Quantification of Human Papillomavirus cell-free DNA from low volume blood plasma samples by digital PCR

Fabian Rosing¹, Matthias Meier², Lea Schroeder¹, Simon Laban², Thomas Hoffmann², Andreas Kaufmann³, Nora Würdemann⁴, Oliver Siefert⁴, Jens Peter Klußmann⁴, Yvonne Alt¹, Daniel Faden⁵,⁶,⁷, Tim Waterboer¹ and Daniela Höfler¹*

¹ Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
² Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Ulm, Germany.
³ Department of Gynecology, HPV Research Laboratory, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
⁴ Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany.
⁵ Department of Otolaryngology-Head and Neck Surgery, Boston Medical Center, Boston, Massachusetts.
⁶ Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts.
⁷ Mass Eye and Ear, Boston, Massachusetts.

Abstract

The incidence rate of human papillomavirus-driven oropharyngeal cancer (HPV-OPC) is increasing in many countries with a high human development index. HPV cell-free DNA (cfDNA) has been successfully used for therapy surveillance of HPV-OPC patients. Another currently highly discussed application is early detection of HPV-OPC where particularly sensitive and specific cfDNA detection methods are needed. To study pre-diagnostic cfDNA, archived biobank samples with very limited plasma volume could be highly informative.

To establish a cfDNA detection workflow optimized for low plasma volumes we compared two cfDNA purification methods (MagNA Pure 96 and QIAamp cfDNA/RNA) and two digital PCR systems (Biorad QX200 and QIAGEN QIAcuity One) and used 65 plasma samples from OPC patients with pre-defined HPV status (34 HPV16+, 1 HPV33+, 2 HPV58+, 28 HPV-) for validation.

The MagNA Pure 96 yielded a 28% higher cfDNA isolation efficiency in comparison to the QIAamp cfDNA/RNA kit. Both digital PCR systems showed comparable analytical sensitivity (detection limits 6 - 17 copies for HPV16 and HPV33), but the increased multiplexing

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
capacity gives the QIAcuity an advantage over the QX200. In the validation set, the assay had a sensitivity of 80% (28/35) for detecting HPV16 and HPV33, and a specificity of 97% (29/30). In samples with ≥750 µl plasma available, the sensitivity was 85% (17/20), while in samples with ≤500 µl plasma the sensitivity was 73% (11/15).

Despite the expected drop in sensitivity with decreased plasma volume, the assay is sensitive and highly specific even in the low volume samples, and thus could be used for studies exploring HPV cfDNA as an early HPV-OPC detection marker in low volume archival material.

Keywords
HPV, liquid biopsy, digital PCR, OPC, cfDNA, early detection
1. Introduction

Infection with high-risk human papillomavirus (HPV) is one of the leading causes of cancer worldwide, accounting for 5% of all cases [1]. HPV is a sexually transmitted infection and is therefore primarily associated with cancers of ano-genital sites, such as vulvar, penile, and anal carcinomas, and particularly with more than 99% of all cervical carcinoma cases [1], but also cancer at other sites, such as oropharyngeal cancer (OPC) [2]. Due to a strong increase of HPV-driven OPC, in some countries with a high human development index, OPC is now the most frequent HPV-driven cancer [2]. HPV-driven OPC mostly arises from the epithelium of the tonsillar crypts and the base of tongue and is often diagnosed at a late stage after regional spread to nearby lymph nodes, making extensive treatment necessary [3]. The clinical standard for determining the HPV status of OPC is p16-immunohistochemistry (p16-IHC) [4], usually accompanied by some form of HPV DNA detection, often by PCR. Despite the overall good prognosis of HPV-driven OPC, survivors often experience serious morbidity after treatment, with one of the common long-term side effects being dysphagia, often necessitating the permanent use of a percutaneous gastrostomy tube [5]. Early detection of OPC may decrease the need for extensive treatment, possibly leading to an improved quality of life. This is complicated by the fact that, contrary to cervical carcinoma, no precancerous lesions of OPC are known to date [6]. Therefore, screening and early detection (also referred to as secondary prevention) are currently not feasible. Primary prevention, mainly HPV vaccination, is highly effective at preventing cervical cancer and, most likely, HPV-driven OPC as well, as the vaccine reduces the prevalence of oral high-risk HPV infection [7]. However, due to OPC mainly affecting males, and the low uptake in males, HPV vaccination is not expected to have an impact on HPV-OPC incidence rate for decades to come. Hence, HPV-driven OPC incidence rates are projected to keep increasing until at least the mid-2030s [8].

