Endurance and power genes modify the protective effect of fast walking pace on lung cancer risk: a UK Biobank prospective cohort study

Mengying Wang¹,², Xiangqi Meng³, Weiliang Tian⁴, Ruinan Sun⁵, Siyue Wang²,⁶, Janice M. Ranson⁷, Hexiang Peng²,⁶, Valerio Napolioni⁸, Patrick W. C. Lau⁹, Tao Wu²,⁶, Jie Huang³

¹ Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
² Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, China
³ School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
⁴ Department of Global Statistics, Eli Lilly and Company, Branchburg, New Jersey, USA
⁵ Department of Public and Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY USA
⁶ Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
⁷ College of Medicine and Health, University of Exeter, Exeter, UK
⁸ School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
⁹ Department of Sport, Physical Education & Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China

Declaration of interests: All authors declare no competing interests.
Abstract

Background: To investigate the association between walking pace and lung cancer risk, and explore whether the association is modified by endurance and power-related genes.

Methods: We analyzed data from 449,890 participants of the UK Biobank study, without cancer diagnosis at baseline. Data on self-reported walking pace were collected by touchscreen questionnaire at baseline. Blood samples were obtained for genotyping. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated for lung cancer incidence and mortality, with slow walking pace as the reference.

Results: 4,087 lung cancer incident cases and 2,245 lung cancer deaths were identified during a median follow-up period of 12.1 and 12.7 years, respectively. For incident lung cancer, HR (95% CI) were 0.71 (0.65-0.78) and 0.55 (0.49-0.61) among participants with steady and brisk walking pace, respectively. For lung cancer mortality, steady and brisk walking pace were associated with 32% and 48% lower risks, respectively. Associations of walking pace with risks of lung cancer occurrence and mortality were modified by rs1815739 in ACTN3 and rs7191721 in RBFOX1. The protective effect of faster walking pace was more evident among participants carrying a higher number of T allele for rs1815739 in ACTN3 ($P_{\text{interaction}}=0.04$ for both lung cancer incidence and mortality) and A allele for rs7191721 in RBFOX1 ($P_{\text{interaction}}=0.01$ for lung cancer incidence, $P_{\text{interaction}}=0.004$ for lung cancer mortality).
**Conclusions:** Faster walking pace is associated with lower risks of both lung cancer occurrence and mortality, and this protective effect is modulated by polymorphisms in endurance gene *RBFOX1* and in power gene (*ACTN3*).

**Keywords:** walking pace; endurance gene; power gene; lung cancer
Introduction

Lung cancer is the main contributor to cancer incidence and mortality in the world. Previous studies have shown that healthy lifestyle behaviors are important for the primary prevention and mortality reduction of lung cancer. In particular, physical activity has been recognized as a modifiable lifestyle factor for both incidence and prognosis of the disease. The frequency and intensity of physical activity could be attributed to physical fitness, which is composed of cardiorespiratory fitness and muscle strength. Therefore, physical fitness is reported to be an important risk factor for both of lung cancer occurrence and mortality.

Walking pace is a key indicator of physical fitness. Epidemiological and genetic studies have suggested that walking pace is associated with cardiovascular disease, type 2 diabetes, and all-cause mortality. However, the association between habitual walking pace and the risk of lung cancer incidence and mortality is less and inconsistently reported. In addition, previous studies have demonstrated that the association between walking pace and cancer risk is likely to be modified by sociodemographic factors and lifestyles. For example, Stamatakis et al. found that the association between walking pace and all-cause mortality was modified by age and physical activity.

Genetic susceptibility also appears to interact with behavioral factors for lung cancer risk. Notably, multiple endurance- and power-related genes have been identified in genome-wide association studies (GWAS). For instance, RBFOX1 is reported to be associated with muscular dystrophies. Furthermore, the R577X variant (rs1815739) in α-actinin-3 (ACTN3)
gene is a well-recognized genetic biomarker in exercise studies.\textsuperscript{18,19} The C to T base substitution in \textit{ACTN3} leads to the transformation of an arginine base (R) to a premature stop codon (X) at amino acid position 577 (R577X).\textsuperscript{20} Individuals with the XX genotype (TT) completely lack the expression of \textit{ACTN3}, which might influence fast fibers in the body.\textsuperscript{20,21} The polymorphism of this gene has been related to speed and cardiometabolic fitness.\textsuperscript{19,22} To the best of our knowledge, no study has evaluated the interaction between these genetic polymorphisms and walking speed on lung cancer risk.

