Implementing evidence ecosystems in the public health service: Development of a seven-step framework for designing tailored training programs

Toolbox to develop tailored training programs to strengthen public health evidence ecosystems

Laura Arnold¹² *, Simon Bimczok¹, Timo Clemens², Helmut Brand², Dagmar Starke¹, on behalf of the EvidenzÖGD study consortium

¹ Academy of Public Health Services, Kanzlerstraße 4, 40472 Düsseldorf, Germany
² Department of International Health, Care and Public Health Research Institute—CAPHRI, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 Maastricht, The Netherlands

* Corresponding author: arnold@akademie-oegw.de

^ Membership of the EvidenzÖGD study consortium is provided in the acknowledgments

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

The COVID-19 pandemic has highlighted the importance of local evidence-ecosystems in which academia and practice in the Public Health Service (PHS) are interconnected. However, appropriate organizational structures and well-trained staff are lacking and evidence use in local public health decision-making has to be integrated into training programs in Germany. To address this issue, we developed a toolbox to conceptualize training programs designed to qualify public health professionals for working at the interface between academia and practice. We conducted a scoping review of training programs, key-informant interviews with public health experts, and a multi-professional stakeholder workshop and triangulated their output. The toolbox consists of four core elements, encompassing 15 parameters: (1) content-related aspects, (2) context-related aspects, (3) aspects relevant for determining the training format, and (4) aspects relevant for consolidation and further development. Guiding questions with examples supports the application of the toolbox. The developed seven-step framework aims to facilitate new training programs for knowledge-transfer at the academia-practice interface, equipping public health researchers and practitioners with relevant skills for needs-based PHS research. The joint development of training approaches can foster cross-institutional collaboration and enhance evidence utilization, resulting in long-term resource savings and a stronger evidence base for implementing complex public health measures on site. In this way, co-development of tailored solutions within the local evidence ecosystem has the potential to enhance both scientific and practical impact.

Keywords

Public health workforce, Public health service, Local health authorities, Capacity building, Knowledge-transfer, Evidence-informed decision-making, evidence-ecosystem, evidence-based public health
1. Introduction

The systematic incorporation of research evidence into health policy is crucial for the provision of high-quality public health services. Public health professionals are increasingly required to engage in evidence-informed decision-making (EIDM) (1), which aims to identify the most effective and cost-efficient interventions, while also minimizing harm, assessing adverse consequences, and enhancing health outcomes for individuals and communities (2, 3). Accomplishing this requires that public health policy and practice are informed by the best available evidence, as well as a comprehensive consideration of normative and contextual factors, including political and societal preferences, setting-specific considerations, feasibility, affordability, and sustainability (4–6). Proper implementation and execution of EIDM has the potential not only to enhance the effectiveness of health policies and public health interventions but also to promote transparency, acceptability, and accountability (7, 8).

A system that encompasses the formal and informal connections and interactions among various stakeholders involved in the production, implementation, and utilization of evidence can be referred to as evidence ecosystem (9). The formulation and adoption of effective policies and programs relies on the presence of a functional evidence ecosystem encompassing diverse actors from various domains and with diverse agendas (10). Within such a system, two distinct but interconnected conceptual domains must be considered: evidence generation and evidence utilization, usually linked either to policy or practice (11, 12).

The effectiveness of such an ecosystem relies on robust relationships and active collaboration between public health academia (e.g., universities, research institutes, or academies of public health services) and public health practice (e.g., public health service on federal, state, or local level) (13). To date, the responsibility of generating evidence has predominantly been ascribed to academic institutions, whereas the utilization of evidence, encompassing the identification, processing, and contextual adaptation of scientific knowledge, has commonly been linked to the domain of public health practice. However, meeting the diverse needs of individuals and communities necessitates a close intertwining of evidence generation and evidence utilization, rather than maintaining a strict separation of responsibilities and competencies. This calls for a symbiotic relationship between academia and practice, enabling the harmonization of scientific inquiry with prevailing practical needs and imperatives (14, 10). Institutionally anchored, this in turn facilitates informed decision-making in the implementation of evidence-based public health interventions (15, 16).

However, the COVID-19 pandemic highlighted considerable disparities between the envisioned integration of EIDM within a comprehensive evidence ecosystem and the practical implementation of evidence transfer between academia and practice in the German Public Health Service (PHS) (17–19).
In Germany, the health system governance follows a decentralized approach, with responsibilities divided between the federal and state levels, along with corporatist bodies of self-governance (20). The implementation of federal legislation pertaining to PHS, lies within the purview of the 16 state governments, who wield legislative powers and provide functional and disciplinary oversight of the PHS on local level (21). Consequently, the local health authorities (LHA) operating at the level of municipalities and independent cities assume a pivotal role in addressing wide range of public health tasks (22). These LHAs are key actors in promoting and protecting population health and well-being, encompassing health surveillance, evidence gathering, and providing guidance on the prevention of communicable and non-communicable diseases.

Ensuring effective resource utilization and successful intervention implementation requires not only access to scientific knowledge but also its judicious application (6). This is particularly relevant for the municipal level, as LHAs possess an encompassing understanding of local conditions and contexts (23–25). Nevertheless, the COVID-19 pandemic has exposed significant challenges in LHAs’ implementation and embedding of EIDM processes. These challenges include among others, limited access to scientific information (26, 27), a lack of institutionally anchored collaboration between academia and practice in many places (28, 29), and substantial personnel, material and time constraints that make accessing, reviewing, and applying research findings into local contexts much more difficult (30, 27).

Overcoming these barriers necessitates the establishment of institutionalized evidence ecosystems that foster large-scale collaboration between public health practice and academia and enable inter-agency collaboration in line with the Health in All Policies (HiAP) approach (31, 32). At the community level, this entails the presence of a well-qualified public health workforce equipped with scientific expertise, administrative skills, and methodological knowledge to ensure a two-way theory-practice transfer.

In Germany, several established training programs provide high-quality education and training opportunities for public health professionals. These programs include, in addition to various public health chairs that primarily prepare students for scientific activities, in particular the Academies of Public Health Services that offer advanced trainings and practice-oriented qualifications. However, to implement and enhance EIDM processes at the academia-practice interface, both comprehensive scientific competencies coupled with extensive expertise in local administrative tasks, activities and responsibilities are needed. This interface encompasses activities aimed at enhancing knowledge transfer between the municipal PHS (e.g., LHA) and research institutions (e.g., universities or academies), as well as fostering collaboration. For brevity, we will refer to this domain as "work at the interface" in the following.
Effective dissemination and exchange of evidence at the community level requires a profound understanding of public health services. Consequently, public health professionals working at the interface require competencies in evidence-based policy advice and design, coordination and management skills, and a comprehensive understanding of organizational leadership and decision-making structures (33, 34). Acquiring these competencies necessitates a consolidation of theory and practice, which is often facilitated through postgraduate training approaches. Noteworthy examples of postgraduate training programs in Germany include the medical residency program for public health specialists (35), the trainee program for public health specialists at LHA Fulda (36), or the postgraduate training in applied epidemiology at the Robert Koch Institute (37). However, these existing approaches predominantly focus on one occupational group or prepare for single areas of activity. To address this gap, developing training programs tailored to the complex regional characteristics of PHS at the local level is imperative.