While cells undergo apoptosis or necrosis they shed DNA into their environment [9]. In blood plasma, this DNA is also called circulating cell-free DNA (cfDNA). In healthy individuals it is mostly derived from hematopoietic cells [10], but in cancer patients a significant fraction of it can be derived from the tumor. In cancer patients the proportion of tumor-derived cfDNA varies from less than 5 to more than 90% [9]. cfDNA concentrations can vary widely between patients, with typical values spanning from 10 to 1200 ng/ml [9]. As cfDNA is often of very low abundance and highly fragmented, with a typical fragment size of ~180 bp [9], specialized protocols and assays are necessary for its analysis. Detection of HPV cfDNA in blood plasma can identify OPC patients with high sensitivity and specificity [11] and has been successfully used for diagnosis, prediction of recurrence, and monitoring...
therapy response in OPC [12] [13] [14]. HPV cfDNA presence after intended curative
treatment is a highly specific predictor of recurrence, and recurrence has been detected up
to 166 days earlier by HPV cfDNA in comparison to standard imaging techniques[15].
Therefore, HPV cfDNA is a promising candidate biomarker for a screening approach due to
being minimally invasive and a highly sensitive and specific [16] biomarker for HPV-driven
malignancies. Currently the standard method for analyzing cfDNA is digital droplet PCR
(ddPCR). The method relies on partitioning the PCR into many thousand partitions, usually
by generating droplets in an emulsion (for instance BioRad QX200), but nanoplate-based
approaches exist as well, such as the QIAGEN QIAcuity, then referred to as digital PCR
dPCR). The market for ddPCR devices has been rapidly evolving, with new devices being
capable of detecting multiple targets at once. While the vast majority of HPV-OPC are
caused by HPV16, there is rising interest in detection of other HPV-types as well, especially
in relatively high-incidence countries [14]. In plasma samples at OPC diagnosis the sensitivity
of ddPCR has been reported to range from 70% [17] up to more than 98% [14]. ddPCR is
more sensitive than qPCR in HPV16-cfDNA detection from OPC [17] and comes with lower
cost per sample than sequencing based approaches, even though the latter has been
reported to reach even higher sensitivity than ddPCR [17][17]. Due to the fragmented nature
of cfDNA, for any PCR-based method it is of high importance to use very small amplicon
sizes to maximize sensitivity of the assay in this material. Most studies have focused on
application of the method for therapy surveillance or diagnosis, so that often 3 ml or more
of plasma are available for analysis [13] [14] [18]. To study the performance of HPV cfDNA
as a predictive biomarker of HPV-OPC it will be necessary to analyze existing samples from
biobanks, where often only small amounts of plasma are available.

Antibodies against high-risk HPV E6 oncoprotein are strongly associated with HPV-driven
cancer at diagnosis [19] and have been shown to be also highly specific and sensitive pre-
diagnostic biomarkers of OPC [20]. Seroconversion has been observed to occur at any time
point from 6 up to 28 years before onset of disease [21]. These antibody patterns have been
successfully used to identify individuals at risk for development of OPC in a prospective
manner before onset of symptoms [22] [23]. As currently no pre-cancerous lesions in the
oropharynx are known, repeated in-depth exams by otorhinolaryngologists over a long
period of time are necessary for early detection of OPC, putting a considerable burden on
both the patients and the healthcare system. Therefore, additional minimally invasive
biomarkers for OPC are necessary which are indicative of onset of disease within a shorter
timeframe than HPV16 E6 serology, in order to correctly identify the people at highest risk
of developing HPV-OPC in a timely manner to minimize anxiety and unnecessary medical
exams. HPV-cfDNA could hold the potential to complement serology in this approach.
The aim of this study was to establish an optimized protocol for the purification and quantification of HPV-cfDNA from small volumes of blood plasma. While nucleic acid purification efficiency is usually not a key determinant of cfDNA detection when the standard 4 ml of blood plasma are available in a clinical setting, it could be of importance when only limited amounts of plasma are available. For this purpose, blood plasma from volunteers was used in the comparison of cfDNA purification methods. To assess the assay analytic sensitivity it was applied to dilution series of the target DNA. In order to rule out non-specific interactions with template DNA from non-target HPV types or human DNA the assay was then tested on DNA from cervical swab samples. For application in liquid biopsies the assay was optimized and test parameters defined based on a test set of 24 OPC patient plasma samples at the point of diagnosis, which was validated in a validation set of 65 samples. The initial experiments were performed simultaneously on two different dPCR platforms to compare the methods.

2. Material and Methods

2.1. Study participants and samples

Healthy volunteers were recruited in Heidelberg, Germany, and blood draws were conducted by medically trained personnel at the German Cancer Research Center (DKFZ) (Ethical approval S-031/2022, University Heidelberg Ethics Commission). In this study, sodium citrate plasma samples from 86 OPC patients from Ulm University Hospital were used (tbl. 2.1., Ethical approval 90/15 by Ulm University Ethics Commission).

Tumor HPV status was determined by p16-IHC [4] and HPV detection by GP5+/6+ PCR [24] and subsequent sequencing of PCR products for HPV typing. Tumor sections were classified as HPV-driven by a pathologist if the sample was both HPV-DNA and p16 IHC positive. p16 IHC positivity alone with a negative HPV DNA result was not sufficient for the case to be classified as HPV-driven. Three patients in the validation cohort had one sample at initial diagnosis and one at recurrence with distant metastasis. Inclusion criteria for the study were the diagnosis of a tumor in the oropharynx with complete tumor HPV-DNA and p16-IHC data. Samples were assigned to the test and validation set by an independent collaborator not directly involved in the experiments. The two sets did not differ significantly when examining tumor stage, node stage or any other relevant characteristic (tbl. 2.1). The person responsible for conducting dPCR experiments and data analysis was blinded to the tumor HPV status associated with each sample until after the experiment was completed. Available plasma volumes from the first 24 OPC patients (12 HPV16-driven, 2 HPV33-driven, 10 HPV-negative) in the test set ranged from 0.38 to 2.9 ml (mean volume of 1.14 ml). The samples were collected between 2013 and 2020 (mean storage time since blood draw 5.5 years).
the validation set of 65 plasma samples from 62 HPV-OPC patients (33 HPV16-driven, 2 HPV58-driven, 1 HPV33-driven, 26 HPV-negative) available plasma volumes varied between 0.37 and 3 ml (mean volume of 1.01 ml).