In the current study, we aimed to investigate the associations between walking pace and risks of lung cancer occurrence and mortality in a large prospective cohort study. We further assessed the potential modifying effects of demographics, lifestyles, and endurance- and power-related genes on this association.

**Methods**

**Study design and participants**

The current analysis was based on data from the UK Biobank study. The detailed study design and procedures were described previously.\textsuperscript{23} In brief, over 0.5 million participants aged 37 to 73 years were assessed at one of the 22 centers across England, Wales, and Scotland from 2006 to 2010. All participants completed a touchscreen questionnaire and physical measurements as well as provided biological samples at the baseline survey. All participants provided written informed consent during the baseline visit. Ethical approval of the UK Biobank study was obtained from the National Information Governance Board for
Health and Social Care and the National Health Service North West Multi-Centre Research Ethics Committee (Ref 11/NW/0382).

Among 502,618 participants with available data, 449,890 individuals were included in the final analysis, after excluding those with any type of cancers (N=48,535) or missing data on self-reported walking pace (N=4,193). For the genetic analysis, only participants with complete data on genetic polymorphisms were included (N=411,647).

Assessment of outcomes

*Lung cancer*

Incident lung cancer was derived from hospital admission records via linkage to Health Episode Statistics in England and Wales and the Scottish Morbidity Records in Scotland. Incident lung cancer was defined as a hospital admission with International Classification of Diseases, Tenth Revision (ICD-10) code of C34.

*Lung Cancer Deaths*

Causes and date of death were identified by using the death certificates held by the National Health Service Information Center (England and Wales) and the National Health Service Central Register (Scotland). Lung cancer deaths were ascertained with ICD-10 code of C34.

Assessment of walking pace

The information on self-reported walking pace was collected using the baseline touchscreen
questionnaire. All participants were asked about the question “How would you describe your usual walking pace?”, with ‘slow’, ‘steady’, and ‘brisk’ pace as the response options. Slow pace was defined as <3 miles per hour; steady pace was defined as 3 to 4 miles per hour; and brisk pace was defined as >4 miles per hour.

Ascertainment of covariates

All models were adjusted for sociodemographic factors (age, sex, assessment center, ethnicity, UK Biobank assessment center, and Townsend Deprivation Index), lifestyles (smoking, alcohol consumption, diet, and total physical activity), health status (body mass index [BMI], grip strength, hypertension, diabetes, and cardiovascular disease), and family history of lung cancer.

The Townsend Deprivation Index is a comprehensive deprivation indicator comprising unemployment, overcrowded household, non-car ownership, and non-home ownership.24 Smoking and alcohol consumption status were self-reported as never, former, or current. Dietary factors were assessed using a previously published healthy diet score. One point was given for each favorable dietary factor classified by the corresponding median intake of vegetables, fruits, fish, unprocessed red meat, and processed meat, with the total score ranging from 0 to 5.25 Physical activity was classified as low, moderate, or high according to the frequency and intensity of walking, moderate activity, vigorous activity, and Metabolic Equivalent Task (MET)-minutes/week based on items from the short International Physical Activity Questionnaire form. The detailed information about physical activity measurements
is available online (https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/ipaq_analysis.pdf). Height and body weight were measured by trained investigators during the baseline visit. BMI was calculated by dividing the weight (kg) by the square of the height (m). Grip strength was measured using a Jamar J00105 hydraulic hand dynamometer. The mean of the three measurements for each hand was calculated, and the maximum value of the two hands was included in the analysis. History of hypertension, diabetes, and cardiovascular disease were defined based on self-reported information and linked medical records at the time of the baseline visit. Information on family history was also collected from the touchscreen questionnaire, with family history of lung cancer being defined by an affirmative response to any of the following three questions: “Has/did your father ever suffer from lung cancer?”, “Has/did your mother ever suffer from lung cancer?”, and “Have any of your brothers or sisters suffered from lung cancer?”.

