 28) are related to compulsivity, while the fifth is related to the restriction of social relations. The nine items left out show less consistency. While five items are related to compulsivity (10, 14, 20, 29, 31), the remaining four items (8, 9, 15, and one without or ordinal) are not closely related to any of the above-mentioned dimensions.

Table 4

Acceptable values of Cronbach alpha regarding all subscales for both samples were supporting reliability of the final version of EHQ similarly to the previous validations.

Convergent validity was partially assessed, and it also showed some important specificity as not all subscales of the EHQ were correlated to diagnostic subscales of EDI. The significant positive correlation between EDI-DT and all EHQ subscales shows the possible relationship between the psychopathological background of ON and other EDs. On the other hand, the fact that only EHQ-P shows a significant positive correlation with all subscales of EDI could mean that EHQ-P possibly measures the pathological dimension of orthorexia (ON) while the other two subscales might relate to healthy orthorexia (Barthels, Barrada, & Roncero, 2019; Depa, Barrada, & Roncero, 2019; Zickgraf, & Barrada, 2022).
The simulated discriminant validity analysis fully supports the validity of EHQ-18. However, differences in effect size values in favour of EHQ-P support the assumption that EHQ-P might measure the pathological dimension of orthorexia (ON).

Limitations

While two independent samples were drawn for the analyses, which were supposedly different in ED affectedness, they couldn’t be considered as a random sample. Moreover, both samples were restricted to young women, taller and thinner than the average which encourages repeating the current evaluation in a less restricted population. A further limitation of our results is that we eliminated large number of items during CFA, based on modification index and factor loading, which increases the possibility of overfitting our model. However, the fit of the model for both independent subsamples decrease the probability of such an error. It should also be mentioned as a possible limitation that most of the respondents were not native English speakers which could cause inconsistency in the answers due to misunderstandings, however, the consistent results of our analysis seem to oppose this assumption.

CONCLUSION

Re-evaluation of the 35-item EHQ after exploratory factor analysis by Gleaves et al. (2013) successfully led to a similar three-dimension measurement tool of 18 items among mostly non-native English speaker, called the EHQ-18. Our analysis corroborates the factorial and convergent validity, as well as reliability, and supports the possible discriminant validity of EHQ-18 in this specific population. The factor structure seems to be coherent theoretically as well. Moreover, the current study raises the possibility of measuring healthy orthorexia by EHQ-K and EHQ-F, while the pathological dimension by EHQ-P, however, this assumption should be supported by further research.
References

Table 1

Fit statistics for the CFA of the tested measurement models of EHQ (N=406)

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2 (df)</th>
<th>$\Delta \chi^2$ (Δdf)</th>
<th>CFI</th>
<th>ΔCFI</th>
<th>TLI</th>
<th>SRMR</th>
<th>RMSEA</th>
<th>ΔRMSEA</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial model</td>
<td>2118.51 (557)*</td>
<td>-</td>
<td>.816</td>
<td>-</td>
<td>.803</td>
<td>.090</td>
<td>.075</td>
<td>-</td>
<td>30765.4</td>
</tr>
<tr>
<td>Final model</td>
<td>322.90 (132)*</td>
<td>-</td>
<td>.933</td>
<td>-</td>
<td>.923</td>
<td>.059</td>
<td>.060</td>
<td>-</td>
<td>15791.2</td>
</tr>
<tr>
<td>Configural invariance</td>
<td>528.08 (264)*</td>
<td>-</td>
<td>.916</td>
<td>-</td>
<td>.903</td>
<td>.067</td>
<td>.070</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metric invariance</td>
<td>551.27 (279)*</td>
<td>23.19 (15)</td>
<td>.914</td>
<td>-.002</td>
<td>.906</td>
<td>.074</td>
<td>.069</td>
<td>-.001</td>
<td></td>
</tr>
<tr>
<td>Scalar invariance</td>
<td>621.60 (297)*</td>
<td>70.33 (18)*</td>
<td>.897</td>
<td>-.017</td>
<td>.894</td>
<td>.100</td>
<td>.073</td>
<td>.004</td>
<td></td>
</tr>
</tbody>
</table>

*p<.05

None of the measurement coefficients of the model showed significant difference between the two samples according to the model restricted on coefficients and intercepts.
Table 2
Correlation between subscales of EHQ and EDI (N=406)

<table>
<thead>
<tr>
<th></th>
<th>EHQ-K</th>
<th>EHQ-P</th>
<th>EHQ-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHQ-K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHQ-P</td>
<td>.70*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHQ-F</td>
<td>.57*</td>
<td>.37*</td>
<td></td>
</tr>
<tr>
<td>EDI-DT</td>
<td>.21*</td>
<td>.40*</td>
<td>.11*</td>
</tr>
<tr>
<td>EDI-B</td>
<td>.06</td>
<td>.20*</td>
<td>.03</td>
</tr>
<tr>
<td>EDI-BD</td>
<td>.01</td>
<td>.24*</td>
<td>-.01</td>
</tr>
</tbody>
</table>

*p<.05
Table 3
Differences in the means of EHQ subscales in relation to SCOFF cut-off score