Table 2.1: Patient characteristics compared between the test and validation set.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Test set, N = 24</th>
<th>Validation set, N = 62</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>12 (50%)</td>
<td>33 (53%)</td>
<td>0.38</td>
</tr>
<tr>
<td>33</td>
<td>2 (8.3%)</td>
<td>1 (1.6%)</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0 (0%)</td>
<td>2 (3.2%)</td>
<td></td>
</tr>
<tr>
<td>HR² HPV negative</td>
<td>10 (42%)</td>
<td>26 (42%)</td>
<td></td>
</tr>
<tr>
<td>p16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14 (58%)</td>
<td>39 (63%)</td>
<td>0.89</td>
</tr>
<tr>
<td>0</td>
<td>10 (42%)</td>
<td>23 (37%)</td>
<td></td>
</tr>
<tr>
<td>Age at diagnosis³</td>
<td>58 (54, 63)</td>
<td>61 (56, 67)³</td>
<td>0.13</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>21 (88%)</td>
<td>45 (73%)</td>
<td>0.24</td>
</tr>
<tr>
<td>female</td>
<td>3 (13%)</td>
<td>17 (27%)</td>
<td></td>
</tr>
<tr>
<td>OPC subsite</td>
<td></td>
<td></td>
<td>0.24</td>
</tr>
<tr>
<td>tonsil</td>
<td>14 (58%)</td>
<td>48 (77%)</td>
<td></td>
</tr>
<tr>
<td>base of tongue</td>
<td>9 (38%)</td>
<td>11 (18%)</td>
<td></td>
</tr>
<tr>
<td>soft palate</td>
<td>1 (4.2%)</td>
<td>2 (3.2%)</td>
<td></td>
</tr>
<tr>
<td>lateral pharyngeal wall</td>
<td>0 (0%)</td>
<td>1 (1.6%)</td>
<td></td>
</tr>
<tr>
<td>T stage</td>
<td></td>
<td></td>
<td>0.81</td>
</tr>
<tr>
<td>T1/2</td>
<td>13 (54%)</td>
<td>32 (52%)</td>
<td></td>
</tr>
<tr>
<td>T3/4</td>
<td>11 (46%)</td>
<td>29 (47%)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>0 (0%)</td>
<td>1 (1.6%)</td>
<td></td>
</tr>
<tr>
<td>N stage</td>
<td></td>
<td></td>
<td>0.56</td>
</tr>
<tr>
<td>N0/1</td>
<td>15 (63%)</td>
<td>44 (71%)</td>
<td></td>
</tr>
<tr>
<td>N2/3</td>
<td>9 (38%)</td>
<td>17 (27%)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>0 (0%)</td>
<td>1 (1.6%)</td>
<td></td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td>0.77</td>
</tr>
<tr>
<td>Stage 1/2</td>
<td>14 (58%)</td>
<td>39 (63%)</td>
<td></td>
</tr>
<tr>
<td>Stage 3/4ab</td>
<td>10 (42%)</td>
<td>21 (34%)</td>
<td></td>
</tr>
<tr>
<td>Stage 4/4c</td>
<td>0 (0%)</td>
<td>1 (1.6%)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>0 (0%)</td>
<td>1 (1.6%)</td>
<td></td>
</tr>
</tbody>
</table>
N (%), \(^1\)Pearson’s Chi-squared test, \(^2\)HR = high-risk, \(^3\)Median (IQR), \(^4\)Age missing for one patient, \(^5\)Kruskal-Wallis rank sum test

2.2. Plasma sample collection

Anonymized blood samples from healthy volunteers were processed within 1 h after collection by centrifugation at 600 x g for 10 minutes. The plasma phase was centrifuged again at 1200 x g for 10 minutes. The resulting plasma was split into 1 ml aliquots and stored at -80°C. For each experiment, a minimum of 5 plasma sample aliquots were pooled and thoroughly mixed before proceeding.

2.3. cfDNA isolation and purification efficiency assessment

Before nucleic acid isolation, plasma samples were equilibrated to room temperature and centrifuged at 3000 x g for 5 minutes. Automated cfDNA purification was performed using the DNA and Viral NA Large Volume kit for the MagNA Pure 96 (Roche Diagnostics, Mannheim, Germany). cfDNA was purified from EDTA plasma (from volunteers) using the cfNA ss 2000 or cfNA ss 4000 protocol, depending on the available plasma volume, and the Viral NA Universal 500 or Viral NA Universal 1000 protocol for sodium citrate plasma (from OPC patients), as recommended by the manufacturer. The sample volume was calculated based on the mass of the sample and then adjusted to the necessary input volume for each protocol adding PBS if the full volume needed for the protocol was not available (e.g. 1500 µl plasma plus 500 µl of PBS for the cfNA ss 2000 protocol), as recommended by the manufacturer. Purified DNA was eluted in 50 µl elution buffer.