Genotyping

The genotyping process of the UK Biobank study has been described elsewhere.26 In the present study, only 411,647 individuals of European descent had available genotyping data were included in the genetic analysis.

Statistical analyses

In the analysis for the association between walking pace and lung cancer occurrence, survival time for each participant was calculated as the duration from the response date of baseline survey through the time of incident lung cancer, death, or the censoring date (7 April 2021).
whichever occurred first. For lung cancer mortality, survival time was calculated as the
duration from the baseline survey date through death date or the censoring date, whichever
came first. The Cox proportional hazards regression model was adopted to calculate hazard
ratios (HR) and 95% confidence intervals (CI) for each outcome. We divided participants into
three categories based on their self-reported walking pace: slow, steady, and brisk, with the
slow walking pace as the reference group. Several multivariable models were adopted to
adjust for the potential confounding factors. In the first model, all HRs were adjusted for
sociodemographic factors, namely age (continuous), sex (male, female), race (white
European, mixed, South Asian, black, others), UK Biobank assessment center, and Townsend
Deprivation Index (continuous). In the second model, we further adjusted for alcohol
consumption (current, former, never), smoking status (current, former, never), physical
activity (low, moderate, high), and healthy diet score (0, 1, 2, 3, 4, 5). Next, we also adjusted
for health indicators including BMI (continuous), grip strength (continuous), hypertension
(yes/no), diabetes (yes/no), cardiovascular disease (yes/no), and family history of lung cancer
(yes/no). In the genetic analysis, we also adjusted for genotyping batch and the first ten
genetic principal components of ancestry. Walking pace was included as a continuous
variable when testing for the linear trend. To treat missing covariates, we used a missing
indicator for categorical variables and imputed mean values for continuous variables,
respectively.

Secondary analyses

Stratified analyses were performed a priori by treating walking pace as a continuous variable
according to age (<65 and ≥65 years), sex (male or female), Townsend Deprivation Index (<-2.1 or ≥-2.1), smoking status (non-current or current), alcohol consumption (non-current or current), physical activity (low, moderate, high), and BMI (18.5-24.9, 25.0-29.9, or ≥30 kg/m²). In particular, we conducted stratified analyses by the genotype of endurance- and power-related genes. Tests for interaction were carried out by setting variable cross-product terms of walking pace with each category in the third multivariable model, and the likelihood ratio test was adopted to compare models with and without the cross-product terms.

We also conducted several sensitivity analyses to assess the robustness of the results: (1) additionally adjusted for particulate matter with diameters ≤2.5 µm (PM₂.₅) exposure at baseline; (2) further adjusted for body fat-free mass, which was assessed by the sum of the muscle mass from four limbs divided by the squared height (kg/m²); (3) excluded participants who had hypertension, diabetes, or cardiovascular disease at baseline; (4) excluded events occurring in the first two years of follow-up to minimize potential reverse causality.

All analyses were conducted using SAS software (version 9.4; SAS Institute Inc., Cary, NC, USA). All P-values for the tests were two-sided and P-values<0.05 were considered as statistically significant.

Patient and Public Involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.
Results

Table 1 shows the baseline characteristics of the study participants. In total, 449,890 participants were included in the primary analysis, among whom 7.9%, 52.7%, and 39.4% individuals had slow, steady, and brisk walking pace, respectively. The mean age was 56.2 (SD=8.1 years) and 240,135 (53.4%) were females. Participants with faster walking pace had lower Townsend Deprivation Index and were less likely to be current smokers, but more likely to drink alcohol, eat healthy foods, or take exercise. Additionally, participants with faster walking pace had lower BMI and stronger hand grip strength. Hypertension, diabetes, cardiovascular disease, and family history of lung cancer was less prevalent among participants with faster walking pace.

During a median of 12.1 years of follow-up (5,349,719 person-years), 4087 lung cancer incident cases were identified, and 2245 lung cancer deaths were identified during a median follow-up period of 12.7 years (5,586,963 person-years).