The overarching aim of this study was to develop a framework in terms of a toolbox for conceptualizing tailored training programs to equip public health professionals with the necessary skills to enhance evidence-informed approaches at the interface. The study followed a stepwise approach with the following research objectives:

1. Explore the relevant fields of activity, tasks, required skills, and competencies for a position at the interface through several semi-structured key informant interviews (Figure 1: RQ-1/2).
2. Conduct a scoping review to identify, characterize, and analyze available training programs that prepare public health professionals for working at the interface (Figure 1: RQ-3).
3. Develop a toolbox that encompasses key parameters for creating tailored training programs qualifying individuals to facilitate evidence transfer at the local level, drawing from the findings of steps 1 and 2.

3. Materials and methods

A stepwise iterative mixed-methods approach was employed. Firstly, qualitative interviews were conducted to explore the tasks, fields of activities, skills and competencies relevant to working at the interface. Secondly, a scoping review was carried out to identify suitable training programs. In the third step, a stakeholder workshop was executed, consisting of the critical appraisal and prioritization of the main findings from the previous steps. Finally, the results from all three steps were triangulated and synthesized, leading to the development of a framework, conceptualized as a toolbox that encompasses both essential content and contextual factors required for the development of tailored
training programs. The methodological approach is displayed in Figure 1. Details on the activities in each step are described below.

Figure 1. Schematic of the methodological approach to develop a toolbox for conceptualizing tailored training programs for work at the interface (RQ = research question).

3.2 Qualitative interview study

In the first step, 23 semi-structured key informant interviews (KII) were conducted to explore aspects related to public health research, knowledge transfer, collaboration between academia and practice in the PHS, and training programs. Participants were purposefully selected using a sampling plan that utilized professional networks and snowballing. Recruitment took place from November 24, 2021 to March 31, 2022. The first interview was conducted on January 12, 2022, the last on May 03, 2022. During recruitment, all participants were informed about the study procedure and objectives. Written informed consent was obtained from all participants. The consent forms were filed in accordance with German data protection regulations. Prior to recording the interview, all participants were informed about the procedure and verbally asked if they agreed to be recorded. To incorporate the heterogeneity of the PHS accordingly and to reach saturation, the sampling plan considered two dimensions: representation of experts from federal, state, and local governments, and inclusion of experts from public health practice, public health academia, experts with teaching background, and young professionals. A semi-structured interview guide was developed based on existing literature and through brainstorming and iteratively refined by a group of five researchers (LA, DD, SB, SG, and SW) who are all part of the project consortium. After incorporating minor adjustments from the pilot test, the final guide was used for virtual video call interviews. In most cases, participants were invited by e-mail or telephone.

All interviews were conducted by a pair of researchers and the resulting audio files were content-semantic transcribed (38), pseudonymized, and afterwards deleted (LA, DD, SB, SG, and SW). If requested, the transcripts were returned to the participants for correction or comments. No repeat interviews were conducted. The transcripts underwent a deductive-inductive qualitative content analysis following Mayring’s approach (39, 40). After calibration of the coding frame within a group of five researchers from the project consortium, all interviews were coded by two researchers independently using MAXQDA Analytics Pro 2022 (VERBI Software GmbH, Berlin) (LA, DD, SB, SG). Inductive additions to the coding frame were made as required. Any discrepancies were resolved through discussion.

Relevant tasks, activities, skills, and competencies associated with working at the interface and facilitating evidence transfer at the local level were identified and extracted (RQ-1 and RQ-2, Figure 1). The
insights obtained from the interviews were utilized to determine priority areas of activity at the interface. Furthermore, these results informed the subsequent development of the toolbox.

3.1 Scoping review of relevant training programs

The second step involved a scoping review aiming to identify, characterize, and analyze available training programs that prepare public health professionals for working at the interface. This methodological approach was chosen due to its comprehensive format, allowing for efficient mapping of the existing literature within a limited timeframe while capturing the scope and characteristics of current research activity. We did not attempt to identify all records on training programs at the interface, but enough to assume that saturation had been reached regarding the parameters to be identified in the analysis. To the best of our knowledge, there is currently no such overview.

The scoping review was conducted following the framework proposed by Arksey and O’Malley (41).

To answer RQ-3 (Figure 1), we developed a search strategy focusing on two themes:

- **PHS workforce**, referring to professionals providing essential public health services within local, state, or national level public health authorities.
- **Practice-oriented training programs**, such as continuing education, training opportunities, and professional development programs, prepare individuals for academic work in PHS practice or practice-oriented roles in public health academia, including hybrid training programs that bridge both areas.

After piloting and refining the search strategy by two researchers (LA, SB), we searched the scientific databases PubMed and LIVIVO on October 26, 2021 (Appendix S1 and 2). Retrieved records were de-duplicated in the bibliographic management software CITAVI (Swiss Academic Software GmbH) and imported in Rayyan, a web-based tool for conducting systematic reviews (42). Initially, the screening process was calibrated and the predefined inclusion and exclusion criteria were tested for practicability and applicability. Records were assessed for eligibility based on the following criteria:

- **Population**: Included records referred to the PHS workforce as defined above or individuals engaged in academic public health. Excluded records focused primarily on professionals involved in patient treatment.
- **Context**: Included records referred to practice-oriented training and qualification approaches and programs as defined above. Excluded records encompassed training exclusively focused on one area (e.g., new master programs unrelated to the PHS) or lacked the objective of qualifying for the interface.
- **Setting**: Included records focused on training approaches implemented in Germany as well as results from neighboring countries with comparable healthcare systems, including Austria - AT, Switzerland - CH, and the Netherlands - NL. Examples from the United Kingdom - UK, known for its Public Health...
Specialist Program within the National Health Service (NHS), were also considered exemplary. Excluded records concentrated on training approaches from other countries.

- **Publication date and language**: The search was restricted to articles published between 2011 and 2021 in English, German, or Dutch.
- **Publication type**: No restrictions were imposed based on publication type.
- **Full-text accessibility**: Excluded records were those for which full-text access was unavailable.

Following the calibration of the screening process, a title-abstract screening and subsequent full-text screening was conducted independently by two researchers (LA, SB). Relevant publications were transferred to MAXQDA Analytics Pro 2022 (VERBI Software GmbH, Berlin) for coding and thematic synthesis analysis based on the approach outlined by Thomas and Harden (43). A critical appraisal was not conducted in accordance with Arksey and O’Malley’s scoping review framework methodology (41).

Initially, three sample documents were coded line-by-line inductively by both researchers, demonstrating a high level of consensus. Subsequently, the remaining documents were coded individually by one researcher each, with new codes developed and added inductively as needed. All coded passages were then grouped, defined, and labeled according to identified similarities and differences, resulting in a hierarchical tree structure (Appendix Table S3). From the emerging descriptive themes, a first version of the toolbox was developed (LA, SB).