The isolation efficiency of the MagNA Pure 96 protocols was compared to the QIAamp ccfDNA/RNA kit (QIAGEN, Hilden, Germany) to identify the ideal protocol for cfDNA isolation in this study. Isolation by the QIAamp kit was conducted according to the manufacturer’s instructions and 20 µl of RNase-free water was used in the final elution step. To identify the optimal DNA purification method, HPV16 DNA was spiked into blood plasma from healthy volunteers (spike-in experiments). \(10^4\) copies of a 104 bp HPV16E6 DNA fragment confirmed on the Agilent Bioanalyzer were added to pooled plasma samples from healthy volunteers immediately prior to cfDNA isolation. The pooled plasma samples were then thoroughly mixed and split to conduct cfDNA isolation and quantification in multiple replicates across the different kits to be compared. For each replicate the same volume of plasma was used, adjusted to the minimum input volume with PBS as described above. As a reference, the original dilution used as a spike-in was added to each QIAcuity dPCR. The quantification of the original spike-in material was used as a reference point when calculating the isolation
efficiency. Isolation efficiency was defined as the number of copies detected after purification divided by the number of copies spiked into the plasma before purification.

2.4. Testing HPV type specificity on cervical swab samples

Cervical swabs were collected at a colposcopy clinic in Berlin (MVZ) by Achim Schneider and colleagues [25] and stored in PreservCyt buffer at 4°C. Samples used were HPV negative (n=21) or positive for HPV16 (n=20), HPV33 (n=11), HPV16 and HPV 33 (n=2), HPV58 (n=8), HPV31 (n=19), HPV35 (n=2), and HPV52 (n=9) as determined by multiplex genotyping (MPG) assay [26]. Samples were vortexed vigorously for 20 seconds, then 250 µl of sample was used for DNA purification. PBS was used to adjust the volume to the required input volume of the kit used. DNA was isolated using the MagNA Pure 96 Pathogen Universal 500 protocol, eluting in 50 µl of elution buffer. 1 µl of the eluate was used for PCR.

2.5. DNA quantification by dPCR and ddPCR

Isolated DNA was analyzed using both the BioRad QX200 (droplet digital, ddPCR) and the QIAGEN QIAcuity One (digital, dPCR). Both digital PCR assays quantified HPV16 E6 and the human reference gene beta-globin (BG) using specific primers and probes (duplex assay) [27]. On the QIAcuity One, which comes with multiple fluorescence channels to quantify up to five different targets, the assay was complemented by primer-probe sets specific for HPV33 E6 (forward primer: CCAAGCATGGAGACAACTATAC, probe: TEX-CAACATTGAAACTACGTCGTAATG-BHQ2, reverse primer: AATCATATACCTCACGTTGC), HPV16 E7 (forward primer: AAGCAGAACCGGACAGAG, probe: HEX-TTGTTGCAAGTGTGACTCTACGTGCTTCG-BHQ1, reverse primer: TCTACGTGTGTGCTTTGACG), thus targeting four different targets (four-plex assay). These primers were designed by searching for the most conserved regions in 29 HPV33 E6 and 638 HPV16 E7 sequences available on NCBI GenBank, and searching for sub-sequences with suitable melting temperature (60°C) as calculated by the nearest-neighbour method according to Allawi et al. (1998) [28], a maximum GC content of 70% and minimal self- and cross-compatibility to prevent the formation of primer-dimers. ddPCR on the QX200 system was conducted in 40 cycles of 94°C denaturation for 30 seconds and annealing and elongation at 58°C for 1 minute. dPCR on the QIAcuity One was conducted in 40 cycles of 95°C denaturation for 10 seconds and 60°C annealing and elongation for 30 seconds. For the comparison of the two PCR platforms an input of 10 µl of cfDNA was added per reaction, while in the validation set, where dPCR was run on QIAcuity alone, the volume was 20 µl per reaction. As positive controls and for dilution series plasmids carrying the full HPV16 and HPV33 genomes and BG were used [29,30]. The positive control contained 10^4 copies of HPV16, HPV33 and human
BG. Dilution series used had 1.1×10^5 to 1.9 copies of those templates in 3-fold dilution steps for determining the analytical sensitivity of the assay.

2.6. Statistical analysis

Analysis of the QIAcuity data was conducted using the QIAcuity Software Suite V 2.2. Results exported from the software were further analyzed in R version 4.3.1 [31]. Packages from the tidyverse family of R-packages [32], epiR [33] and caret [34] were used. In the assessment of the analytical sensitivity, the limit of detection (LoD) was defined as the lowest input copy number that yielded a positive result in both duplicates. As in the cervix HPV infection is not uncommon, extremely low viral loads are most likely not informative and also may not have been detected by reference tests. Therefore, in cervical swab samples all samples were only considered HPV-positive if a minimum of 3 partitions was positive for any target. As in blood plasma samples no HPV DNA is expected, in the test set of plasma samples any sample with any positive partitions was classified as HPV-positive. In the validation set of plasma samples, cfDNA samples were only classified as HPV-positive when both replicates were HPV cfDNA-positive. Clinical sensitivity was defined as the number of samples from patients with HPV-driven tumors that had detectable HPV cfDNA divided by the number of all patients with HPV-driven tumors. Clinical specificity was defined as the number of samples from HPV-negative patients with undetectable HPV cfDNA divided by the number of HPV-negative patients. Confidence intervals (CI) for sensitivity and specificity is the Clopper-Pearson confidence interval.