The association between walking pace and lung cancer occurrence is shown in Table 2. In total, 765, 2331, and 991 lung cancer incident cases were identified in slow, steady, and brisk walking pace groups, respectively. We found that faster walking pace was associated with a lower risk of incident lung cancer in all multivariable adjusted models. In model 1 adjusted for age, sex, race, UK Biobank assessment centre, and Townsend Deprivation Index, the HR (95% CI) was 0.56 (0.52-0.61) of those with steady walking pace and 0.39 (0.35-0.42) of
those with brisk walking pace compared to those with slow walking pace ($P$ trend <0.001).

After further adjustment for alcohol consumption, smoking status, physical activity, and the healthy diet score, compared with slow walking pace, participants reported steady and brisk walking pace had HRs of 0.70 (0.64-0.76) and 0.55 (0.50-0.61), respectively ($P$ trend <0.001).

In model 3 with additional adjustment for BMI, hand grip strength, hypertension, diabetes, cardiovascular diseases, and family history of lung cancer, the corresponding HRs were 0.71 (0.65-0.78) and 0.55 (0.49-0.61) among participants with steady and brisk walking pace, respectively ($P$ trend <0.001).

A similar association pattern between walking pace and lung cancer mortality was found (Table 3). In total, 498, 1390, and 567 lung cancer deaths were identified in slow, steady, and brisk walking pace groups, respectively. In model 1, we observed 48% and 66% lower risks of lung cancer mortality in groups of steady and brisk walking pace when compared with slow walking pace, respectively ($P$ trend <0.001). In model 3 adjusted for age, sex, race, UK Biobank assessment centre, Townsend Deprivation Index, alcohol consumption, smoking status, physical activity, healthy diet score, BMI, hand grip strength, hypertension, diabetes, cardiovascular diseases, and family history of lung cancer, lung cancer mortality rate was reduced by 32% and 48% for those with steady and brisk walking pace, respectively when compared with slow walking pace ($P$ trend <0.001).

We examined the interactions between walking pace and various sociodemographic and lifestyle factors. The associations of walking pace with lung cancer occurrence and mortality
were largely unchanged across subgroups of participants stratified by sex, age, Townsend Deprivation Index, smoking, alcohol consumption, physical activity, and BMI (Supplementary Figure 1 and Figure 2).

We further explored the interaction between walking pace and endurance- and power-related genes on the risk of lung cancer. We found that associations of walking pace with risks of lung cancer occurrence and mortality were modified by rs1815739 in ACTN3 and rs7191721 in RBFOX1. For rs1815739 polymorphisms, the protective HR of faster walking pace was more evident among participants carrying a higher number of T allele ($P_{interaction}=0.04$ for both lung cancer incidence and mortality). The stratified analysis according to rs1815739 genotype showed that the HRs (95% CIs) of incident lung cancer associated with steady and brisk walking pace were 0.89 (0.75-1.06) and 0.65 (0.53-0.80) among participants with CC genotype; 0.67 (0.59-0.77) and 0.53 (0.46-0.63) among participants with CT genotype; and 0.60 (0.49-0.73) and 0.47 (0.36-0.60) among participants with TT genotype, respectively (Figure 1). Similar interaction patterns were observed in the analysis on lung cancer mortality. Within the brisk walking pace group, lung cancer mortality rate was reduced by 41%, 48%, and 57% for carriers of CC, CT, and TT genotype (Supplementary Figure 3). For rs7191721 polymorphisms, the protective HR associated with faster walking pace was stronger among participants carrying a higher number of A allele ($P_{interaction}=0.01$ for lung cancer incidence, $P_{interaction}=0.004$ for lung cancer mortality). The subgroup analysis by rs7191721 genotype showed that the HRs (95% CIs) of incident lung cancer associated with steady and brisk walking pace were 0.79 (0.66-0.95) and 0.63 (0.51-0.78) among participants.
with GG genotype; 0.74 (0.64-0.84) and 0.57 (0.48-0.66) among participants with GA genotype; and 0.58 (0.48-0.70) and 0.43 (0.34-0.54) among participants with AA genotype, respectively (Figure 2). Similar interaction patterns were also observed for lung cancer mortality. In the brisk walking pace group, lung cancer mortality rate was reduced by 40%, 43%, and 65% for GG, GA, and AA genotype carriers, respectively (Supplementary Figure 4).