3.3 Stakeholder workshop

The third step involved a multi-professional and interdisciplinary stakeholder workshop, which aimed to critically appraise the first version of the toolbox by prioritizing skill-sets, competencies, and key elements for the development of tailored training programs. The in total 44 participants were purposefully selected using a sampling plan similar to the interview approach, with an emphasis on including individuals who possessed similar professional and communication skills but held diverse opinions to encourage critical discussion. This approach aimed to prevent the occurrence of "group think", where decisions are influenced by conformity or dominance of certain individuals within the group (44). The recruitment phase lasted from April 01, 2022 to June 14, 2022, and the workshop itself took place from July 04-05, 2022.

The workshop utilized the Strategic Orientation Mapping (SOR) approach for the decision-making process proposed by Schlicht and Zinsmeister (44). Prior to the workshop, participants completed an online survey to prioritize fields of activity at the interface. The workshop consisted of two parts: a critical appraisal of predefined tasks and activities, and an assessment of existing training programs using the SWOT analysis approach (45, 46). The workshop results were documented, processed by the project team, and shared with participants for feedback and final adaptations.
3.4 Triangulation and synthesis

The results from step one to three were integrated and consolidated through triangulation in workshops with the research consortium members. Triangulation in this context refers to a systematic integration of results obtained from the various methodological approaches employed in the previous steps (47). Based on the findings of this study, the toolbox was applied in a series of workshops within the project consortium to design a training program that was tailored to the specific structural conditions of all consortium member institutions. A detailed description of the final training program can be found in forthcoming publications (Arnold et al., in preparation).

Since the qualitative interviews and the stakeholder workshops contained exclusively technical questions, study-related stresses and risks were expected to be minimal. As some information provided by participants might involve criticism of their own agency or partner organizations, the pseudonymity of data was ensured, and no detailed information was disclosed. The study was conducted in accordance with the Declaration of Helsinki and data collection was approved by the Institutional Ethics Committee of Faculty of Medicine at the Heinrich-Heine-University Düsseldorf, protocol code 2021-1646_1 (2021-12-16). We adhered to the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist in reporting the qualitative interviews, stakeholder workshops, and final triangulation and synthesis (48). The members of the interdisciplinary research team had backgrounds in epidemiology (LA, DD), medicine (DD), public health (LA, SB, TC, SG, DS), sociology (SW, DS), and social sciences (LA, DS). All authors had experience in conducting qualitative research projects. Results of the scoping review were reported according to the Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist (49).

4. Results

As a result of the methodology employed, two main outcomes have emerged. The first outcome involves the mapping of relevant areas of activity at the interface. The second outcome pertains to the development of a toolbox designed to create tailored training programs aimed at equipping public health professionals for work at these interface. Both outcomes laid the groundwork for the currently ongoing development and pilot testing of a customized training program tailored to the specific requirements and local needs of the EvidenzÖGD research consortium (Link). A comprehensive report on this aspect will be provided once the piloting phase is completed (Arnold et al., in preparation).

4.1 Fields of activity at the interface
A total of 24 individuals were interviewed in 23 semi-structured interviews. We interviewed fourteen public health professionals, four of whom worked at the federal level, two at the state level, and five at the local level. Eleven participants worked at a university, five were young professionals, and eight had an international perspective. Most participants possessed multiple areas of expertise according to their professional backgrounds. The sampling plan can be found in Appendix Table S4. The duration of the interviews ranged from 31 to 56 minutes. The interviews included an equal representation of men and women. Based on the interviews, areas of knowledge transfer activity at the municipal level were identified and clustered, along with identification of requisite skills and competencies.

The obtained results were further discussed and prioritized in the multi-professional and interdisciplinary stakeholder workshop with 48 experts. Of these, 40 participants responded to the initial question regarding the positioning of their professional expertise in a triangle between practice, academia, and teaching. Among them, 18 experts primarily identified with public health practice, 14 experts primarily with public health academia, and four experts indicated a prior focus on teaching and conceptualization of training programs. Four experts situated themselves at the intersection of all three domains. Additionally, 30 experts reported having five or more years of experience in the field of public health, while 21 experts reported having five or more years of experience specifically in the PHS. Furthermore, 21 experts mentioned their participation in the design of a training program at least once.

The results of the interview analysis and the stakeholder workshop were further elaborated by the interdisciplinary research consortium through a series of conceptual workshops. Finally, the consortium consolidated six fields of activity for establishing evidence-informed processes and structures at the interface between academia and practice in LHAs in Germany:

- **Networking and committee activities**: This field focuses on creating and fostering networking opportunities among stakeholders at the community level. It also includes the mapping of needs, goals, and expectations to promote ongoing engagement.
- **Knowledge management (evidence use)**: This field entails building sector-specific and cross-sectoral expertise on municipal PHS (“practical knowledge”). It also includes the development of practice-oriented research questions, the conduction of evidence syntheses including quality assessments, and the identification of suitable implementation approaches.
- **Knowledge communication**: This field involves tailoring expertise and research findings to local conditions by developing appropriate communication materials, such as policy briefs, statements, or evidence synthesis. It also includes the development, implementation, and promotion of a joint communication strategy to facilitate cross-institutional knowledge exchange between stakeholders, team members, leaders, and decision-makers.
- **Project management**: This field encompasses evidence-informed identification, adaptation and subsequent implementation, administration, and evaluation of (complex) public health interventions and measures. It also includes the securement of project funding.

- **Capacity building and change management**: This field focuses on opportunities to strengthen the structural conditions of knowledge-transfer processes, aiming to enhance the capacity of individuals and organizations to apply research evidence effectively.

- **Consolidation of knowledge-transfer processes**: This field involves the sustainable implementation of evidence-informed processes and structures. It also includes establishing feedback mechanisms and promoting individual as well as organizational self-reflection in evidence use.

A detailed description of the knowledge, skills, attitudes, and attributes required for each field can be found in the competency framework developed as part of the EvidenzÖGD project [Link](#).

4.2 Toolbox for the development of relevant training programs

The identification and extraction of relevant aspects for the development of tailored training programs for the PHS workforce on local level was informed by the Six-Step Model for Developing Competency Frameworks proposed by Batt et al. (50). Emphasis was placed on defining desired outcomes and considering relevant process aspects, including inputs and activities. Continuous evaluation of this process took place throughout the iterative development phase, enabling the utilization of findings to enhance the ongoing processes of model development and revision.

A total of 1,1706 records (PubMed: n=1,468; LIVIVO: n=238) were identified in the scoping review. Following the title-abstract screening, 1,590 records were excluded, and an additional 24 records were excluded during the full-text screening. Exclusion reasons are displayed in [Figure 2](#). Ultimately, 25 records were included in the review. The characteristics of the included records can be found in [Appendix Table S5](#).

[Figure 2. PRISMA Flowchart](#).

Based on these 25 records, four core elements were identified as relevant for the development of a training program intended to qualify professionals for work at the interface: (1) context-related aspects, (2) content-related aspects, (3) aspects relevant for determining the training format and (4) aspects relevant for consolidation and further development of the program. A total of 15 parameters were assigned to these core elements, and specific guiding questions with examples were developed to facilitate the application of the toolbox. Subsequently, each of the four aspects, along with corresponding guiding questions, will be presented.
Context-related aspects

Context-related aspects involve essential program parameters and factors that need to be established prior to program implementation. These aspects encompass (a) agreement on program objectives, (b) involvement of relevant stakeholders, (c) identification of required resources, and (d) definition of the program setting. To facilitate the conceptualization of a training program considering contextual factors, Table 1 presents these parameters and corresponding guiding questions.