3. Results

3.1. Comparison of PCR platforms

3.1.1. Analytic sensitivity and HPV type specificity

Analytical sensitivity of QX200 ddPCR and QIAcuity dPCR were compared by applying a three-fold dilution series of the corresponding template DNA in duplicates. Since the QX200 ddPCR assay quantifies BG and HPV16 E6 only, these two targets were used for a direct assay comparison. The QX200 had a LoD of 17 copies for both HPV16 E6 and BG (fig. 3.1A). The QIAcuity (fig. 3.1A and B) had a lower LoD of 6 copies for HPV16 E6, HPV16 E7 and BG, and a LoD of 17 copies for HPV33 E6. Fewer copies were also detectable in some experiments, but were not reproducible between duplicates.

To assess the specificity of the assay on both PCR platforms, DNA from 92 cervical swab samples with known HPV infection status was tested. For these samples any sample with 3 or more positive partitions was counted as positive for the given target. In the QX200 ddPCR, HPV16 E6 was 100% specific (77/77, fig. 3.1C). Sensitivity was 95.5% (21/22
detected), based on one false-negative sample that was defined as HPV16 and HPV33 positive by the reference method and yielded less than 3 HPV16 positive partitions. In QIAcuity dPCR, HPV16 E6 was also 100% type-specific but 100% sensitive for both HPV16 single infections (20/20) and co-infections (2/2) with HPV33 (fig. 3.1C). However, 12 non-HPV16 cases (out of 77) showed one to two partitions positive for HPV16 E6. HPV16 E6 quantification by the two methods was highly correlated (Pearson’s r = 0.97) and virtually identical (slope of regression model = 0.93).

In QIAcuity dPCR, HPV16 E7 and HPV33 E6 was also quantified in the same reaction. HPV16 E7 had a sensitivity of 100% for HPV16 single infections (n=20) and double infections with other HPV types (n=2) (fig. 3.1D). Also, HPV33 E6 had a sensitivity of 100% for HPV33 single infections (n=11) and double infections (n=2). While specificity for HPV16 E7 was 100%, one single infected HPV16 sample was also positive for HPV33, however with only 7 positive partitions, which is the lowest number detected in any sample. Consequently, the specificity of the HPV33 E6 assay was 98.8%. Overall, no HPV DNA was detected in any sample that was previously tested negative for HPV DNA or for HPV types other than HPV16 and HPV33.

Figure 3.1: (A) Quantification of a dilution series of HPV16 and BG template DNA by ddPCR on a BioRad QX200 system (x-axis) compared to QIAcuity dPCR (y-axis). Values shown are the minimum of duplicates. (B) Copy numbers of HPV16 E6 detected by QX200 (y-axis) and...
QIAcuity (x-axis) in cervical swab samples with known HPV status. The red lines indicate the cut-off of 3 copies that was set to distinguish positive and negative samples. The black line is a regression line fitted to the data with the equation $y = 0.11 * 0.93x$. R=0.97, p<2.2*10^-6. (C)

Quantification of a dilution series of HPV16 and HPV33 by dPCR on a QIAGEN QIAcuit ONE by primers targeting HPV16 E7 and HPV33 E6. Values shown are the mean of duplicates, the shaded area indicates the standard deviation. (D) Copy numbers of HPV16 E7 and HPV33 E6 detected by dPCR on a QIAcuit ONE in cervix samples with known HPV status. The red line indicates the cut-off of 3 copies that was set to distinguish positive and negative samples.

3.1.2. Pilot experiment – cfDNA analysis in a test set of 24 OPC patients

24 plasma samples from OPC patients (12 HPV16-driven, 2 HPV33-driven, 10 HPV-negative) were analyzed to compare the QX200 ddPCR targeting HPV16 E6 and BG, and the QIAcuit ONE dPCR targeting HPV16 E6 and BG, and HPV16 E7 and HPV33 E6 in addition. All samples were tested in duplicates.

When tested in ddPCR on the QX200 system, all samples were positive for BG in both replicates with a mean of 6,022 copies/ml detected (371 – 30,678 copies/ml), indicating sufficient DNA amount and quality. In total, 13 out of 24 samples had any positive droplets for HPV16 E6 (3.33 – 8,750 copies/ml, fig. 3.2A). Three of these were false positive with low HPV16 E6 copies (3.33 – 11 copies/ml), yielding a specificity of 75% (9/12, 95% CI: 43 – 95%). Two of these were positive for HPV33 only in tumor tissue. The assay had a sensitivity of 83.3% for HPV16-driven OPC cases (10/12, 95% CI: 52 – 98%). Applying the definition that a sample is only HPV positive when HPV was detected in both replicates, the sensitivity decreased to 58.3% (7/12, 95% CI: 28 – 62%) and specificity increased to 91.7% (11/12, 95% CI: 62 - 100%) (fig. 3.2B). The lowest concentration that was tested reproducibly positive was 11 copies/ml.