The sensitivity analyses showed that additional adjustment for PM$_{2.5}$ might not appreciably change the results (Supplementary Table 1). Additionally, the associations remained significant with further adjustment for fat-free mass (Supplementary Table 2). Furthermore, after excluding participants who had hypertension, diabetes, or cardiovascular disease at baseline, the results were stable (Supplementary Table 3). In addition, the results were largely unchanged after only including participants with a follow-up time of more than two years (Supplementary Table 4).

**Discussion**

In this prospective cohort study, we observed that faster walking pace was associated with lower risks of lung cancer occurrence and mortality, independent of lifestyles, BMI, and hand grip strength. Of note, we found interactions of walking pace with rs1815739 in ACTN3 and rs7191721 in RBFOX1 on incident lung cancer and the disease mortality, where the lower risk of lung cancer risk associated with faster walking pace was more prominent in T allele carriers in rs1815739 and A allele carriers in rs7191721, respectively. However, the
associations were not modified by sociodemographic or lifestyle factors.

The associations of walking pace with lung cancer occurrence and mortality have been documented in several epidemiological studies as well as meta-analyses of prospective cohorts, yet conflicting results were reported.\(^8,13,27,28\) Similar to our findings, Smith et al found that slower walking pace was associated with a higher risk of lung cancer mortality compared with faster walking pace.\(^27\) In addition, the results from the 40 years follow-up of the Whitehall study also indicated a significant linear trend, as faster walking pace was associated with a lower risk for lung cancer mortality compared with slower walking pace.\(^28\) However, a recent meta-analysis summarizing the evidence from available cohort studies for walking pace and lung cancer mortality found that slower walking speed were not associated with lung cancer mortality.\(^8\) Notably, another previous analysis in the UK Biobank did not find associations between walking pace and lung cancer occurrence and mortality. Considering the limited number of cases and a shorter follow-up time in the previous analysis,\(^7\) the current analysis might provide more stable results for the association between walking pace and lung cancer risk.

The reasons underlying the observed inverse association between faster walking pace and reduced risks of lung cancer incidence and mortality remain unknown. As suggested by a meta-analysis of randomized controlled trials, brisk walking pace might enhance aerobic fitness,\(^29\) thus to improve respiratory health. A previous study also demonstrates a strong dose-response relationship between walking pace and maximal oxygen uptake.\(^7\) These data
indicate that walking pace is assumed to be an important marker of cardiorespiratory fitness, which has been shown to be associated with reduced lung cancer incidence and mortality.\textsuperscript{8} Additionally, exercise including walking might reduce lung cancer risk through preventing inflammatory process.\textsuperscript{30}

Walking is the most popular physical activity accepted and accessible by almost the entire population.\textsuperscript{31} In addition, among individuals with adequate physical capacity, the change in walking pace is more actionable than an increase in walking time. Therefore, the study has important public health implications for physical activity recommendations in lung cancer prevention and control, suggesting that guidelines should encourage people a faster walking pace to get more benefits in preventing lung cancer and reducing mortality risk.\textsuperscript{32}

We did not find evidence for interaction by sex, age, Townsend Deprivation Index, smoking status, alcohol consumption, physical activity, or BMI in the stratified analyses. Interestingly, we observed that there were significant interactions of walking pace with rs1815739 in \textit{ACTN3} and rs7191721 in \textit{RBFOX1} on lung cancer occurrence and mortality, as the inverse association between walking pace and lung cancer risk was stronger in participants carrying T allele in rs1815739 and A allele in rs7191721. The \textit{ACTN3} gene rs1815739 polymorphism occurs in about 16\% of people worldwide.\textsuperscript{20,33} The muscle proteins of $\alpha$-actinins 1-4 are important factors regulating the integrity of sarcomeres by binding to actin filaments in skeletal muscle. Furthermore, $\alpha$-actinin proteins mediate the binding of several glycolytic enzymes to actin filaments.\textsuperscript{34,35} $\alpha$-actinin-3, encoded by \textit{ACTN3} gene is only expressed in fast
fibers. Several epidemiological and experimental studies have suggested that rs1815739 polymorphism in ACTN3 is related to sports performance, especially speed. ACTN3 has been recognized as a “speed gene”, which is related to both endurance and power. In addition, rs7191721 in RBFOX1 gene is a marker for aerobic performance and endurance athlete status. RNA-binding protein, fox-1 homolog (C. elegans) 1 (RBFOX1) encoded by RBFOX1 plays a key role in the development of muscle tissues. RNA-binding proteins are important regulators of gene expression, and Rbfox1 knockdown might result in the inhibition of muscle differentiation. These data indicate that the interactions between walking pace and these genes are biologically plausible. Our results may provide insights into the inconsistent observations on the relations between walking pace and lung cancer risk in previous observational studies, in which the genetic modifications were not considered.