Table 1. Context-related aspects for the development of a training program

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Guiding questions to be answered</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Program objectives</td>
<td>What are the overarching guiding principles and objectives of the training program? (51–67)</td>
</tr>
<tr>
<td>(b) Stakeholder involvement</td>
<td>Which stakeholders are involved in the training program?</td>
</tr>
<tr>
<td></td>
<td>- Who takes the lead in program management and organization? (51–53, 55–58, 60, 61, 68, 62–64, 69, 65, 70)</td>
</tr>
<tr>
<td></td>
<td>- Which stakeholders are included in program administration? (71, 51, 53, 55–58, 60, 61, 68, 63, 64, 69, 66, 72)</td>
</tr>
<tr>
<td></td>
<td>- Who is the target audience of the program? (e.g., Bachelor/Master/PhD students, professionals, specific professions) (73, 71, 51–54, 74, 55–61, 75, 62, 64, 69, 65, 70, 66)</td>
</tr>
<tr>
<td>(c) Necessary resources</td>
<td>What resources are required for program establishment?</td>
</tr>
<tr>
<td></td>
<td>- What financial resources are needed for the program? (66, 51–55, 57, 58, 60–62, 65)</td>
</tr>
<tr>
<td></td>
<td>- In which setting will the program be carried out?</td>
</tr>
<tr>
<td></td>
<td>- Where will the program be conducted? (e.g., local, regional, national, international) (64)</td>
</tr>
<tr>
<td></td>
<td>- What setting will be used for the practical component? (e.g., LHA, hospital, general practice) (52, 53, 59, 62)</td>
</tr>
<tr>
<td></td>
<td>- What setting will be used for the theoretical component? (e.g., universities, academies, public health schools) (52, 53, 59, 62)</td>
</tr>
<tr>
<td></td>
<td>- Are there any restrictions to consider? (e.g., distance, daily work routine, internet access) (56, 60, 64)</td>
</tr>
<tr>
<td></td>
<td>- What delivery formats will be used? (e.g., face-to-face, distance learning, hybrid) (71, 51–54, 56–58, 60, 61, 68, 75, 76, 63)</td>
</tr>
<tr>
<td></td>
<td>- In what language will the program content be delivered? (60)</td>
</tr>
<tr>
<td></td>
<td>- Does the program setting ensure equal access participation for all? (60, 56, 64)</td>
</tr>
</tbody>
</table>

Content-related aspects

Content-related aspects are essential for structuring the program content effectively. These aspects include determining the (a) relevant program content, (b) selecting suitable training and education formats, (c) didactical concepts, and specifying (d) appropriate measurability and assessment methods. Table 2 illustrates these parameters and provides guiding questions to aid determining the program’s content.

Table 2. Content-related aspects for the development of a training program
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Guiding questions to be answered</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Program content</td>
<td>Horizontal Integration<sup>1,2</sup> (53, 74, 72, 64)
- Which professions should be integrated in the program’s content? (73, 51, 53, 55, 58, 60, 72) (e.g., public health experts, medical doctors)<sup>1,2</sup>
- Which disciplines should be integrated in the program’s content? (73, 53, 74, 55, 58–60, 72) (e.g., healthcare, public health, law, ethics)<sup>1,2</sup>
- How can the curriculum accommodate the diverse professional backgrounds of the public health workforce? (73, 53, 74, 55, 58–60, 72)
- Should the curriculum allow for individual content preferences? (72, 53, 74, 56, 59, 60, 76)
- Should international experience be integrated into the curriculum? (76, 52–54, 56, 60, 61)
Vertical integration<sup>1</sup> (51, 74, 58, 59, 61, 76, 68, 64)
- What content should be included to enhance knowledge-transfer between practice and academia in the PHS?
 o Which theories and models should be integrated? (74, 55, 58, 59, 76, 68, 75, 70) (e.g., Evidence-based Public Health (EBPH) (6), Essential Public Health Operations (EPHOs) (77), Health in all Policies (HiAP) (78), Information Pyramid (79))
 o What content areas should be integrated? (75, 68, 76, 61, 60, 59, 58, 57, 56, 55, 74, 53, 52, 71, 66, 70, 69, 64, 63, 72, 62)
 o Should the program have predefined learning outcomes? (52, 53, 57–59, 76, 72, 69, 70) (e.g., WHO-ASPHER Competency Framework (80), UK Public Health Skills and Knowledge Framework (PHSKF) (81), Core competencies in applied infectious disease epidemiology in Europe (82), Catalogue of Learning Objectives Epidemiology (83))
- Should the program follow a competency framework? (52, 53, 74, 55, 56, 58, 60, 63, 69, 70, 66)
 o If yes, which one? (e.g., European Core Competences for Public Health Professionals [49], Core Competencies for Public Health Professionals [50], Public Health Skills and Knowledge Framework[51], WHO-ASPHER Competency Framework [52], Core competencies in applied infectious disease epidemiology in Europe [53])
 o If no, should a new competency framework be developed? (e.g., in accordance with the Six-Step Model for Developing Competency Frameworks [43] and aligned with the CONFED-HP Guideline [54])
- Which research methods and skills should be delivered in the program? (71, 51, 53, 74, 56, 58–61, 76, 75, 63, 64, 70) (e.g., quantitative and/or qualitative methodology, academic writing, analytical reasoning, critical appraisal, identification of knowledge gaps, problem analysis, understanding scientific language)
- How does the practical application succeed?
 o How can academia and practice be connected within the content of the program? (73, 71, 51, 53, 74, 56, 58, 59, 76, 72, 64, 70) (e.g., by addressing aspects relevant for collaborative relationships between researchers and end users, the involvement of decision makers in research processes, or timely access to research)
 o How can the program deliver practical knowledge and address practice-oriented problems? (53, 66, 70) (e.g., by applying problem-oriented or practice-based learning approaches)
 o How can the program provide career development options perspectives? (71, 53, 56, 58, 59, 76) (e.g., by providing coaching or mentoring)
 o How can the program be relevant to the workplace reality of participants? (73, 71, 53, 57, 59, 60, 76, 62, 72) (e.g., by co-creating the qualification model, co-hosting the final training approach)
</td>
</tr>
<tr>
<td>(b) Training and education forms</td>
<td>Which training and education forms should be applied to deliver the content of the program?
 - Which teacher-centered training and education forms should be used? (e.g., (guest) lectures, mentoring, supervision, personal development planning, Q&A formats, train-the-trainer) (51–54, 74, 57–61, 76, 68, 75, 63, 64, 70, 66)
 - Which training and education forms promoting interaction and exchange between participants should be employed? (e.g., discussion formats, group exercises, interprofessional knowledge-exchange, journal clubs, networking formats, peer-assisted learning, research projects, tandem models, tutorials) (73, 71, 51, 53, 54, 74, 56–59, 75, 76, 61, 60, 62, 64, 70, 66)</td>
</tr>
</tbody>
</table>
Which training and education forms emphasizing practical experience for participants should be incorporated? (e.g., internships, networking formats, exposure to practical problems, rotational concepts) (71, 53, 55, 58, 62, 72, 63, 70, 66)

(c) Didactical concepts
Which didactical concepts should be used to deliver the content of the program (73, 71, 52–54, 74, 57, 59, 60, 76, 68, 72, 69, 70) (e.g., adult/lifelong learning, problem-based learning (PBL), presentation of real-life problems, research-based learning, self-directed learning, self-reflective learning)?