When the assay was run with the extended target panel on the QIAcuit One, a mean concentration of 6,235 copies of BG per ml was detected (201 – 55,220 copies/ml), indicating sufficient DNA amount and quality in all samples. The assay had an overall sensitivity of 71% (10/14, 95% CI: 41.9 - 91.6%) for HPV16 (E6 and/or E7) and HPV33, and a specificity of 100% (10/10, 95% CI: 69.2 - 100%) (fig. 3.2C). HPV33E6 had a sensitivity of 100% (2/2, 95% CI: 15.8 - 100%) for HPV33-driven OPC cases and a specificity of 100% (22/22, 95% CI: 91.1 – 100%). HPV16 E6 had a sensitivity of 50% (6/12, 95% CI: 21.1 – 78.9%) and HPV16E7 of 66% (8/12, 95% CI: 34.9 – 90.1%) for HPV16-driven OPC cases. Both HPV16 assays had a specificity of 91.7% due to one false positive result in a sample from an HPV33-driven OPC patient. The positive samples for each of the targets contained a mean of 3,482 copies of HPV16 E6 (21.2 – 22,780 copies/ml), 3,431 copies of HPV16 E7 (10.6 – 28,880 copies/ml) and 42.7 copies of HPV33 E6 (10.6 – 74.8 copies/ml). 6 samples were positive for HPV16 E6 and E7 and two additional samples were positive for HPV16 E7 only, indicating a
better performance of the HPV16 E7 assay. The quantification of HPV16 E6 and E7 was highly correlated (Pearson’s r > 0.99, fig. 3.3A). Cohen’s kappa was 0.476 for HPV16 E6, 0.645 for HPV16 E7 and 1.0 for HPV33 E6. In this experiment there was no correlation of HPV16 E7 copy number with BG copy number (Pearson’s r = 0.011, fig. 3.3B). There was a weak correlation between the number of BG copies detected and the plasma volume (Pearson’s r = 0.221, fig. 3.3C).

One plasma sample from a HPV33-driven OPC case reproducibly tested positive for HPV16 E6 (2/2 replicates on QIAcuity, 2/2 replicates on QX200) and HPV16 E7 (2/2 replicates on QIAcuity) in addition to HPV33 E6 (2/2 replicates), indicating that this sample is in fact positive for both HPV types.

Figure 3.2: dPCR results of 24 patients from the pilot experiment. (A) Copy number of HPV16 E6 cfDNA by ddPCR on the QX200, showing the mean value of the replicates. (B) Copy number of HPV16 E6 cfDNA by ddPCR on the QX200, showing the minimum value of the replicates. (C) Copy number of HPV16 E6, HPV16 E7 and HPV33 E6 cfDNA by dPCR on the QIAcuity, showing the minimum value of the replicates.
3.2. Optimization of cfDNA purification

In order to optimally detect even low concentrations of cfDNA in blood plasma, the performance of different nucleic acid purification methods was analyzed. The automated cfNA-protocol for the MagNA Pure 96 robot was compared with a manual QIAamp ccfDNA/RNA kit using plasma from healthy volunteers spiked in with HPV16 plasmid DNA. To ensure comparability, one plasma pool was split into multiple aliquots of the same volume and tested on both platforms. As quantified by the QIAcuity, mean isolation efficiency was higher using the cfNA-protocol for the MagNA Pure 96 (51%) compared to QIAamp kit (23%) (fig. 3.4A). Similarly, a higher number of BG copies from the native cfDNA were detected in the MagNA Pure 96 extract (median 1,499 copies) compared to the QIAamp extract (median 372 copies) (fig. 3.4B). When using the MagNA Pure 96 system for isolating HPV DNA spiked into healthy EDTA plasma, as few as 10 copies of HPV DNA added to the PCR were detected in 8 of 8 replicates (100% sensitivity) in the subsequent dPCR, while at 5 copies the sensitivity was 75%. When cfDNA was isolated from sodium citrate plasma samples, the MagNA Pure 96 cfNA ss 2000 protocol yielded fewer copies of BG per ml of plasma in 3 out of 4 of samples than the* Viral NA Universal 500* protocol, despite using the same input volume in both protocols (fig. 3.4C). Consequently, the latter protocol was used for the sodium citrate plasma samples in the validation experiment.
Figure 3.4: Performance of nucleic acid isolation from blood plasma. (A) Recovery rate of 104 bp HPV16 fragment from EDTA plasma by MagNA Pure 96 cfNA ss 2000 protocol (MP96) or QIAamp cfDNA/RNA kit (QIAamp). The red triangle indicates the position of the group mean. (B) Number of copies of native BG cfDNA isolated from aliquots of one EDTA plasma pool by MP96 and QIAamp. (C) Comparison of MagNA Pure 96 cfNA ss 2000 protocol and the Viral NA Universal 500 protocol for sodium citrate plasma.

3.3. Effect of sample volume on quantification

To gain insight about the effect of the sample volume on sensitivity, aliquots of 500 and 1000 µl were analyzed from 30 plasma samples (15 HPV16+, 2 HPV58+, 13 HPV-negative). The samples were analyzed in duplicates by QIAcuity dPCR, using 20 µl of 50 µl eluate per reaction.

All samples in both of the two groups (500 µl vs. 1000 µl) had sufficient human DNA, as assessed by the reference gene. When 1000 µl of plasma were used for cfDNA isolation, the HPV16 E7 dPCR had a sensitivity of 80% for HPV16-driven tumors (12/15), while HPV16 E6 had 73% (11/15) (fig. 3.5). When 500 µl of sample was analyzed, the assay had a sensitivity of 73% (11/15) for both HPV16 E6 and E7. In total only one HPV-driven OPC case was not detected due to decreased input plasma volume. In total there were two false positive samples, leading to a specificity of the assay of 87% (13/15). In one HPV58+ OPC plasma sample very low amounts (2.5 copies/mL) of HPV16-cfDNA were detected in 500 µl extract only. The other false-positive plasma sample was from an OPC case where the corresponding tumor tissue was HPV DNA-negative but p16-positive, but tested concordantly positive for both HPV16 E6 and E7 cfDNA in both plasma aliquots of 500 and 1000 µl. Overall, the quantification of cfDNA copies per ml was very consistent between the
two sample volumes for HPV16 E6 and E7 (r=0.99), and was comparable for human beta-globin as well (r=0.86).