Strengths and limitations

The main strengths of our study include the large population-based sample and a wealth of information on sociodemographic factors, lifestyles, and other covariates, which enabled us to conduct comprehensive stratified analyses and sensitivity analyses. Additionally, we for the first time considered the modification effects of the genetic variations related to exercise in the association between walking pace and lung cancer risk. Several potential limitations, however, warrant consideration. Although we controlled for demographic and lifestyle factors in the analyses, unknown residual confounding could still be existing. Walking pace was based on self-reported information, although self-reported walking pace is reported to be a good proxy of gait speed and a well-established predictor of health outcomes. Because the
participants in the genetic analysis were limited to those of European descent, the
generalizability of the observed interactions to other populations is unknown. Finally, due to
the observational nature of this study, we cannot determine the causality of associations. A
clinical trial for a walking pace intervention would be a valuable next step to ascertain
causation and clinical relevance.

Conclusions

In this population-based study of adults in the UK, faster walking pace is associated with
lower risks of lung cancer occurrence and mortality. The study provides novel evidence that
the association was modified by rs1815739 in \textit{ACTN3} and rs7191721 in \textit{RBFOX1},
underscoring the importance of considering genetic modifications in epidemiological studies.

Funding

This work was supported by grants from the China Postdoctoral Science Foundation (Grant
No. BX2021021, 2022M710249), Fujian Provincial Health Technology Project (Grant No.
2020CXB009), and the Natural Science Foundation of Fujian Province, China (Grant No.
2021J01352).

Authorships

MYW: Conceptualization; Data curation; Formal analysis; Investigation; Methodology;
Software; Visualization; Roles/Writing - original draft; Writing - review & editing.

JH and TW: Conceptualization; Funding acquisition; Project administration; Software;
Supervision; Writing - review & editing.

XM, WT, HXP, SYW, JMR, and VN: Investigation; Methodology; Software; Supervision; Validation; Writing - review & editing.

All authors approved the final version of the manuscript.

Acknowledgements

This research was conducted using the UK Biobank resources under application 66137. We thank the participants for sharing their health related information. Dr. Janice M. Ranson is supported by Alzheimer's Research UK and the Alan Turing Institute/Engineering and Physical Sciences Research Council.

Data Availability

Data for this study are available by request on the UK Biobank website (https://biobank.ctsu.ox.ac.uk/).

References


3 Wei, X. et al. Diet and Risk of Incident Lung Cancer: A Large Prospective Cohort Study in UK


18 Wang, Z. *et al.* Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention. *Nat Genet* **54**, 21


33 Berman, Y. & North, K. N. A gene for speed: the emerging role of alpha-actinin-3 in muscle


Table 1. Baseline characteristics of participants according to walking pace in the UK