<table>
<thead>
<tr>
<th></th>
<th>SCOFF<2</th>
<th>SCOFF≥2</th>
<th>t</th>
<th>df</th>
<th>p</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>M</td>
<td>SD</td>
<td>n</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>EHQ – K</td>
<td>221</td>
<td>10.2</td>
<td>3.1</td>
<td>185</td>
<td>12.2</td>
<td>3.4</td>
</tr>
<tr>
<td>EHQ – P</td>
<td>221</td>
<td>13.0</td>
<td>4.1+</td>
<td>185</td>
<td>18.7</td>
<td>6.4+</td>
</tr>
<tr>
<td>EHQ – F</td>
<td>221</td>
<td>11.8</td>
<td>2.6</td>
<td>185</td>
<td>12.8</td>
<td>2.4</td>
</tr>
</tbody>
</table>

+ Significant difference in SD assessed by F-test.
++ Welch test was used according to significant difference in SD assessed by F-test.
Table 4

Items of original EHQ-21 and the evaluated EHQ-18

<table>
<thead>
<tr>
<th>No.*</th>
<th>Item</th>
<th>EHQ-21</th>
<th>EHQ-18</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>My diet is better than other people’s diets.</td>
<td>+</td>
<td></td>
<td>Knowledge</td>
</tr>
<tr>
<td>13</td>
<td>I am more informed than others about healthy eating.</td>
<td>+</td>
<td>+</td>
<td>Knowledge</td>
</tr>
<tr>
<td>18</td>
<td>My eating habits are superior to others.</td>
<td>+</td>
<td>+</td>
<td>Knowledge</td>
</tr>
<tr>
<td>27</td>
<td>I eat only healthy foods.</td>
<td>+</td>
<td></td>
<td>Knowledge</td>
</tr>
<tr>
<td>32</td>
<td>I prepare food in the most healthful way.</td>
<td></td>
<td>+</td>
<td>Knowledge</td>
</tr>
<tr>
<td>33</td>
<td>It’s important to me to eat healthily.</td>
<td>+</td>
<td>+</td>
<td>Knowledge</td>
</tr>
<tr>
<td>2</td>
<td>I place more and more restrictions on the of foods I can eat.</td>
<td></td>
<td>+</td>
<td>Problems</td>
</tr>
<tr>
<td>3</td>
<td>I turn down social offers that involve eating unhealthy food.</td>
<td>+</td>
<td>+</td>
<td>Problems</td>
</tr>
<tr>
<td>5</td>
<td>My healthy eating is a significant source of stress in my relationships.</td>
<td>+</td>
<td>+</td>
<td>Problems</td>
</tr>
<tr>
<td>8</td>
<td>My diet affects the type of employment I would take.</td>
<td></td>
<td>+</td>
<td>Problems</td>
</tr>
<tr>
<td>9</td>
<td>I have difficulty finding restaurants that serve the foods I eat.</td>
<td>+</td>
<td></td>
<td>Problems</td>
</tr>
<tr>
<td>10</td>
<td>I follow a health-food diet rigidly.</td>
<td></td>
<td>+</td>
<td>Problems</td>
</tr>
<tr>
<td>14</td>
<td>I spend more than three hours a day thinking about healthy food.</td>
<td>+</td>
<td></td>
<td>Problems</td>
</tr>
<tr>
<td>15</td>
<td>Few foods are healthy for me to eat.</td>
<td>+</td>
<td></td>
<td>Problems</td>
</tr>
<tr>
<td>16</td>
<td>I follow a diet with many rules.</td>
<td></td>
<td>+</td>
<td>Problems</td>
</tr>
<tr>
<td>17</td>
<td>I think about healthy food when engaged in other activities.</td>
<td></td>
<td>+</td>
<td>Problems</td>
</tr>
<tr>
<td>20</td>
<td>I only eat what my diet allows.</td>
<td>+</td>
<td></td>
<td>Problems</td>
</tr>
<tr>
<td>23</td>
<td>I take my own food with me wherever I go.</td>
<td></td>
<td>+</td>
<td>Problems</td>
</tr>
<tr>
<td>24</td>
<td>I avoid going out to eat with others because of my diet.</td>
<td></td>
<td>+</td>
<td>Problems</td>
</tr>
<tr>
<td>28</td>
<td>Most of my free time revolves around eating healthily.</td>
<td></td>
<td>+</td>
<td>Problems</td>
</tr>
<tr>
<td>29</td>
<td>In the past year, friends or family members have told me that I’m overly concerned with eating healthily.</td>
<td>+</td>
<td></td>
<td>Problems</td>
</tr>
<tr>
<td>31</td>
<td>I am distracted by thoughts of eating healthily.</td>
<td>+</td>
<td></td>
<td>Problems</td>
</tr>
<tr>
<td>34</td>
<td>I go out less since I began eating healthily.</td>
<td>+</td>
<td>+</td>
<td>Problems</td>
</tr>
<tr>
<td>6</td>
<td>The way my food is prepared is important in my diet.</td>
<td></td>
<td>+</td>
<td>Problems</td>
</tr>
<tr>
<td>7</td>
<td>Eating healthily brings me fulfilment.</td>
<td></td>
<td>+</td>
<td>Feelings</td>
</tr>
<tr>
<td>12</td>
<td>I feel in control when I eat healthily.</td>
<td>+</td>
<td>+</td>
<td>Feelings</td>
</tr>
<tr>
<td>19</td>
<td>Eating the way I do gives me a sense of satisfaction.</td>
<td>+</td>
<td></td>
<td>Feelings</td>
</tr>
<tr>
<td>22</td>
<td>I feel great when I eat healthily.</td>
<td>+</td>
<td>+</td>
<td>Feelings</td>
</tr>
</tbody>
</table>

* Numbering of the items according to the original numbering in the paper of Gleaves et al. (2013)