![Graphs showing correlation between copy numbers of HPV16 E7, E6, and BG from 500 µl and 1000 µl plasma.](image)

Figure 3.5: QIAcuity dPCR result of 30 OPC patient plasma samples (13 negative, 2 HPV58+, 15 HPV16+), comparing the concentration of each target (in copies/ml plasma) between cfDNA isolated from 500 µl (y-axis) and 1000 µl (x-axis) of plasma. (A) HPV16 E7, (B) HPV16 E6, (C) BG.

3.4. Validation of final protocol in plasma samples from OPC patients

For the final assessment of clinical sensitivity and specificity the results from the maximum available plasma volume was for a total of 65 plasma samples from OPC patients (34 HPV16+, 1 HPV33+, 2 HPV58+, 28 HPV-). In the following analysis HPV58-driven OPC cases were counted as HPV-negative as the assay was not targeted to detect this HPV type. cfDNA was purified from plasma samples by MagNA Pure 96 Viral NA Universal protocol and applied in duplicates to QIAcuity dPCR, using 20 µl of 50 µl eluate per reaction. Only samples that tested reproducibly positive for a given target were counted as positive for this target. Sample volumes analyzed for each sample ranged from 370 to 1000 µl (mean of 824 µl). The
samples contained a median of 684 copies/ml of human beta-globin (223 – 80,982 copies/ml).

Samples diagnosed as HPV16 or HPV33-driven by pathology were classified correctly with a sensitivity of 80% (28/35, 95% CI: 63 – 92%, tbl. 3.1), with a specificity of 96.7% (29/30, 95% CI: 83 – 100%). The test had a Cohen’s kappa of 0.756, indicating substantial agreement. In samples with 350 – 500 µl of plasma available, the sensitivity of the assay was lower with 73.3% (11/15, 95% CI: 45 – 92%), while in samples with 750 – 1000 µl of plasma the sensitivity was 85% (17/20, 95% CI: 62 – 97%). A moderate correlation between the N-stage and the copy number of HPV16 E7 detected in plasma samples from HPV-driven OPCs was observed (R = 0.289), while there was a weak correlation with the T-stage (R = 0.128). There was no correlation between the copy number of human beta-globin detected in the sample and the sensitivity of the assay, but 5 out of 5 cases with more than 10,000 copies of beta-globin were HPV-driven. The age of the sample had no effect on the number of copies of BG detected in the plasma samples (R = -0.076).

Table 3.1: Performance of HPV QIAcuity dPCR of plasma cfDNA in comparison to tumor p16 status, HPV DNA status and overall HPV status.

<table>
<thead>
<tr>
<th>cfDNA¹</th>
<th>Tumor Pathology (DNA + p16 IHC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV16 +</td>
<td>HPV16 -</td>
</tr>
<tr>
<td>HPV16 E7+</td>
<td>27</td>
</tr>
<tr>
<td>HPV16 E7-</td>
<td>7</td>
</tr>
<tr>
<td>HPV16 +</td>
<td>HPV16 -</td>
</tr>
<tr>
<td>HPV16 E6+</td>
<td>22</td>
</tr>
<tr>
<td>HPV16 E6-</td>
<td>12</td>
</tr>
<tr>
<td>HPV33 +</td>
<td>HPV33 -</td>
</tr>
<tr>
<td>HPV33 E6+</td>
<td>1</td>
</tr>
<tr>
<td>HPV33 E6-</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cfDNA¹</th>
<th>HPV16/33 +</th>
<th>HPV16/33 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV¹²</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>HPV²</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>

Sensitivity 0.800
Specificity 0.967
Kappa 0.756

¹ HPV detected in plasma by QIAcuity dPCR, ² HPV+/ summarizes the results of HPV16 E7, HPV16 E6 and HPV33 E6 dPCR; the overall result was positive if any of the three targets was detected in both duplicates for a sample.
4. Discussion

Early detection of OPC holds the potential to improve patient’s quality of life due to early therapeutic intervention requiring less intensive therapy. For this purpose, novel diagnostic molecular biomarkers are needed using minimally invasive protocols. HPV cfDNA is a promising candidate that is successfully being used in therapy surveillance of HPV-driven OPC already. To evaluate this biomarker for early diagnosis a highly sensitive and specific assay is needed that can also be successfully applied to archived material, where usually only small amounts of plasma are available. Here, we describe a digital PCR assay targeting HPV16 and HPV33.

To optimize the assay at every step from plasma sample to DNA detection and quantification multiple comparisons of methods were conducted. Due to the superior cfDNA isolation efficiency of the MagNA Pure 96 over the QIAamp kit, the MagNA Pure 96 was used in the final validation set of samples. While the QX200 and QIAcuity showed comparable analytical and clinical sensitivity, the QIAcuity offers higher multiplexing capacity, which enables the targeting of multiple HPV types at once. In addition, the effect of the sample volume on the sensitivity was evaluated. Our results suggest that it is feasible to use lower input volumes than seen in most studies, as using only up to 1 ml of plasma in the validation experiment yielded a sensitivity of 80%, which is comparable to other studies which achieved 70 – 96% sensitivity working with 2 – 4 ml of plasma per sample [13] [15] [18] [17]. Since it has been shown that even in samples with 500 µl or less plasma available the sensitivity is still at 73.3% this allows the use of the assay on samples from large collections in biobanks, where usually only small volumes are available.