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Walking pace</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slow</td>
</tr>
<tr>
<td>N</td>
<td>35 450</td>
</tr>
<tr>
<td>Age (years)</td>
<td>58.5</td>
</tr>
<tr>
<td>Sex, male (%)</td>
<td>45.6</td>
</tr>
<tr>
<td>Race, white (%)</td>
<td>88.3</td>
</tr>
<tr>
<td>Townsend Deprivation Index</td>
<td>0.1</td>
</tr>
<tr>
<td>Current smokers (%)</td>
<td>17.7</td>
</tr>
<tr>
<td>Current drinkers (%)</td>
<td>81.3</td>
</tr>
<tr>
<td>Physical activity level (%)</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>31.2</td>
</tr>
<tr>
<td>Moderate</td>
<td>25.7</td>
</tr>
<tr>
<td>High</td>
<td>14.0</td>
</tr>
<tr>
<td>Healthy diet score</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>16.1</td>
</tr>
<tr>
<td>2-3</td>
<td>52.7</td>
</tr>
<tr>
<td>4-5</td>
<td>31.3</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>31.2</td>
</tr>
<tr>
<td>Hand grip strength (kg)</td>
<td>28.3</td>
</tr>
<tr>
<td>Hypertension history (%)</td>
<td>68.9</td>
</tr>
<tr>
<td>Diabetes history (%)</td>
<td>15.3</td>
</tr>
<tr>
<td>Cardiovascular diseases history (%)</td>
<td>20.7</td>
</tr>
<tr>
<td>Family history of lung cancer (%)</td>
<td>14.8</td>
</tr>
</tbody>
</table>
Table 2. Adjusted HRs and 95% CI for walking pace with the risk of incident lung cancer in the UK Biobank study

<table>
<thead>
<tr>
<th>Walking pace</th>
<th>Slow</th>
<th>Steady</th>
<th>Brisk</th>
<th>P for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases/N</td>
<td>765/35 450</td>
<td>2331/237 271</td>
<td>991/177 169</td>
<td></td>
</tr>
<tr>
<td>Model 1 a</td>
<td>1.00</td>
<td>0.56 (0.52-0.61)</td>
<td>0.39 (0.35-0.42)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Model 2 b</td>
<td>1.00</td>
<td>0.70 (0.64-0.76)</td>
<td>0.55 (0.50-0.61)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Model 3 c</td>
<td>1.00</td>
<td>0.71 (0.65-0.78)</td>
<td>0.55 (0.49-0.61)</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

a Adjusted for age (continuous, years), sex (male, female), race (white European, mixed, South Asian, black, others), UK Biobank assessment centre, and Townsend Deprivation Index (continuous).

b Adjusted for age (continuous, years), sex (male, female), race (white European, mixed, South Asian, black, others), UK Biobank assessment centre, Townsend Deprivation Index (continuous), alcohol consumption (current, former, never), smoking status (current, former, never), physical activity (low, moderate, high), and healthy diet score (0, 1, 2, 3, 4, 5).

c Adjusted for age (continuous, years), sex (male, female), race (white European, mixed, South Asian, black, others), UK Biobank assessment centre, Townsend Deprivation Index (continuous), alcohol consumption (current, former, never), smoking status (current, former, never), physical activity (low, moderate, high), healthy diet score (0, 1, 2, 3, 4, 5), body mass index (continuous, kg/m²), Hand grip strength (continuous, kg), baseline hypertension (yes/no), baseline diabetes (yes/no), baseline cardiovascular diseases (yes/no), and family history of lung cancer (yes/no).
<table>
<thead>
<tr>
<th>Walking pace</th>
<th>Slow</th>
<th>Steady</th>
<th>Brisk</th>
<th>P for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases/N</td>
<td>498/35 450</td>
<td>1390/237 271</td>
<td>567/177 169</td>
<td></td>
</tr>
<tr>
<td>Model 1 a</td>
<td>1.00</td>
<td>0.52 (0.47-0.58)</td>
<td>0.34 (0.30-0.39)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Model 2 b</td>
<td>1.00</td>
<td>0.68 (0.61-0.76)</td>
<td>0.52 (0.45-0.59)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Model 3 c</td>
<td>1.00</td>
<td>0.68 (0.61-0.76)</td>
<td>0.52 (0.45-0.59)</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

a Adjusted for age (continuous, years), sex (male, female), race (white European, mixed, South Asian, black, others), UK Biobank assessment centre, and Townsend Deprivation Index (continuous).

b Adjusted for age (continuous, years), sex (male, female), race (white European, mixed, South Asian, black, others), UK Biobank assessment centre, Townsend Deprivation Index (continuous), alcohol consumption (current, former, never), smoking status (current, former, never), physical activity (low, moderate, high), and healthy diet score (0, 1, 2, 3, 4, 5).