(d) Measurability and assessment methods
What assessment methods should be used to evaluate participants’ understanding of the program’s content?
- Should the examination contain a theoretical component? (e.g., exams, presentations, group work formats) (52, 55, 57, 72, 69, 65)
- Should the examination contain a practical component? (e.g., working on research projects) (71, 55, 58, 61, 72)
- How can the time spent studying the program’s content be made measurable? Should some kind of credit point system be used for this? (e.g., European Credit Transfer and Accumulation System (ECTS)) (73)

*1 Horizontal integration describes the integration of content for different professional disciplines into the curriculum so that participants can adopt a broad public health perspective (74).

*2 We defined “professions” as roles obtained through specific training, academic education, or professional trajectory, and “disciplines” as overarching fields of work according to (85).

*3 Vertical integration describes the linkage of theories, methods, content, and application within the content of the program (bridging the gap between research and practice) (74).

Once the context- and content-related aspects have been established, the next step is to specify the preferred program format. Based on the findings of the scoping review, four parameters were identified as relevant for the transition into a training program (Table 3). These parameters include determining the program format (a), program duration and density (b), professional credentialing requirements (c), and the recruitment process and selection strategy (d).

Table 3. Aspects relevant for determining the training format

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Guiding questions to be answered</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Program format</td>
<td>What is the most suitable program format?</td>
</tr>
<tr>
<td></td>
<td>- What program forms are generally suitable? (73, 51, 54, 53, 74, 56, 57, 59–61, 68, 75, 62, 72, 63, 69, 66) (e.g., hospitalizations/seminars/courses/workshops, stand-alone vs. integrated into existing programs, postgraduate programs, PhD programs, trainee programs)</td>
</tr>
<tr>
<td></td>
<td>- Can existing program forms be adopted? If not, which core elements seem particularly suitable? To address this question, it is worthwhile to develop an overview of the core elements of existing programs as presented in Table 4.</td>
</tr>
<tr>
<td>(b) Program duration and density</td>
<td>What is the overall duration of the program?</td>
</tr>
<tr>
<td></td>
<td>- What is the most suitable duration of individual modules within the program? (71, 51–55, 58, 60, 61, 72, 63–66)</td>
</tr>
<tr>
<td></td>
<td>- What are the scheduling options for participants? (e.g., full-time, part-time, block sessions, self-determined) (71, 51–53, 55–58, 60, 59, 61, 62, 72, 66)</td>
</tr>
<tr>
<td>(c) Professional credentialing requirements</td>
<td>What are the required standards for program completion? *1</td>
</tr>
<tr>
<td></td>
<td>- Are there professional credentialing standards upon program completion? (e.g., acknowledge- ments, degrees, certificates, register) (61, 55, 53, 52)</td>
</tr>
<tr>
<td></td>
<td>- What are the accreditation requirements for the program? (e.g., Accreditation body, public health registry, boards) (52, 53, 55, 56, 68, 63)</td>
</tr>
<tr>
<td></td>
<td>- What credentials or certificates do participants receive upon completion? (e.g., degree, certificate, certificate of attendance)? (53, 57, 59, 61)</td>
</tr>
<tr>
<td>Parameters</td>
<td>Guiding questions to be answered</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| (a) Program format | - What is the most suitable program format?
- What program forms are generally suitable? (73, 51, 54, 53, 74, 56, 57, 59–61, 68, 75, 62, 72, 63, 69, 66) (e.g., hospitations/seminars/courses/workshops, stand-alone vs. integrated into existing programs, postgraduate programs, PhD programs, trainee programs)
- Can existing program forms be adopted? If not, which core elements seem particularly suitable? To address this question, it is worthwhile to develop an overview of the core elements of existing programs as presented in Table 4.
- Does program completion grant entry into a (national) public health registry (if existent)? (73, 52, 55) |
| (d) Recruitment and selection | - How are participants recruited and selected?
- What procedure is used to select participants for the program? (e.g., recruitment strategy, written and/or face-to-face assessments, admission exam) (71, 52, 55–58, 61)
- What selection criteria must be met for program participation? (e.g., required professional background, years of postgraduate experience, completion or enrollment in a Master’s program that covers specific areas, appointment to a specific training site) (52, 53, 55, 59, 61)
- What is the desired number of participants for the program? (52, 55, 57–59, 56, 60, 61, 65) |

*1 For more details, see Gershuni et al. (86). Their systematic review on professional regulation and credentialing of public health workforce contains detailed information on relevant factors to be considered.

Among the various qualification models identified in the scoping review, five were deemed particularly suitable for facilitating evidence use and knowledge transfer within the local PHS in Germany: trainee programs, PhD programs, rotational concepts, continuing professional development (CPD) courses that address both academia and practice, and PHS related modules in academic degree programs. Table 4 presents the selected training programs based on their program parameters. All five qualification models were subject of a SWOT analysis during the stakeholder workshop. Special attention was paid to the feasibility of ensuring knowledge transfer at the local level.
<table>
<thead>
<tr>
<th>Table 4 Program parameters of selected training programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trainee programs</td>
</tr>
<tr>
<td>(a) Program objectives</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(b) Setting</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(c) Optimal duration</td>
</tr>
<tr>
<td>(d) Core content focus</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(e) Participant selection criteria</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(f) additional considerations</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Examples</td>
</tr>
</tbody>
</table>

*1 CPD = Continuing professional development (CPD).
Furthermore, parameters necessary for the long-term existence of the program were classified as aspects relevant for consolidation and further development of the program. These aspects encompass a range of factors that can be grouped into three overarching parameters, including (a) piloting and implementation, (b) evaluation and quality assessment, and (c) advancement and transferability. Table 5 provides an overview of these aspects, along with guiding questions that aim to support a comprehensive understanding and careful consideration of the fundamental elements required for ensuring the ongoing success of the program.