The increase in sensitivity from the pilot experiment (71%) to the validation set (80%) can be explained by an increased input volume from 10 to 20 µl, due to increased sample volume requirements in the pilot experiment for the comparison of two different dPCR methods, and the use of an optimized cfDNA purification method in the second experiment. The unexpectedly low cfDNA yield in samples with high input volumes prompted a more in-depth comparison of different cfDNA isolation protocols for these samples. This led to the conclusion that the Viral NA Universal protocols give a higher yield in these samples than the cfNA protocols, so that the protocol used for cfNA isolation was changed in the second group.

The specificity of the QIAcuity dPCR in the final validation set was 96.6%. The one reproducibly false HPV16 E6 and E7 positive sample by dPCR, was HPV DNA-negative, p16-positive by tumor pathology. This could be potentially caused by low HPV copy numbers...
within the tumor and consequently missed by HPV DNA reference assay. Cross-
contamination of the plasma sample by other samples could also be an explanation, which is
unlikely as none of the negative controls included in the experiments tested positive for any
of the genes targeted. As the plasma sample has been tested positive for antibodies against
multiple HPV16 antigens in an independent experiment beforehand using multiplex serology
[35] [36] and the tumor tissue being p16-positive, it seems likely that the HPV DNA in the
tumor tissue has been missed by the reference assay. Due to the good sensitivity of p16-IHC
and the very high specificity of HPV serology [35], it could be reasonably assumed that the
tumor was actually HPV-driven, which would set the actual specificity of the assay to 100%.

In the pilot experiment and the experiment for the direct comparison of cfDNA isolated
from different volumes, three additional false positive cases emerged. In contrast to the
HPV DNA result of corresponding tumor tissue samples, additional HPV16 DNA was detected
in three plasma samples from HPV33 or HPV58-driven OPC patients. This could be explained
by either lack of type-specificity of the assay when applied to cfDNA, which is unlikely as
there was no cross-reactivity in cervical swab samples positive for any of these HPV-types,
or previously undetected co-infections driving the cancer in these cases due to sensitivity
limitations of the reference test. In cervical swabs within this study there were multiple
cases of co-infection with these HPV types, which have also been frequently observed in
other studies [37], although whether these findings can be transferred to the oropharynx is
not clear.

Although HPV16 is the most common HPV type among HPV-driven OPC, one limitation of
the assay is the small number of HPV types covered. In our study, HPV58 was detect almost
as frequently as HPV33. However, only HPV33 was included in the assay due to limited
multiplexing spectrum of the dPCR. Since all HPV16 E6 positive sample were also HPV16 E7
positive, in future studies the HPV16 E6 can be replaced by primers and probes detecting
different HPV types.

Since therapy surveillance is a well-established use for HPV cfDNA detection, a more
interesting question to answer would be the kinetics of HPV cfDNA before diagnosis of HPV-
driven cancer. The possibility of using lower input volumes may open up new sample
sources that would not be able to provide the volumes usually used for cfDNA isolation. The
assay presented in this study is sensitive and specific even for these smaller input volumes
and thus could help exploring the utility of HPV cfDNA in early detection of HPV-driven
cancers, which could be feasible due to only requiring minimally invasive sampling.
5. Conclusions

Briefly, we established a novel dPCR detecting HPV16 E6 and E7, HPV33 E6 and the internal BG control on the QIAcuity in low, archived plasma volume after using automated DNA extraction with the MagNA Pure 96. The dPCR was shown to detect sensitively and specifically HPV16 and HPV33. Follow-up studies in larger cohorts are required to explore the use of HPV cfDNA in early detection of HPV-driven OPC.

References

HPV16 RNA patterns defined by novel high-throughput RT-qPCR as triage marker in
HPV-based cervical cancer precursor screening. Gynecologic Oncology
2015;138:676–82. https://doi.org/10.1016/j.ygyno.2015.06.039.

Schmitt M, Bravo IG, Snijders PJ, Gissmann L, Pawliita M, Waterboer T. Bead-based

prevalence of HPV-driven head and neck squamous cell carcinoma in north-east

Allawi HT, SantaLucia Jr J. Thermodynamics of internal c.t mismatches in DNA.

type of human papillomavirus associated with genital neoplasias. Nature

Seedorf K, Krammer G, Durst M, Suhai S, Rowekamp WG. Human papillomavirus type
6822(85)90214-4.

R-Core-Team. R: A language and environment for statistical computing 2022.

Wickham H, Averick M, Bryan J, Chang W, D'Agostino McGowan L, Romain François R,
https://doi.org/10.21105/joss.01686.

Kuhn M. Building predictive models in r using the caret package. Journal of Statistical

Hibbert J, Halec G, Baaken D, Waterboer T, Brenner N. Sensitivity and specificity of
human papillomavirus (HPV) 16 early antigen serology for HPV-driven oropharyngeal
https://doi.org/10.3390/cancers13123010.

Antibody responses to cancer antigens identify patients with a poor prognosis
among HPV-positive and HPV-negative head and neck squamous cell carcinoma