c Adjusted for age (continuous, years), sex (male, female), race (white European, mixed, South Asian, black, others), UK Biobank assessment centre, Townsend Deprivation Index (continuous), alcohol consumption (current, former, never), smoking status (current, former, never), physical activity (low, moderate, high), healthy diet score (0, 1, 2, 3, 4, 5), body mass index (continuous, kg/m²), Hand grip strength (continuous, kg), baseline hypertension (yes/no), baseline diabetes (yes/no), baseline cardiovascular diseases (yes/no), and family history of lung cancer (yes/no).
Figure 1. The association between walking pace and the risk of incident lung cancer stratified by rs1815739 polymorphism in ACTN3 gene. Adjusted for age (continuous, years), sex (male, female), race (white European, mixed, South Asian, black, others), UK Biobank assessment centre, Townsend Deprivation Index (continuous), alcohol consumption (current, former, never), smoking status (current, former, never), physical activity (low, moderate, high), healthy diet score (0, 1, 2, 3, 4, 5), body mass index (continuous, kg/m²), Hand grip strength (continuous, kg), baseline hypertension (yes/no), baseline diabetes (yes/no), baseline cardiovascular diseases (yes/no), and family history of lung cancer (yes/no).

Figure 2. The association between walking pace and the risk of incident lung cancer stratified by rs7191721 polymorphism in RBFOX1 gene. Adjusted for age (continuous, years), sex (male, female), race (white European, mixed, South Asian, black, others), UK Biobank assessment centre, Townsend Deprivation Index (continuous), alcohol consumption (current, former, never), smoking status (current, former, never), physical activity (low, moderate, high), healthy diet score (0, 1, 2, 3, 4, 5), body mass index (continuous, kg/m²), Hand grip strength (continuous, kg), baseline hypertension (yes/no), baseline diabetes (yes/no), baseline cardiovascular diseases (yes/no), and family history of lung cancer (yes/no).
<table>
<thead>
<tr>
<th>Genotype</th>
<th>Disease</th>
<th>N</th>
<th>Cases</th>
<th>Hazard Ratio (95% CI)</th>
<th>P for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Slow</td>
<td>9385</td>
<td>186</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steady</td>
<td>66787</td>
<td>715</td>
<td>0.89 (0.75-1.06)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brisk</td>
<td>51912</td>
<td>295</td>
<td>0.65 (0.53-0.80)</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>Slow</td>
<td>15006</td>
<td>367</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steady</td>
<td>106272</td>
<td>1033</td>
<td>0.67 (0.59-0.77)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brisk</td>
<td>81909</td>
<td>449</td>
<td>0.53 (0.46-0.63)</td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>Slow</td>
<td>5768</td>
<td>157</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steady</td>
<td>42182</td>
<td>432</td>
<td>0.60 (0.49-0.73)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brisk</td>
<td>32426</td>
<td>183</td>
<td>0.47 (0.36-0.60)</td>
<td></td>
</tr>
<tr>
<td>Genotype</td>
<td>Phase</td>
<td>N</td>
<td>Cases</td>
<td>Hazard Ratio</td>
<td>95% CI</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-----</td>
<td>-------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>GG genotype</td>
<td>Slow</td>
<td>9041</td>
<td>186</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steady</td>
<td>63289</td>
<td>659</td>
<td>0.79</td>
<td>(0.66-0.95)</td>
</tr>
<tr>
<td></td>
<td>Brisk</td>
<td>48347</td>
<td>286</td>
<td>0.63</td>
<td>(0.51-0.78)</td>
</tr>
<tr>
<td>GA genotype</td>
<td>Slow</td>
<td>14967</td>
<td>348</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steady</td>
<td>107254</td>
<td>1073</td>
<td>0.74</td>
<td>(0.64-0.84)</td>
</tr>
<tr>
<td></td>
<td>Brisk</td>
<td>82989</td>
<td>458</td>
<td>0.57</td>
<td>(0.48-0.66)</td>
</tr>
<tr>
<td>AA genotype</td>
<td>Slow</td>
<td>6151</td>
<td>177</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steady</td>
<td>44698</td>
<td>448</td>
<td>0.58</td>
<td>(0.48-0.70)</td>
</tr>
<tr>
<td></td>
<td>Brisk</td>
<td>34911</td>
<td>183</td>
<td>0.43</td>
<td>(0.34-0.54)</td>
</tr>
</tbody>
</table>