Table 5. Aspects relevant for consolidation and further development of the training program

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Guiding questions to be answered</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Piloting and implementation</td>
<td>How can a piloting phase before establishing the training program be established?</td>
</tr>
<tr>
<td></td>
<td>- How to test feasibility and practicability of the model? (60, 68, 75)</td>
</tr>
<tr>
<td>(b) Evaluation and quality assessment</td>
<td>How can the evaluation concept be designed to ensure a comprehensive quality assessment of the program?</td>
</tr>
<tr>
<td></td>
<td>- Which components of the program should be evaluated? (e.g., development process, content, performance, acceptability, feasibility, satisfaction)</td>
</tr>
<tr>
<td></td>
<td>- What are the objectives to be achieved through the evaluation process (e.g., assessing program effectiveness, identifying strengths and weaknesses, improving program outcomes, informing decision-making, resource allocation)?</td>
</tr>
<tr>
<td></td>
<td>- Which methods and indicators should be employed to evaluate the program?</td>
</tr>
<tr>
<td></td>
<td>o Level 1: Reaction (e.g., satisfaction with the program and/or the program content, application rate, attendance rate) (65, 71, 59, 60, 76, 62, 72, 63)</td>
</tr>
<tr>
<td></td>
<td>o Level 2: Learning (e.g., graduation rate, assessment of newly acquired competencies, participants’ achievements after graduation, employment rate of participants after graduation) (73, 71, 52–54, 56–59, 76, 72, 63, 64, 70)</td>
</tr>
<tr>
<td></td>
<td>o Level 3: Behavior (e.g., factors contributing to the successful application of the program content, barriers contributing to the successful application of the program content) (63, 76, 60, 59, 54, 51, 71)</td>
</tr>
<tr>
<td></td>
<td>o Level 4: Results (e.g., impact of the program on practice / on certain institutions / on political debates) (72, 63)</td>
</tr>
<tr>
<td></td>
<td>o Level 5: Return on investment (e.g., cost-effectiveness of the program) (63)</td>
</tr>
<tr>
<td>(c) Advancement and transferability</td>
<td>How can the continuity of further program development be ensured?</td>
</tr>
<tr>
<td></td>
<td>- Does the program receive sufficient support from relevant stakeholders, such as experts and recognized institutions, to be effective in practice? (55, 69)</td>
</tr>
<tr>
<td></td>
<td>- Should the program be aligned with other existing training programs? (73, 51, 59, 76)</td>
</tr>
<tr>
<td></td>
<td>- How to secure adaptability to developments in the field of public health/in the PHS? (71, 51, 56, 58, 61, 68, 76, 75, 62, 72, 63, 69)</td>
</tr>
<tr>
<td></td>
<td>- How can the program be adjusted to address its criticized aspects? (63)</td>
</tr>
<tr>
<td></td>
<td>- What is the log-term financing strategy for the training program?</td>
</tr>
<tr>
<td></td>
<td>How can the transferability of the program to other contexts be ensured?</td>
</tr>
<tr>
<td></td>
<td>- Are there good-practice examples of successful transferring the training program to other contexts? (51, 55, 58, 61, 69, 64, 63)</td>
</tr>
<tr>
<td></td>
<td>How should the dissemination concept be designed to enhance visibility of the program? (71, 51, 57, 58, 76, 63, 64)</td>
</tr>
</tbody>
</table>

For more details, see Schloemer et al. (93). The authors developed a model for the assessment of transferability of health interventions through identification and systematization of influencing criteria, including facilitators and barriers within a systematic review.
5. Discussion

5.1 Summary of findings

Current research-oriented training opportunities provided by well-established public health programs effectively prepare students for academic roles but often neglect the complexities of working in and with local governments (94). Conversely, practice-based training programs often do not adequately manage to equip practitioners with the skills necessary for academic tasks and roles.

To address the lack of available training offerings that meet the unique needs and requirements of the local context, we have developed a comprehensive toolbox for conceptualizing integrated training programs. These programs aim to enhance evidence transfer between academia and practice in local PHS.

Through an iterative process involving key informant interviews, a scoping review, and a multidisciplinary stakeholder workshop, we identified essential aspects and parameters for such a toolbox. The toolbox presented comprises four core elements, encompassing a total of 15 parameters:

1. Content-related aspects (incl. four parameters),
2. Context-related aspects (incl. four parameters),
3. Aspects relevant for determining the training format (incl. four parameters), and
4. Aspects relevant for consolidation and further development (incl. three parameters).

Specific guiding questions with illustrative examples have been developed for each parameter to assist in the development of tailored training models aligned with local needs and requirements. These guiding questions enable program developers to effectively assess the complexities associated with developing, implementing, and sustaining the program’s effectiveness and impact.

5.2 Short guidance on how to apply the toolbox

The toolbox presented is deliberately generic so that it can be applied to different contexts. To this end, the accompanying guiding questions are intended to be assistive to determine the relevant focus and content. While the toolbox can be used as a "ready-to-use" framework by systematically answering all questions in sequence, we believe the toolbox to be most useful in an iterative deliberative process, as recommended by experts in the field (50). Figure 3 provides a graphical representation of the planned process, with a brief explanation of each step outlined below.

Figure 3. Schematic how-to-use guidance of the toolbox.

To initiate the process (step 1), it is crucial to form a core team comprising representatives from relevant public health institutions on the local level. This core team should include experts with broad...
professional backgrounds from universities, research institutions, academies of public health services, local public health authorities, local administration, and ideally, government agencies. Reflecting on activities and structures relevant for evidence transfer between academia and practice provides insights into existing practices and highlights areas for improvement. This reflection enhances understanding regarding the dissemination of research findings and utilization of evidence in current practice. Ensuring alignment and collaboration throughout the development process is further supported by each entity represented in the core team initially defining their goals, needs, resources, and requirements.

In the preparation phase (step 2), the defined goals, interests, needs, resources and requirements should be aligned with underlying competencies of each member institution. This mapping exercise provides a deeper understanding of the strengths and expertise within the core team while identifying any overlaps or conflicts. Promptly resolving potential conflicts enables effective collaboration and smooth progress throughout the development process. Performing a stakeholder analysis based on the results of the mapping will provide insights into the broader ecosystem and helps identifying relevant experts not yet involved. These experts can be engaged by expanding the core team or involving them in the program advisory group, which should be formed to ensure comprehensive guidance throughout the development process.

During the development phase (step 3), the core team reaches a consensus on the fundamental elements of the training program. An iterative process is recommended refining content- as well as context-related aspects by systematically assessing the provided guiding questions (see Table 1 and 2) in successive workshops conducted by the core team. To ensure continuous exchange within the core team, a predetermined schedule should be agreed upon in the initial meeting. Once program objectives and content are specified, the program format, including duration and density, professional credentialing requirements, and desired recruitment and selection criteria, can be defined (see Table 3 and 4).

In the refinement phase (step 4), the core team consolidates the first version of the qualification model based on the agreed-upon parameters. Subsequently, the model is presented to the program advisory group, including future participants, policy makers, and experts not involved in prior steps. Gathering input and feedback allows for refining and improving the model. The core team adapts the model according to the feedback received, ensuring its relevance, effectiveness, and alignment with stakeholders’ expectations.

To test the feasibility and practicability of the model, it is recommended to pilot the model in a real-world setting at the outset the implementation phase (step 5) (see Table 5 (a)). Careful assessment of results and feedback from the pilot phase enables necessary adaptations to the model. Once refined,
the model can be implemented in the respective setting. Efforts should be dedicated to developing a comprehensive evaluation and quality assessment strategy for the program.

During the evaluation phase (step 6), the core team defines relevant quality assurance tools to assess the program’s effectiveness, impact, and adherence to standards (see Table 5 (b)). Continuous monitoring and evaluation, accompanied by adjustments, ensure the ongoing quality improvement of the tailored qualification model.

In the final advancement phase (step 7), a strategy for continuous development to update and maintain the program over time should be established (see Table 5 (c)). Assessing the transferability of the adapted model to other contexts and settings, while considering scalability and applicability, is crucial. Defining a dissemination strategy facilitates sharing the knowledge and experiences gained during the development and implementation process, ensuring broader adoption and impact of the model.

5.3 Need for institutional anchored evidence eco-systems on local level

Effective implementation of needs-based public health interventions requires the assessment, synthesis, and appropriate utilization of research evidence, in alignment with the broader policy system. The practical challenges encountered by LHAs in this regard became evident during the COVID-19 pandemic, where time-sensitive decisions had to be made amidst epistemic uncertainties (5, 17). This was aggravated by absence of structures facilitating rapid knowledge transfer and exchange in many municipalities, particularly at the pandemics’ onset. To bridge the gap between evidence generation and utilization in the local PHS in Germany, the establishment of evidence ecosystems is deemed highly relevant.

Comprehensive methodological skills, including formulating appropriate research questions and conducting evidence synthesizes, are essential to obtain timely and robust evidence on public health-related challenges. Successful implementation of complex interventions relies on the effective translation of new research findings from academia into practice and vice versa. Therefore, sector-specific and cross-sectoral expertise in public policy and administration is vital for aligning research questions with local needs, as emphasized by experts in the field (95–98), particularly on the local level. To recommend and implement locally tailored strategies, scientific evidence must be communicated in a meaningful and usable manner for policymakers, decision-makers, and practitioners (2, 99). This necessitates the production of succinct and user-friendly evidence synthesizes, specifically tailored to meet informational demands of the intended users. Additionally, addressing local needs entails active engagement and involvement of key stakeholders, interdisciplinary teams of experts, and collaborative and continuous efforts between evidence generators and evidence users (10).
The toolbox presented aims to serve as a guide to conceptualize training programs that teach skills related to evidence generation and to train participants in evidence utilization by translating and applying parts of a generic body of evidence to the community context in which LHA's operate. Within the EvidenzÖGD-project we utilized the toolbox by following the proposed step-wise approach to develop a customized training program tailored to the specific needs of the research consortium. The resulting qualification model is currently undergoing piloting and evaluation (Arnold et al., in preparation).

Tailored training programs are intended to equip public health researchers and practitioners with the relevant skills to design and implement needs-based PHS research. The joint development of training approaches seeks to strengthen cross-institutional collaboration and enhance understanding of evidence generation and utilization. In the long term, this process is meant to enable public health researchers and practitioners to conduct high-quality PHS research, aligned with local needs, thereby saving resources and enhancing the evidence base for successfully conducting complex public health measures on site. Consequently, co-developing tailored solutions within a local evidence ecosystem can contribute not only to scientific impact but, potentially, to practical impact as well.

However, the successful implementation and effectiveness of such tailored programs will also be influenced by contextual conditions. In addition to adequate material and financial resources, laws and regulations that mandate evidence-informed decision-making processes are essential. Therefore, a clear political endorsement and support for the integration of evidence-informed practices into the policy and practice on local level are needed. Moving forward, attention to these contextual factors is vital to ensure the optimal impact and sustainability of tailored training programs.

6. Strengths and limitations

The design of this study incorporates some noteworthy strengths. The novelty of our overarching approach, in which we looked at aspects relevant to strengthen knowledge-translation and exchange at the interface of academia and practice in local PHS in Germany by taking into account evidence required from a scoping review, several key-informants and a multi-professional group of experts. The comprehensive mixed-methods approach allowed us to incorporate a broad variety of methods and types of evidence. The iterative approach enabled critical evaluation of our own research results, contributing to continuous quality assurance and consolidation. Based on this, we assume that our study, which is jointly organized by academia and practice, can contribute significantly to the improvement of knowledge-transfer processes at the municipal level by means of the proposed toolbox and its application.
However, the study possesses some methodological limitations that warrant consideration. Firstly, the search of the scoping review was restricted to five European countries. This decision was primarily made to identify training programs that have been implemented or tested within a context comparable to the German public health system (AT, CH, and NL) or in a well-established context (GB). We are aware of other good examples from the United States and Canada, among others (e.g., (3, 100–103)).

Due to the fact that we supplemented the results with 23 key-informant interviews and finally reflected and prioritized the entire framework with 48 experts, we assume relevant coverage. It is important to note, that our aim was not to capture all available records within the scoping review. However, the achieved saturation gives us confidence that the approach captured the majority of relevant publications and reflects on the majority of relevant parameters. Some parameters (e.g. “piloting and implementation” or “advancement and transferability”) were underrepresented in the identified training programs, which might be due to the fact that these aspects are so far not regularly considered in training program development.

Secondly, the qualitative interview study had a strong focus on the German context, with limited inclusion of international experiences. Nevertheless, a small sample of well-informed international interviewees provided valuable insights into current debates within their country contexts. While this emphasis on individuals’ experiences within the system strengthens the development of tailored training programs, it may limit the emergence of "out of the box" thinking.

Lastly, the multidisciplinary stakeholder workshop allowed for open discussions, benefiting from participants diverse professional backgrounds, ranging from students to retired public health experts. This facilitated the integration of different disciplines and varying levels of expertise and interests. Although all topics were successfully discussed and prioritized as planned, it is worth considering alternative approaches, such as a DELPHI process, to generate additional solutions. However, it should be noted that the time and availability of the experts involved was limited and other approaches would have been much more time-consuming. In this regard, the commenting phase following the stakeholder workshop proved valuable in mitigating potential biases associated with group thinking processes, while also partially addressing the time constraint limitation.

7. Conclusions

This study aimed to develop a toolbox that serves as a guide to develop training programs to equip public health professionals and researchers with the knowledge, skills, and capacities relevant to implementing evidence-informed approaches at the interface of academia and practice. Training programs that are explicitly tailored to local needs have the potential to foster a shared research culture
focusing on topics relevant for the PHS and establish a sustainable cross-institutional infrastructure known as a local evidence ecosystem.

Applying the toolbox for training program development can contribute to the strengthening and enhancement of the local evidence ecosystem in which they are embedded. The efficacy of this approach should and will be evaluated in future studies. If successful, a well-established evidence ecosystem can provide the much-needed bridge between the evidence-generating and the evidence-utilizing system. This mutually beneficial relationship benefits both public health academia and practice, as research questions and projects tailored to local needs can lead to the development of customized solutions. Consequently, an institutionally anchored knowledge-transfer and exchange ecosystem helps to ensure a transparent and evidence-informed fulfillment of local PHS tasks and activities.
Acknowledgments

The authors express their gratitude to the study participants for their time and dedication. Additionally, we would like to extend our appreciation to Katharina Kreffter, Lena Raith, Meret Reuther, Joy Pirig, and Luisa Urban for their valuable support throughout the project. Special thanks are extended to all members of the EvidenzÖGD study project consortium, listed in the following table. We also thank Jan M. Stratil for his valuable time and constructive feedback on earlier manuscript versions.

EvidenzÖGD study consortium

<table>
<thead>
<tr>
<th>Institution</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academy of Public Health Services (AÖGW)</td>
<td>Laura Arnold, Simon Bimczok, Hannah Schütt, Dagmar Starke</td>
</tr>
<tr>
<td>Heinrich-Heine-Universität Düsseldorf (HHU)</td>
<td>Nico Dragano, Delbar Dilmaghani, Annika Höhmann, Simon Götz, Simone Weyers</td>
</tr>
<tr>
<td>Local Health Authority Düsseldorf</td>
<td>Ravina Ambalavanar, Anke Kietzmann, Andrea Melville-Drewes, Michael Schäfer, Guido Schenuit, Trudpert Schoner</td>
</tr>
</tbody>
</table>
References

35. AÖGW, SAMA, Regierungspräsidium Stuttgart, AGL und LGL, Bayerisches Staatsministerium für Gesundheit und Pflege, Sächsisches Staatsministerium für Soziales und Verbraucherschutz, editor. Curriculum Kursweiterbildung Öffentliches Gesundheitswesen [Akademie für Öffentliches Gesundheitswesen (AÖGW); Sozial- und Arbeitsmedizinische Akademie Baden-Württemberg e.V. (SAMA) in Verbindung mit der Universität Ulm (SAMA); Regierungspräsidium Stuttgart; Akademie für Gesundheit und Lebensmittelsicherheit (AGL); Bayerisches Landesamt für Gesundheit und Lebensmittelsi-

43. Thomas J, Harden A. Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Med Res Methodol 2008; 8:45.

75. Tran A. In-house peer supported literature search training: a public health perspective. Health information and libraries journal 2017; 34(3):258–62.

Additional Information

Author Contributions:

<table>
<thead>
<tr>
<th>Contributor Role</th>
<th>Role Definition</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptualization</td>
<td>Ideas; formulation or evolution of overarching research goals and aims.</td>
<td>LA</td>
</tr>
<tr>
<td>Data Curation</td>
<td>Management activities to annotate (produce metadata), scrub data and maintain research data (including software code, where it is necessary for interpreting the data itself) for initial use and later reuse.</td>
<td>LA</td>
</tr>
<tr>
<td>Formal Analysis</td>
<td>Application of statistical, mathematical, computational, or other formal techniques to analyze or synthesize study data.</td>
<td>LA, SB</td>
</tr>
<tr>
<td>Funding Acquisition</td>
<td>Acquisition of the financial support for the project leading to this publication.</td>
<td>LA, DS</td>
</tr>
<tr>
<td>Investigation</td>
<td>Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection.</td>
<td>LA, SB</td>
</tr>
<tr>
<td>Methodology</td>
<td>Development or design of methodology; creation of models</td>
<td>LA, SB</td>
</tr>
<tr>
<td>Project Administration</td>
<td>Management and coordination responsibility for the research activity planning and execution.</td>
<td>LA</td>
</tr>
<tr>
<td>Supervision</td>
<td>Oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team.</td>
<td>LA, TC, HB, DS</td>
</tr>
<tr>
<td>Validation</td>
<td>Verification, whether as a part of the activity or separate, of the overall replication/reproducibility of results/experiments and other research outputs.</td>
<td>LA, SB</td>
</tr>
<tr>
<td>Visualization</td>
<td>Preparation, creation and/or presentation of the published work, specifically visualization/data presentation.</td>
<td>LA, SB</td>
</tr>
<tr>
<td>Writing – Original Draft Preparation</td>
<td>Creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation).</td>
<td>LA, SB</td>
</tr>
<tr>
<td>Writing – Review & Editing</td>
<td>Preparation, creation and/or presentation of the published work by those from the original research group, specifically critical review, commentary or revision – including pre- or post-publication stage</td>
<td>LA, SB, TC, HB, DS</td>
</tr>
</tbody>
</table>

Funding: The project is part of the funding priority "Strengthening Collaboration between Public Health Services and Public Health Research" of the Federal Ministry of Health and was funded by the federal government. Number: ZMI1-2521FSB201

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki and data collection was approved by the Institutional Ethics Committee of Faculty of Medicine at the Heinrich-Heine-Universität Düsseldorf, protocol code 2021-1646_1 (2021-12-16).

Informed Consent Statement: Written Informed consent was obtained from all subjects involved in the qualitative study.
Data Availability Statement: The transcripts of the qualitative interviews are not available in full text for privacy reasons. An overview of the coding tree underlying the scoping review and a tabular summary of the included studies can be found in the appendix. The authors are pleased to provide further results upon request. The learning objectives catalog and the associated handbook will be published as open access after completion of the evaluation of the pilot phase.

Conflicts of Interest: none

Supporting Information (Appendix)

Table S1. Search strategy for the database PUBMED

Table S2. Search strategy for the database LIVIVO

Table S3. Overarching coding tree structure

Table S4. Sampling plan

Table S5. Characteristics of the studies included in the scoping review.
What **tasks and activities** are required for working at the interface? (RQ-1)

Resulting in a list of tasks and activities

What are the **skill-sets and competencies** are needed for working at the interface? (RQ-2)

Resulting in a list of competencies and skills

What **training programs** are available? What are their defining characteristics? (RQ-3)

Resulting in a list of existing training programs

Qualitative Interviews (1) and Scoping Review (2)

Triangulation and Synthesis (4)

Development of a **framework** to design tailored training programs

Resulting in a toolbox with short guidance for application

Stakeholder Workshop (3)

SWOT analysis of available training programs

Resulting in a list of aspects relevant to determine a suitable training format

Critical appraisal of pre-defined tasks and activities

Resulting in a list of prioritized fields of activity at the interface

Identification of studies via databases and registers

Records identified from:
- PubMed (n = 1,468)
- LIVIVO (n = 238)

Records removed before screening:
- Duplicate records removed (n = 67)

Records screened in Title-Abstract Screening (n = 1,639)

- wrong outcome (n = 1,252)
- wrong population (n = 253)
- context (n = 83)
- wrong language (n = 2)

Records excluded in the Full-Text Screening
- wrong outcome (n = 3)
- wrong population (n = 3)
- context (n = 18)

Records included in review (n = 25)
Step 1: Initiation
(1) Form a core team
(2) Reflect on activities and structures of evidence transfer at the interface between academia and practice
(3) Define goals, needs, resources and competencies for all institutions represented in the core team

Step 2: Preparation
(1) Map goals, interests & needs, resources & competencies, as well as necessary (pre-) conditions of institutions represented in the core team
(2) Resolve potential conflicts
(3) Perform a stakeholder analysis based on the results of step 2.1 & 2.2
(4) Engage relevant stakeholders, expand the core team and form a program advisory group
(5) Determination of a development plan including time and milestone planning

Step 3: Development
(1) Program objective
(2) Program content
(3) Program format

- Resources
- Setting
- Stakeholder involvement
- Didactical concepts
- Training and education forms
- Measurability and assessment
- Professional credentialing
- Duration and density
- Recruitment and selection

Step 4: Refinement
(1) Consolidate a first version of the qualification model in the core team
(2) Present the results to the program advisory group, including future participants, policy makers and experts so far not involved in step 1-3
(3) Adapt the model according to gathered feedback

Step 5: Implementation
(1) Pilot the model to test feasibility and practicability
(2) Adapt the model accordingly
(3) Implement the model in the respective setting

Step 6: Evaluation
(1) Develop an evaluation and quality assessment strategy for the program
(2) Implement the defined quality assurance tools
(3) Adapt the model accordingly

Step 7: Advancement
(1) Develop a strategy for continuous development to update and maintain the program over time
(2) Assess transferability of the adapted model to other contexts and settings
(3) Define a dissemination strategy